
Integrating Audio and Telephony
in a Distributed Workstation Environment

Susan Angebranndt (susan@wsl.pa.dec.com)
Richard L. Hyde (rich@wslqa.dec.com)

Daphne Huetu Luong (luong@wsl.pa.dec.com)
Nagendra Siravara (siravara@wsl.pa.dec.com)

Digital Equipment Corporation

Chris Schmandt (geek@media-1ab.rnedia.mit.edu)
MIT Media Lab

Abstract
More and more vendors are adding audio, and occasionally telephony, to their workstations. At the same

time, with the growing popularity of window systems and mice, workstation applications are becoming
more interactive and graphical. Audio provides a new dimension of interaction for the user, and the
possibility of a powerful new data type for multi-media applications.

This paper describes our architecture for the integration of audio and telephony into a graphics
workstation environment. Our framework is a client-server model; at the heart is an audio server that
allows shared access to audio hardware, provides synchronization primitives to be used with other media
and presents a device-independent abstraction to the application programmer.

1. Desktop Audio
This paper describes a server designed to provide the underlying audio processing capabilities required

by families of workstation-based audio applications. It is an essential component of the concept of desktop
audio, a unified view encompassing the technologies, applications, and user interfaces to support audio
processing at the workstation. This section describes the technologies underlying desktop audio, and some
example applications. In addition we discuss requirements of both the applications and their user
interfaces, because these dictate some of the features and performance required of an audio server.

1.1. Technologies
The basic technology for manipulation of stored voice in a workstation is digitization, which allows for

rec'ording and playback of analog speech signals from computer memory. At one extreme, telephone
quality recording requires 8,000 bytes per second; at the other extreme the quality of a stereo compact
audio disc consumes just over 175,000 bytes per second. The low end of this scale is easily within the
performance of current workstations, and basic digitization is becoming commonplace. Some workstations
already support CD quality coding, and this, too, will become universal within the next several years.

Text-to-speech synthesis allows computers to convert text to a digital speech signal for playback.
Synthesis is usually broken into two processing steps. The first step converts the text to phonetic units;
although a linguistically difficult task, this is most easily implemented on a general purpose processor. The
second step is a vocal tract model capable of generating an appropriate waveform from the units generated
by the first step; this has traditionally been performed on a digital signal processor.

Speech recognition allows the computer to identify words from speech. Speech recognition usually
employs a digital signal processor to extract acoustically significant features from the audio signal, and a
general purpose processor for pattern matching to determine which word was spoken. Although there is
much talk about the "listening typewriter" which can convert fluent speech to a text document, this is well
beyond the capabilities of currently available recognizers, which have small vocabularies and require both a
careful speaking style as well as head-mounted microphones or an acoustically controlled environment.

USENIX - Summer '91 -Nashville, TN Proceedings of the Summer 1991 USENIX 419

Conference, June 10-14, 1991. Pages 419-435.

The telephone can be thought of as a voice peripheral, just like a loudspeaker, and is a key component to
desktop audio. Voice messages and applications for remote telephone-based workstation access will likely
be a primary source of stored voice used as a data type. A small amount of electronic circuitry can provide
an interface to analog telephones. ISDN, the international standard for digital telephony, is driven by a data
communication protocol which can be easily managed by modem workstations.

Until recently, most audio devices required special purpose hardware, resulting in the associated high
cost of audio systems. But with faster workstations and plentiful memory, more and more audio processing
can be implemented on the workstation itself, with little or no special hardware. The real-time
requirements of managing a stream of 64 kilobit per second voice or the even slower data link of an ISDN
telephone connection are well within the capabilities of existing workstation platforms. Many speech
processing techniques which have traditionally been implemented on DSPs are now within the capabilities
of general purpose microprocessors. The upshot of these developments is that audio is about to become
universal, provided that adequate applications with welldesigned interfaces can be made available to users.

1.2. Applications
Audio processing employing the technologies enumerated above will be used by a variety of

applications. They will take advantage of various attributes of voice: its richness, its primacy in human
communication, the ease with which we transmit it over a distance by telephone, and our ability to speak
and listen while performing other, non-audio tasks.

With the ability to control the telephone, a workstation can be used to place calls from graphical speed
dialers, an address book, or telephone-based "dial by name" (which allows the caller to enter a name with
touch tones). Workstation-based personal voice mail allows graphic display and interaction with voice
messages, and can provide the ability to move messages to other voice-capable applications, such as an
appointment calendar. Voice and text messages can be merged into applications that provide for screen or
telephone access to each.

Because it is rich and expressive, voice can be very useful for annotating text, such as the marginal notes
on a document under review or as a quick header to a forwarded message in some other medium. Stored
voice can be used more formally as an essential component of multi-media presentations.

Figure 1-1: A graphical user interface for voice mail, on the left,
allows telephone messages to be moved to a users calendar, on the

right, in two applications developed at the MIT Media Lab.

Speech synthesis and recognition allow for remote, telephone-based access to information accessible by
the workstation. Speech recognition can increase user performance for hand-and-eye busy applications
such as CAD and management of the window system. Synthesized speech or playback of distinctive

420 USENIX - Summer '91 - Nashville, TN

*

sounds can be much more effective for alerting than the universal "beep" employed in UNIX' applications
such a "biff", "talk", "wall", editors, and broadcast system messages.

1.3. Application requirements
As inviting as these applications may sound, in general no single application can justify exclusive use of

the workstation audio hardware. Instead, we envision a wide variety of applications, of which those just
mentioned, all running in concert. These applications will make use of audio as a data type, and the user
must be able to move audio between applications and transmit it between sites.

This is really not very different from current uses of texS a user may invoke an editor while sending
electronic mail, or copy a portion of the text displayed in one window into an application running in
another. For an example in the audio world, consider Figure 1-1, which shows window-based graphical
user interfaces for copying sound between applications.

The various audio applications will be designed independently and run as separate processes. But they
must share limited resources, such as speakers and microphones, just as window applications share screen
pixels and the mouse. These applications need to communicate among themselves to coordinate the
sharing of data and allow for more powerful management of the applications by the end user; such a
communication mechanism must support inter-process message interchange.

1.4. User interface requirements
Although all these applications can make powerful use of audio, the medium is intrinsically difficult to

employ in computer applications. Stored voice is awkward to handle since we cannot yet perform keyword
sepches on it. It is slow to listen to (although fast to create), and is a serial medium because of its
time-dependent nature. A loudspeaker broadcasts throughout a room, disturbing others in the area and
allowing them to hear possibly personal messages. Finally, the technologies themselves are currently
limited; synthesized speech is difficult for unaccustomed listeners to understand, and speech recognition
simply does not work very well.

Because of these limitations, graphical interaction styles will dominate when a screen is available.
Graphical representations, such as the Soundviewer widgets depicted in Figure 1-1, can provide both
visual cues to the duration of the sound as well as a means of interacting with playback and navigating
within the sound.

Both audio playback and interactive audio systems have stringent real-time requirements. Although
playback of stored voice may not require a high data bandwidth within the workstation, once playback
starts it must continue without the slightest interruption; this is very different from refreshing a static text or
graphic display. Since voice recognition and even touch tone decoding are quite error prone, the user needs
immediate feedback that input has been recognized. In a voice-only interface this is essential but may be
difficult.

Because of the difficulties building effective audio interfaces and applications, users have yet to realize
its full potential. Many applications written to date have employed weak interfaces; interfaces must be
designed with full appreciation of the limitations in the voice channel. For the near future we can expect,
and must encourage, a great deal of experimentation in the design of audio user interfaces, both screen- and
telephone-based.

2. Requirements of desktop audio
The previous section described the world of desktop audio. This view assumes access to a variety of

audio processing technologies, largely implemented as software, from a number of applications running
simultaneously, with demanding user interface requirements. What is needed from a software architecture
to support such applications?

%NIX is a trademark of AT&T Ball Laboratories

USENIX - Summer '91 - Nashville, TN 421

The primary need is resource arbitration. Applications should be written without having to worry about
mechanisms to share resources with other applications (although they will have to have a strategy to deal
with not gaining access to a critical resource).

Another aspect of resource management is sharing and allowing multiple applications to use the audio
hardware. For instance, the multiplexing of output requests from a number of applications to a single
speaker, to be heard simultaneously. Or distributing words detected by a speech recognizer to the proper
applications.

It is also important that the software interface be device independent regardless of actual workstation
hardware. Device independence provides for portability, which encourages application developers, and
allows workstation vendors to introduce more powerful hardware devices without abandoning previously
written applications.

This interface should also provide applications with networked access to resources. This promotes
sharing of applications and data, and allows a user to more easily access applications when not at his or her
own workstation. Additionally, networked access allows many workstations to share critical or expensive
resources which cannot easily be replicated on every desk.

The software underlying desktop audio applications must support the real-time requirements of
maintaining an uninterrupted stream of audio data once playback starts. Quality user interactions demand
the ability to start and stop audio playback quickly, and deliver input events to applications with little
latency. Audio operations must be synchronized to support seemless playback of multiple sounds in
sequence, or to quickly transition into record mode after playback of a voice prompt while taking a
message. Audio operations must also be be synchronized with other media, to support both multi-media
presentations as well as the use of graphical user interfaces that control audio playback.

Because audio can be stored using a variety of encoding methods, it is useful to support multiple data
representations at a level below the application. This is important for several reasons. First, over the next
several years users will demand higher quality speech coding and workstations will become fast enough to
support this; if every application must be rewritten progress will be delayed. At the same time, improved
compression techniques will be used to transmit voice across local and wide area networks, reducing
bandwidth at the price of data representation complexity. Applications should be sheltered from this.

Finally, audio support should be extensible to support new devices and signal processing algorithms as
they emerge. Our approach is to provide a device subclassing mechanism in the server, allowing extension
of the class hierarchy using existing protocol capabilities.

3. Why a client - server model?
In order to satisfy the requirements of the types of applications and technologies described above, we

have built an audio server. A server, running as a single, separate process to support a number of clients
(applications) simultaneously, is advantageous for several reasons. A server approach has been utilized
successfully in the past, across a wide range of applications, technologies, and operating systems [2], [I],
[41.~ The server concept has been widely accepted for window systems, and in fact we can apply much of

what we have learned from our experience with the X Window system3 131 to the audio domain.

A server is required for resource sharing and arbitration across multiple applications; there must be some
point at which all application requests meet so that resource contention can be arbitrated. Use of a
well-defined protocol for communication with the server allows the application to remain compatible
across multiple vendors' server implementations, and its device-independent nature shelters the application
from hardware differences.

2The Olivetti VOX audio server introduced the concepts of typed server-side entities (corresponding to devices) and application
cornpositing of devices, and also borrowed heavily from X. There are a number of similarities between VOX and our audio protocol.
The design of the prototype VOX server was more oriented towards control of analog audio devices.

3~ Window System is a trademark of The Massachusetts Institute of Technology.

USENIX - Summer '91 -Nashville, TN

Use of a separate process for control of a real-time medium such as stored voice simplifies application
design in many respects. Audio playback requires repeated calls to buffer management routines to move
digital audio data from disk storage to audio hardware. Audio streams may be mixed, or effects added, by
introducing more buffers and operators upon them. Continual feeding of buffers is a distraction for
application software, which is more easily written and maintained as a set of routines, each responding to
some user stimulus or server-generated event such as sound playback completion.

Although many parts of the audio server internals can be modeled after the X server, it is important to
keep the two separate. The server for a window system has very different real-time requirements than an
audio server; they cannot be merged without serious design compromises for both. Adding audio to a
graphics server adds needless complexity to components supporting each medium. Telephone-based audio
applications may well run on a workstation not running any window system, and should not be burdened by
many lines of display support code.

The strongest argument for merging media into a single server is synchronization between media. A
single server can provide internal methods of controlling one medium as a function of progress though
another, which is useful if the media have varying latencies or throughput characteristics. This is a minor
problem; most synchronization will happen in response to some user input rather than the internal state of
the server. This entails round uips for messages between client and server, at which point it is much less
critical whether there is a single server or many.

In fact, servers for multiple time-dependent media such as audio and video will almost certainly employ
a' multi-threaded architecture internally, with all the associated problems 'of state and communication
between threads. So the cost of multiple servers for synchronization can be reduced to the cost of the
context switch between server processes and data sharing across server address spaces. With vastly
improving processor speeds and increased hardware support for context switches, these differences are
probably minor.

4. System model
Our audio architecture consists of five main components: the audio network or protocol, an audio server

that implements the protocol, a client-side library (Alib), a user-level toolkit, and applications. The
relationship between the components is shown in Figure 4-1. The structure of each of these components is
briefly described in the following sections, with the remainder of the paper focusing on the protocol, the
server implementation, and communication with the server.

Audio Bili Speaker Phone Audio Manager

Toolkit

I I

t Network

I Audio Sewer I
I Device Library (including soltware devices)

I I

Figure 4-1: Audio System Model

USENIX - Summer '91 -Nashville, TN 423

4.1. The Audio Server and the Audio Protocol
For each workstation, there is a controlling server. The server implements the requests defined in the

protocol and executes on the workstation where the audio hardware is located, providing low-level
functions to access that hardware and coordination between applications. Clients and a server
communicate over a reliable full duplex, 8-bit byte stream. A simple protocol is layered on top of this
stream. The audio server can service multiple client connections simultaneously, and a client can have
multiple connections to one or more audio servers. This protocol is a very precisely defined interface. The
tight definition of the semantics of the protocol make it independent of the operating system, network
transport technology and programming language. The "Alib" library provides clients with a procedural
interface to send and parse the protocol messages.

Requests are asynchronous, so that an application can send requests without waiting for the completion
of previous requests. Some requests do have return values (state queries, for instance), which the server
handles by generating a reply which is then sent back to the application. The client-side library
implementation can block on these requests or handle them asynchronously. Blocking on a request with a
reply is tantamount to synchronizing with the server. Errors are also generated asynchronously, and
applications must be prepared to process them at arbitrary times after the erroneo,us request.

. The audio protocol describes several major pieces :
1 . connections that provide the communication between server and client

2. virtual devices that specify a device-independent abstraction of the actual hardware. These
are combined to build audio entities that can play, record or otherwise interact with the user.

3. events that notify the client of changes in state (for instance that a play command has
completed).

4 . command queues that control the use of the virtual devices and provide synchronization
among devices and commands.

5. sounds, or audio data repositories, that can be played or recorded.

4.2. Alib and the Toolkit
Alib is simply a procedural interface to the audio protocol. It is a "veneer" over the protocol and is the

lowest level interface that applications will expect to use. Applications should not use the workstation
hardware interface directly or bypass the library.

We have built a toolkit that sits on top of Alib. The goals of the toolkit are to: hide or automate wiring
of devices for greater portability, hide the location and format of sound data, hide and manage device queue
management, and provide mechanisms for synchronizing audio with other media (for example, X
graphics). Clients use the toolkit to construct audio user interfaces, such as an audio dialogue or touch
tone-based menu. However, the toolkit is "policy free" in that it does not enforce a particular style but
attempts to provide a mechanism for interaction. Further discussion of the toolkit is beyond the scope of
this paper.

4.3. The Audio Manager Client
In a window system, a special application called a "window manager'' mediates the competing demands

for scarce resources such as screen space, input focus, and color selection. The window manager sets the
policy regarding the input focus of the pointing device and keyboard; it keeps track of windows and sets the
policy for moving and resizing them. Because the audio protocol allows multiple clients to access the
audio hardware simultaneously, an application similar to a window manager is needed to enforce
contention policy. We call this the audio manager.

424 USENIX - Summer '91 - Nashville, TN

-

5. Protocol Overview

5.1. Audio device abstraction
The protocol provides applications with a device-independent interface to the audio capabilities of the

workstation. The device-independent objects, virtual devices, are the basic building blocks of "audio
structures" in the protocol. Each virtual device can be described by a class name, a set of attributes, a set
of controls, and a set of device ports. Device ports represent audio inputs and outputs, known respectively
as sink ports and source ports. The ports are used to connect virtual devices together and define the audio
data path between them.

Audio structures are constructed by organizing one or more virtual devices within containers called
logical audio devices or LOUDs. LOUDs can then be constructed into a tree hierarchy. This hierarchy is
used to logically group virtual devices into manageable substructures, such as a tape recorder that plays and
records, or an answering machine.

Once a LOUD tree is built, two or more virtual devices can be combined to create more complex device
abstractions by connecting wires between them. The wires specify the flow of data between the devices.
The root of the LOUD tree is used to control and coordinate the audio streams to the LOUDs in the tree. A
command queue is provided for each root LOUD. Figure 5-1 shows the hierarchy and wiring for an
answering machine LOUD tree.

Answering
Machine
LOUD

Recorder
LOUD

Device

Rewrder input Telqhone output

Figure 5-1: Answering Machine Loud

Virtual device classes. The devices supported by the protocol are divided into classes, which define
generic audio functions that are supported by a set of device-independent commuqds. Below we have
enumerated the classes supported by the protocol, and their commands. A device command is issued in
either queued or immediate mode. Some device commands, such as P l a y or Record, must be
synchronized with other commands, and can be issued only in queued mode. Other commands, such as
S t o p or ChangeGain, can be issued in either immediate or queued mode.4 In immediate mode, a
command takes effect instantaneously, and can stop processing of a queued command.

Inputs and outputs provide connections to external devices, such as speakers and microphones. The are
used as wiring constructs to attach to the other classes. The base command is ChangeGain, which
adjusts the volume.

Players have one or more output ports, typed according to a speech encoding format. They convert
sound data to the output port type and then transmit the data out the port. The ports can be wired to an
output device. The commands Play, Stop, Pause, and R e s t a r t control the transmission of the data
on the ports.

4 ~ n application can issue a queued ChangeGain. An example would be a client that wants to play cme sound after another but
change the gain in between. In this case the client would issue a P l a y , a ChangeGain, and a P l a y , all in queued mode.

USENIX - Summer '91 - Nashville, TN

- -- LA-

Recorders have one or more input ports, typed according to a speech encoding format. They store sound
data received on the input ports. To digitize and store data from an external microphone, a recorder and an
input of class microphone are wired together. The commands Record, Stop, Pause, and R e s t a r t
control the flow of data from the ports.

Telephones are combined input and output devices with the commands D i a l , Answer, SendDTMF,
Stop, Pause, Resume.

Mixers take data on multiple inputs, combine the streams and then present the combined data on one or
more output ports. The relative combination is determined by a percentage assigned to each input. The
command SetGain sets the percentage to be mixed on a given input.

Speech synthesizers speak text strings. They have a single output for the synthesized audio. The
commands S e t Text Language and Se t v a l u e s control interpretation of the text and acoustical
characteristics of the vocal tract model used for synthesis. S e t E x c e p t i o n L i s t allows applications to
ovemde the normal pronunciation of words, such as names or technical terms. SpeakText accepts
commands to speak text strings.

Speech recognizers detect words spoken by a user. A recognizer has a single input, and produces
recognition results as events. The commands Tra in , SetVocabulary , A d j u s t c o n t e x t , and
Savevocabulary control which words a recognizer will detect, based on application and user.

Music Synthesizers process note-based audio. They accept commands, and produce audio data on their
single output. The commands S e t S t a t e , and S e t v o i c e control music generation parameters. Note
makes a sound.

A Crossbar is a switch to control routing of a number of inputs to a number of outputs. Each input can
be connected to one or more of the outputs, as controlled by the command set S t a t e .

A Digital Signal Processor is a set of software to manipulate one or more audio data streams. It may
have several inputs and outputs. Commands have not yet been specified. ,

Device Attributes Both virtual and physical devices have attributes which describe specific features of
the device. Attributes are used for virtual devices to constrain their mapping to physical devices, or to get
information about the physical devices with which they are associated. Attributes of a physical device
describe its actual capabilities.

To facilitate device-independence, an application specifies the desired virtual device by a list of
attributes. The attributes can specify a device either tightly or loosely. For instance, a loose specification
might be "give me a speaker". A more tightly specified list of attributes might be "give me the left
speaker". The audio protocol maps the virtual devices created by the application onto the specific
instances of those functional devices. When creating a virtual device, the application need only specify the
class and other attributes of the device, rather than the specific hardware required to accomplish the
operation.

The attributes for a specific device are dependent on the actual hardware. For example, the attributes of
a recorder device include

1. sound encoding formats supported

2. whether the recorder supports automatic gain control (AGC) during recording

3. whether the recorder can compress the recorded audio by removing pauses

4. whether the recorder supports pause detection to terminate recording.

Attributes of a telephone device are largely constrained by the telephone equipment (digital or analog)
and network (public or private) capabilities. Every telephone will have one or more numbers and area
codes associated with it. Telephones may have multiple lines. Telephones may report information about
incoming calls, such as the identity of the caller and whether the call was forwarded from another number.

USENIX - Summer '91 -Nashville, TN

An answering machine might wish to use calling party information to choose an outgoing message, or to
label a message it takes. The answering machine client needs to query the device attributes of the
telephone in order to determine whether this information will be available as part of the incoming call
notification event.

What does the hardware do, really? Roviding a device-independent interface is not specific enough
for some applications and some hardware. Some devices are ~ 0 ~ e c t e d via physical wires that cannot be
broken. Users will want global control over some devices, such as volume on a speaker, rather than the
local control that virtual devices provide. A special LOUD tree, called the device LOUD, encapsulates all
of the available functions in every device controlled by the server. The device LOUD tree contains a
LOUD for every physical device, and if two devices are hard-wired, they are wired in the device LOUD.
Each LOUD in the device LOUD is given a unique id that can be used by an application to monitor the
device. The example in Section 5.9 monitors the telephone using the device LOUD.

Devices are controlled by applications through commands or through the manipulation of device
controls. The commands provide a portable interface to abstract audio devices. Device controls allow for
more complete access to devices at the cost of portability. Device controls have a format similar to X
properties. Device controls should be necessary only for extensions, such as new subclasses of devices, or
to take advantage of a particular implementation of a device at the cost of portability.

5.2. Wires
Wires establish the flow of data between virtual devices. They are used to construct complex devices by

specifying connections between source and sink ports. A wire connects a source port of a virtual device to
a sink port of another virtual device. This is how the internal connections of a complex device are
established.

Wires have type information so that an application can query the type of the path, be it analog or a digital
sample format. It is possible to query a virtual device for its wires, or a wire for its virtual devices and their
corresponding port indexes. If it is necessary to constrain the nature of the path between two virtual
devices, the desired wire type can be specified when the wire is created. The server checks that data on the
wire matches the wire type.

In the device LOUD, the existence of a wire between two virtual devices indicates that there is a
permanent connection bebetween their respective devices. Unfortunately, not all hardware is as general as
might be desired. If the capabilities and constraints specified for a virtual device require the devices to
have permanently wired connections, special wiring rules apply. If an application attempts to attach a wire
between a virtual device and any other virtual device, the capabilities and constraints for the connected
virtual devices must match those of the devices that are physically connected, or an error will result. An
example of such a mismatch might be an outboard speaker-phone that has hard-wired connections between
a telephone line, a microphone, and a speaker. Attempts to wire a LOUD that requires use of one part of
the speaker-phone with a device that cannot be implemented by another piece of the speaker phone is not
allowed and will generate an error.

5.3. Mapping: associating a virtual device with an actual device'
There is not necessarily a one-to-one correspondence between an actual piece of hardware and a virtual

device. If a device can be used by more than one virtual device at the same time, the functional device will
appear as multiple active virtual devices. For example, a speaker or output device, through which the
sounds from multiple applications are simultaneously mixed, would be represented by multiple active
virtual devices.

The server does not bind a virtual device to a physical device until the LOUD has been mapped. At this
point, the server examines the attributes given when the LOUD was created to find a matching device.
Most applications do not care which device they use, only that they can get the services they rquire. If an
application must use a particular device, the id of the device in the device LOUD can be passed as an
attribute to force the binding.

USENIX - Summer '91 -Nashville, TN 427

It is possible to augment the virtual device's attributes to tighten the device constraints. Such
. augmentation capability is useful when, for example, an application does not care which speaker it uses, but

does not want to change speakers once the output has commenced. If an application requests a device by
its class, the actual device used may change between activations. If it is desirable to use the same device
for each request, an application can create a virtual device in a LOUD, and then map the LOUD. At this
point, a Q u e r y V i r t u a l D e v i c e ~ t t r i b u t e s request will generate a list of device atmbutes that
contains, among other things, the device ID selected by the server. This device ID can then be specified in
an AugmentVirtualDevice request, so that it becomes an application-specified constraint.

5.4. Activation: who gets the device
LOUD access to shared resources is controlled by an active stack, which is the fundamental scheduling

mechanism in the server. When a LOUD is mapped, it is put on the active stack. Unmapping a LOUD
removes it from the active stack. The LOUD at the top of the active stack controls the functional devices
represented by all of its virtual devices. Lower priority LOUDs can be put on the bottom of the stack to
yield to higher priority LOUDs.

The server activates as many LOUDs as it can at one time. It does this by starting at the top of the active
stack and activating all LOUDs that do not requires a resource that is being used exclusively by another
active LOUD.

The activation and deactivation of a LOUD occurs dynamically. The state of the functional devices
controlled by the LOUD are stored in its virtual devices, so that the server can restore the LOUD's devices
to their state prior to the moment the LOUD was deactivated. Applications can request that a LOUD be
activated or deactivated, and receive notification of these transitions. A mapped LOUD can be activated by
the server or an audio manager at any time, so an application must treat a mapped LOUD as if it were
active.

5.5. Synchronizing audio streams: command queues
Each root LOUD has a command queue to synchronize the actions of the virtual devices contained in the

LOUD tree. Queues allow for the sequential processing of commands within the server, without requiring
application notification and the associated round-trip communication. For example, an application may
play a prompt and then record the user's response. In this situation, an application could first issue a Play
to a queue and then issue a Record. The queue would process the P l a y and, on completion, start the
record operation. Another case might be an application that wants to play several sounds back-to-back.
The application could issue three P l a y commands, one right after another, and the server would play them
in order, one after another, with the minimum possible space in between. For a set of digital sounds, there
should be zero delay between them.

Queues have four possible states: started, stopped, client-paused, and server-paused. Time in a queue is
relative to the activity of its LOUD tree. When a queue is paused, command queue relative time is
suspended for that queue. If a LOUD is made inactive while processing a command, the server pauses the
queue. Upon activation of a LOUD, a queue in the server-paused state is automdtically resumed. Pausing a
queue pauses the virtual device on which the current command is operating. All other devices in the
LOUD are not affected.

The application can explicitly pause a queue by placing it in a client-paused state. The client-paused
state allows a LOUD's queue to be paused, preempted, and reactivated without losing track of the queue
state. The pausing and resuming of a queue are also propagated to all virtual devices affected by the
current command. If the application issues a request to pause a queue in which the current command is
operating on a device that cannot be paused, the queue is stopped.

There are four queue commands that allow device synchronization, but do nothing to devices. These
commands are CoBegin, CoEnd, Delay, and DelayEnd. These queue commands are not meant to
provide a programming language but to facilitate synchronization. There are no conditionals or branches
and the queue is not an interpretor.

428 USENIX - Summer '91 - Nashville, TN

-

The CoBegin command causes all of the commands up to the bounding CoEnd command to be started
simultaneously. The command after the CoEnd is not started until all commands within the
C o ~ e g i n / C o ~ n d bracket are completed. These commands exist for the synchronization of complex audio
configurations. A CoBegin command is useful when an application wants two operations to start at the
same time. If, for example, an application is playing two sounds through a mixer, a CoBegin is necessary
for the sounds to be started at the same time. The following example starts playing A and B at the same
time. When both A and B are finished, sound C is started.

cobegin
play A on device 1
play B on device 2

coend
play C on device 1

The Delay command waits some interval time before processing. Commands contained within a
delayed segment are processed sequentially, unless a CoBegin command is encountered before the
DelayEnd command. The following example plays sound A, waits 5 seconds and then starts playing
B. When B is finished, sound A is stopped.

cobegin
play A on device 1
delay 5 seconds

play B on device 2
stop device 1

delayend
coend

5.6. Audio sound abstraction
Once a LOUD tree is created and the virtual devices are wired together, applications will want to pass

audio data between the devices via wires. A sound is a typed object that represents digitized audio data. Its
type is represented by the tuple (encoding, samplesize, samplerate). While the contents of a sound must be
on the server side to be manipulated, the data can be supplied by the application or it may be supplied and
controlled by the server.

The server provides a collection of sounds in its data space. Applications reference these sounds by
name. The sounds are grouped into libraries or catalogues. Most sound data will be stored in files.
However, some sound data will not be available to the server directly, but rather through an external device
controlled by the server. Consider, for example, a CD that plays directly to its own speaker. In this
situation, the sound data is supplied by the CD, rather than the application. Many CDs do not provide a
digital data path to the computer so applications cannot read the audio data. Since the server controls the
connection between the CD and the speaker, it must also control the sound data.

In addition, sound data can be supplied in real-time by an application, such as a networked-based audio
process. The protocol provides a mechanism to supply or retrieve data from an active device. The
application supplies the data to the server; it can then be used in the same way as server-side data.

5.7. Events
An event is data generated asynchronously by the audio server as a result of some device activity or as a

side-effect of a protocol request. Events are the primary mechanism for synchronizing audio with other
workstation services and media. The server generally sends an event to an application only if the
application specifically asked to be informed of that event type.

There are 3 major event categories: command queue, device and synchronization. When a device or a
command queue changes state, an event can be generated. For the queue, these are such things as
Q u e u e S t a r t e d , QueueStopped, and ComrnandDone. For devices, events are class specific. For the
telephone class, they are "a dial request has been issued", "the telephone has been answered", "the phone
is ringing". For the recorder class, they are "start" and "stop".

USENIX - Summer '91 - Nashville, TN

The synchronization events are used to coordinate the audio stream with other media or services. For
example, consider an application displaying a set of images while playing a stored digital sound track. The
images are displayed using the window system, and the audio track is played using the audio server. This
application wants to display the images at some fixed rate. The application monitors the audio server
synchronization events on the sound track, and uses them to time the update of the display.

5.8. Audio Manager support
The audio protocol provides several mechanisms for audio managers. It also specifies sensible defaults

in the absence of an audio manager. These mechanisms directly parallel those provided by X. The
mechanisms are: ambient domains, device exclusion, properties and redirection of mapping requests.

An ambient domain indicates a relationship between devices and the acoustic environment. A server
supports at least one domain. For example, two speakers and one microphone on a user's desk are one
ambient domain, called the desktop domain; sound from the speaker will be audible by the microphone. A
telephone line is another ambient domain, as it does not interfere with the desktop domain. A speaker-
phone is in both domains.

Ambient domains allow a user to activate a microphone, a device of class input, and exclude all devices
of class output that might interfere with the same ambient environment. To accomplish this, in addition to
the ambient domain attribute, devices of class input or output can request the attributes of exclusive input
and exclusive output. Requesting a device with the exclusive input attribute preempts all other devices of
class input in the same ambient domain. The exclusive output attribute performs similarly, but affects only
devices of class output.

A proper0 is a (name, value, type) triple. Properties can define any arbitrary information and can be
associated with any LOUD or sound data. Properties can be used to communicate information between
applications. In the case of an audio manager, they can be used to indicate application or user preferences.
For instance, applications might attach a property named DOMAIN to the root LOUD. The value of this
property would be the user's ambient domainpreference for that application.

Another way to enforce policy is through redirection control. When an application attempts to map or
restack a LOUD, the request may be redirected to a specified client rather than the operation actually being
performed. In this way, the audio manager can ovemde the application.

5.9. Example: an answering machine

Figure 5-2: Answering Machine LOUD tree

Telephone O u m
Answering

Machine
LOUD
0

To give a feel for how an application would use the protocol, this section contains an example of
building and using an answering machine. An answering machine plays an outgoing or greeting message
after answering a call, records an incoming message and then hangs up. The protocol entities needed to
build the answering machine are a telephone, a player, a recorder and two sounds. The LOUD that the
application would construct is shown in Figure 5-2.

-
Recorder
Virtual
Device

430 USENIX - Summer '91 -Nashville, TN

Player Output Telephone
Virtual - - Virtual
Device ~ e l e p h o ~ Device

InputT I Recorder input I Telephone output

When creating the virtual devices, the answering machine application specifies only the class of the
device and the type of data that will be used. In this example, the greeting message is stored in an 8-bit
ylaw encoding. Therefore, the attribute specification for the player is 8-bit p-law. The application need
not give any more information to the audio server. In this example, the incoming message is also an 8-bit
p-law sound.

The telephone will probably be an actual hardware device connected to the workstation. The player and
recorder will be software devices, or algorithms. The player is responsible for reading cached sound data
(probably from a file) and presenting that data on its output source. The recorder does the reverse; it takes
data from its input sink and stores it as a sound (again, probably a file). At creation time, the three devices
are unmapped and not activated. Any commands sent to them will be ignored until they are activated.

Recorder I output

Figure 5-3: Answering machine: wired

The next step is to wire the devices to indicate the data paths. The results of wiring are shown in Figure
5-3. The output sink of the player is connected to the input of the telephone. This allows the greeting to be
played to the caller. The output of the telephone is connected to the recorder's input source. This wire
allows the caller's message to be recorded. As each wire is created and connected, the server checks the
data types available at the two ends of the wire. If one end can only produce &bit p-law and the other can
only take ADPCM? a protocol error will be generated.

Now that the LOUD is wired, it can be mapped and activated. Once mapped, the LOUD will accept and
execute queue commands. To map and activate the LOUD, the audio server assigns virtual devices to
actual devices, if possible. The assignment is qualified with an "if possible" because a device that is
needed might be in exclusive use by another application. Or the LOUD may contain an impossible
configuration, such as two virtual devices that specify the same actual device. In the later case, the map
request will generate an error. If successful, the application gets an ActivateNotif y event.

At last the LOUD is ready to accept commands. Commands are given to the LOUD, rather than the
virtual devices (or, if there were any, sub-LOUDS) so that operations can be coordinated by the command
queue. Playing the greeting before the phone is off-hook will result in a confused caller. The command
queue for the answering machine is shown in Figure 5-4. First the phone is answered. When that
command is completed, the greeting is played, followed by playing a "beep" sound. Once the beep is
completed, the message recording begins.

Since most of the time the phone is not ringing, the LOUD can stay unmapped. The queue commands
can be preloaded before the phone is answered. When the phone rings, the application would raise the
LOUD to the top of the active stack, map it and start the queue.6 The Record command has a termination

' ~ d a ~ t i v e Delta Pulse Code Modulation, a compression algorithm, can reduce audio data rates by about one half.

6~ecause the answering machine LOUD is unmapped, the application cannot tell. from the LOUD, if the telephone rings. Therefore
h monitors the device LOUD telephone.

USENIX - Summer '91 - Nashville, TN 431

Recorder

Recorder Player O U N t Telephone
V~rtual V~rtual -W~re- Virtual
Device Devtce ~ ~ l ~ ~ h o n e Device

Input I
'

input t Wtre Telephone output

Figure 5-4: Answering Machine with command queue

condition, which can be either after a pause or when the caller hangs up.

Of course there are exceptions that must be handled. For instance, what happens when the caller hangs
up? The caller may hang up before the beep is played. The LOUD can ask for TelephoneNotify
events from the server. The application will get a Callprogress event that says that the phone is now
hung up, and can then stop the queue and get ready for the next call.

6. A Prototype Implementation
A prototype audio server has been written. At the moment it supports playing, recording, and mixing,

with the underlying LOUD creation, wiring, and mapping as described in the previous section. Multiple
clients can play to the speaker simultaneously. The prototype server is written in C u and is multi-
threaded; it runs on a DECstation 5000, a 20 MIPS workstation, under UNIX. The audio hardware
required is a simple CODEC with memory-mapped buffers.

Figure 6-1: The Soundviewer widget supports audio playback and recording using
several display modes

To test synchronization with other media, we have implemented a graphical sound viewer widget using
the X toolkit and Alib. The widget displays a continually updated bar graph as a sound is played. Audio
server synchronization events are used to control the graphics; the bar chart is updated in response to the
these events. Figure 6-1 shows such a bar chart. The darkened area is the part of the sound that has already
been played. The tick marks give an indication of the sound length. The dashes in the middle denote a part
of the sound that has been selected, to be pasted into another application.

A working audio server and a few test applications have increased our confidence in the protocol and
demonstrated the feasibility of a software architecture to support the server constructs described in the
previous section. Although it would be premature to quote hard performance statistics, day-to-day use of
the server indicates that performance will be well within our goals. We would like to be able to start
playback of a sound, using an existing server connection, in less than several hundred milliseconds and
support continuous playback without gaps, using well under 10% of the CPU.

But such numbers do not tell much about how well the audio medium will integrate with existing and
future workstation application environments. With increased processor speeds and peripheral bandwidths,
higher quality audio will become increasingly practical, but the limiting factor will be how well audio-
based applications will perform in the context of many user applications running concurrently on top of a
window system. Users are unlikely to tolerate system performance degradation for the sake of audio, as

432 USENIX - Summer '91 -Nashville, TN

they have yet to be convinced that audio has real utility. But until audio becomes universal, software
vendors will have little motivation to write applications.

In order to meet what will be demanding requirements on generic multi-application support of audio,
several aspects of our server have received particular attention. One is the use of a multi-threaded approach
for modularity of design and management of multiple simultaneous audio data streams. The other is a set
of design considerations to support the real-time nature of audio; some of these are exposed in the protocol
while others are embedded in the server. These will be described in the remainder of this section.

6.1. Threads
We used threads in our implementation to allow concurrent use of the various audio devices. In addition,

we wanted to be able to start and stop devices out-of-band. This section describes the various threads and '
what they do.

The connection manager detects and manages incoming connections. It is a daemon at a well-known
port that detects incoming client connection requests and creates new connections for the clients. The
connection manager runs as a thread. It is also responsible for initiating shut-down for a connection in case
of errors. The connection manager keeps a container object for each client connection. The container
objects hold everything that is related to a particular client connection.

The device layer contains devices that talk directly to the physical hardware. Each device runs as a
separate thread. Devices provide command methods for others to call. Commands are handled
synchronously. Events or status are reported by each device synchronously to its virtual devices.

The virtual device layer implements the virtual devices, each of which runs as a thread. Each virtual
device, when active, is associated with an physical device. The different classes of virtual devices are
subclasses of a common virtual device object class. Virtual devices process requests from the client input
handler and associated command queue. Multiple virtual devices share a single device when possible; the
server creates mixer-like virtual devices when it can, transparent to applications.

Data source and data sink implement-the server version of wire, manipulating data inside the server.
They create an efficient data path by by-passing in-between devices and connecting the source and sink
objects directly. Each source and each sink runs as a separate thread.

6.2. Copying and Caching Data
Implementing an audio server on a non-real time, general-purpose UNIX system poses interesting

challenges. The biggest and most obvious problem is the real-time nature of audio. Although medium
quality audio data rates are not excessive, substaining the rate may be difficult. Sub-second delays in the
middle of speech are annoying and damage the intelligibility of the speech. Another challenge is
supporting seamless transitions between commands in the queue, so that playback appears continuous.

Our design alleviates some of the real-time issues and allows the client to deal with those cases where
the system falls short. Previous experience with X has shown that we can often achieve real-time
appearance with sufficient buffering and an intelligently designed prot~col.~ Telephone or voice quality
audio requires a 8000 bytes per second data stream. Higher quality audio can involve data rates up to
175,000 bytes per second. The lower data rates are usually adequate for telephone quality speech and
within the ability of current technology, so this is our focus. As coding standards emerge, higher
bandwidth voice coding with only modest increases in data rate will become more common and will be
supported by the server; these data rates are already supported by the protocol.

We have addressed the real-time constraints in several ways. The most common operation is the
playback of recorded audio data. If the data is cached by the server, for instance in the file system, the data
transfer is local, the number of copies small, and the performance should be acceptable. If the application

'11 was originally believed by many that rubber-banding and menu tracking require extensive system changes. In the early days of
X it was shown that lhis is not the case.

USENIX - Summer '91 - Nashville, TN 433

wants to supply real-time data to the server, the constraints are harder to satisfy. When an application is
providing data in real-time there is the possibility that the application or the application's source, maybe a
network connection, will not have the data when it is needed. To deal with this, the protocol provides
client-side reading and writing of data. This type of interface allows an application to implement its own
policy and has been proven effective in the past [I]. This approach also allows the application to make
trade-offs with respect to latency and memory.

One requirement of the protocol is to support seamless transitions between commands in a queue. There
are two interesting cases to consider: playing back to back sounds, and a play followed by a record. These
can be illustrated by considering the answering machine example in Section 5.9. When the phone rings, the
application starts the queue and the server executes the queued commands. Once the outgoing message
play is started, arrangements must be made so that the beep sound starts instantaneously after the message.

Once the queue starts, the server answers the phone and starts the play. When the first play command is
about to finish, the player device informs the queue of the time at which the last sample will be played.
The queue can then issue the next play command specifying that the play should start when the first
command is scheduled to terminate.' Pre-issuing commands allows plays to occur without a single
dropped or inserted sample. Recording back-to-back with a play is accomplished in the same manner.

7. Conclusion
This paper has discussed a server to control audio and telephony hardware. We described the

requirements of an audio server, a protocol to communicate with the server, and a set of constructs which
an application must manipulate to use the server. We described an implementation of a prototype server,
with emphasis on its multi-threaded architecture and design goals for real time performance.

This work is in its early stages, but we are encouraged by our progress so far, and are confident of the
utility of the server model to support time dependent media.

8. Acknowledgements
Our protocol owes many ideas to pioneering work done on the VOX project at Olivetti Research Labs.

We would also like to thank Chris Kent, Tom Levergood, Lany Stewart and Jim Gettys for their comments
and review of our protocol. Mark Ackerman of M.I.T. wrote the original graphical Soundviewer widget
software. Chris Kent and Gordon Furbush provided valuable comments on drafts of this paper.

References
1. P. Zellweger, D. Terry and D. Swinehart. "An overview of the Etherphone system and its
applications." Proceedings of the 2nd IEEE Conference on Computer Workstations (March 1988).

2. C. Schmandt and M.A. McKenna. "An audio and telephone server for multi-media workstations."
IEEE Proceedings of the 2nd Workstations Conference (March 1988), 150-159.

3. Robert W. Scheifler, James Gettys, and Ron Newman. X Window System. Digital Press, Bedford, MA,
1988.

4. Barry Arons, Carl Binding, Keith Lantz, and Chris Schmandt. "A Voice and Audio Server for
Multimedia Workstations." Proceedings of Speech Tech '89 (May 1989).

'~ote. the queue does not calculate the ending times itself, because the sewer's CPU may not use the same time base as the
CODEC's, and clock skew is a problem.

434 USENIX - Summer '91 -Nashville, TN

Susan Angebranndt received a B.S. in Mathematics from Carnegie Mellon University in
1980. She is currently a Consulting Engineer at Digital Equipment Corp, and technical pro-
ject leader for the Multimedia software development group.

Richard L. Hyde received a B.S. in Computer Science from Brigham Young University in
1982 and an M.S. in Computer Science from Brigham Young University in 1983. In 1984
he join Digital's UNIX engineering group. In 1987 he moved to Digital's Western Software
Labs to help with the XI 1 development effort. He currently is the technical project leader
for the audio server work in lhe Multimedia software development group.

Daphne Huetu Luong received her degree in Electrical Engineering and Computer Science
from the University of California, Berkeley in 1987. She is a software engineer at Digital
Equipment Corporation's Western Software Laboratory in Palo Alto. California. She works
in the Multimedia software development group. She previously worked at Xerox. doing
network communication software development.

Chris Schmandt received his B.S. in Computer Science from MIT and an M.S. in computer
graphics from M.I.T.'s Architecture Machine Group. He is currently a Principal Research
Scientist and director of the Speech Research Group of the Media Laboratory at M.I.T.

Nagendra Siravara recieved an M.E. in Electrical Engineering from Indian Institute of Sci-
ence, Bangalore, India. Since 1990, he has worked in the Multimedia software development
group at Digital Equipment Corp. He worked previously on software for voice response
applications, speech and image processing and error correction coding.

USENIX - Summer '91 - Nashville, TN

