Let Your Fingers do the Spelling:
Implicit disambiguation of words spelled with the telephone keypad
James Raymond Davis
The Media Laboratory
Massachusetts Institute of Technology
E15-325
Cambridge, MA 02139

jrd@media-lab.media.mit.edu

Abstract

One way to enter words into an interactive computer system is to spell them with the letters
on a telephone keypad. Although each button has three letters, the system designer can
often supply the system with enough additional information that it can select the intended
word without additional input from the user. This is called implicit disambiguation. This
paper examines the obstacles to implicit disambiguation and describes two different kinds
of knowledge that can make it possible.

Introduction

Designers of telephone-based computer systems for voice interaction often provide the user
with the ability to choose among several alternatives. If the list of alternatives is both small
and known in advance (e.g., just the words “yes” or “no”) then this ability can be provided
through speech recognition. If not, another possibility is to use the twelve push buttons on
the telephone keypad. There are several ways of using the keypad. One of them, applicable
when the object to be selected has a name, is to spell the name using the letters on the
keypad.

A frequently raised objection to such “telephone spelling” is that each button has three
different letters on it. Some kind of DISAMBIGUATION is required in order to know which
letter is intended. (A second problem, discussed below, is that the letters ‘Q’ and ‘Z’, as
well as punctuation, are missing.)

Many system designers have chosen EXPLICIT disambiguation, which requires the user
to do something extra to tell the system which letter is intended. There are two main
ways of doing this. In the first, the user presses a key once, twice, or three times times to
select one of the three letters on it (for example, to select ‘B’ one presses the ‘2’ key twice).
This method is used by both experimental systems (e.g., [3]) and implemented services
(e.g. the BayBanks Brokerage “voiceQuote” service, certain NEC cellular phones). It has
the disadvantage that it requires an explicit delimiter between successive letters when they
appear on the same button. The other means of explicit disambiguation is to use one or
more keys as “shift” keys, e.g. buttons 1, 2, and 3 select the first, second or third letter

on the following key. Both of these alternatives are discussed in [12], and [2] reports on
the speed and accuracy of such systems. Neither one is very attractive, since both are
unnatural. Nobody could use such a system without first being told how.

Sometimes it is possible to use IMPLICIT DISAMBIGUATION, where the system figures
out for itself which letter is intended. Even though a single button press is ambiguous, a
sequence of button pushes need not be ambiguous. Since a given button has three letters,
it might seem impossible to know which one is intended. Indeed, if there is no constraint
on the possible inputs, that is, if every letter is equally possible in every position, then this
is so. From the standpoint of information theory, a single button press contributes about
3.2 bits (if nine keys are used), and to select a single letter from the set of 26 requires 4.7
bits. But additional knowledge about the possible choices, if available, can substitute for
the “missing bits”. For instance, if the input is known to be a word from English, fewer bits

should be required, since a single letter in English is estimated to contribute only about 2.3
bits[10].

Another way to look at disambiguation is as a coding problem. Consider the eight
digits (2 to 9) as a reduced alphabet in which words are to be re-written. For example, the
word “the” becomes “843” in this alphabet. Even though the single button press for ‘8’ is
ambiguous, the string ‘843’ is not ambiguous if no other word has the same spelling in the
reduced alphabet. When two words have the same spelling in the reduced alphabet they
are said to COLLIDE. When a collision occurs, the system will need some kind of further
disambiguation to decide which word was intended, but on the word level (which word does
this string stand for) rather than the letter level (which letter does this digit stand for).

A second problem with telephone spelling (in addition to ambiguity) is the problem of
the missing letters. The letters ‘Q’ and ‘Z’ do not appear on the telephone keypad. In the
word described in this paper, the letter ‘Q’ is on the key marked 7 (where it fits, between
P and RS), and ‘Z’ is on 9 (after WXY). Both are also assigned to the ‘1” key, because that
is a plausible guess that the user might make, and also because several other systems do
that, too. Systems should be useable without documentation or prompting, therefore they
should be designed to do what a (reasonable) user would guess they should do. The design
proposed here is likely to be only partially successful, because a recent study by Marics[7]
shows that naive users show no consistent pattern of usage — indeed, many subjects guessed
that these characters would be on the “star” key. (Marics makes some valuable suggestions
for how systems should cope with these guesses, but to consider them here would take us
beyond the scope of this paper.)

This paper discusses two experiments on implicit disambiguation of words. In each,
an additional knowledge source is provided to the computer so it can (attempt to) perform
implicit disambiguation. In the first, the knowledge source is a list of all the possible inputs,
in the second, it is statistical knowledge about letter combinations in English.

Using word lists for disambiguation

One way to add knowledge to a system is to supply it with a list of all valid inputs.
For most applications, this is no problem at all, since such a list will usually already be
available. One early use of word lists for implicit disambiguation is an experimental direc-
tory assistance system built at Bell Labs in 1973 [8]. (This system used first and middle
initials and state in addition to last name.) Word list disambiguation was also used in the
Speech Filing System [4], the Olympic Message System [5], Direction Assistance [1], and an
experimental directory assistance system built by Reich [9].

The effectiveness of word list disambiguation is determined by the number and size of
collisions, since collisions will most likely require additional user action. Table 1 shows the
number of collisions for six different word lists. (The source files are the names of Boston
area streets, an otherwise unidentified list of last names, the names of all MIT students in
1989, all words in the Brown text corpus, a dictionary discussed by Witten (in [12] page
249), and Webster’s Seventh Dictionary.)

Database size average letters number of percent of words

per word collisions colliding
Boston streets 2433 7.4 79 3.2
job applicant names 6138 6.9 365 5.9
student names 14,246 6.8 1622 11.4
Brown words 19,837 6.3 2549 12.8
Witten word list 24,500 7.3 2000 8.0
Webster dictionary 48,102 8.1 5289 11.0

Table 1: Number of collisions for seven databases

What factors affect the number of collisions? Clearly, the percentage of collisions rises
as the database size increases. There is also an effect due to length. As words become
longer, the likelihood of a collision decreases, since a collision requires that every letter of
two words have the same digit. Word lists with longer words are less likely to collide. For
example, words in the Brown corpus range in length from one to 19 letters. Words of length
four or less are only 12% of the total words, but account for 57% of all collisions.

Consider now the size of the collisions. For the Boston street name database, of the 79
names that collide, 64 collide with only one other name, and the remaining 15 collide with
two names. For the Brown corpus word list the collision sets are bigger. Table 2 shows
their sizes. Even for this word list, most collisions are with only one or two other words.

Implicit disambiguation appears to be feasible for selecting a word from a list. Collisions
are not a major obstacle. Even for large vocabularies, collision rates are low, and collision
set sizes are small.

Size Count Percent

1 17288 87.2
2 1690 8.5
3 531 2.7
4 200 1.0
5 70 4
6 36 2
7 14 1
8 8 0

Total 19837 100.1

Table 2: Collision set sizes for Brown Corpus. Size is the number of words in the collision,
so size 1 is no collision. The eight-way collision is for the words acre, bard, bare, base, card,
care, case.

Sometimes a name is not enough information

In many of the potential applications for telephone spelling, the items of interest are not
the words per se, but rather the people (or other individuals) who have these names. The
name is just a means of identifying the individual, and this can lead to a problem when
more than person has the same name. This problem applies to any kind of spelling system,
whether it uses the telephone or not. Even if there is no collision in selecting the name,
that will not help select an individual if there is more than one person with the given name.
It turns out that this non-uniqueness can be a much worse problem than name collision.

The preceeding section considered only the problem of selecting a name from a set of
names. This section considers that each name stands for at least one person. Table 3 shows
the name sharing in the two databases of names discussed above.

database total distinct unique % shared % colliding %

people names names names names
applicants 9028 6138 4719 52 3586 40 723 8
students 25292 14246 10321 41 9704 38 5267 21

Table 3: Name sharing in two list of people’s names. Note that roughly half the names in
each list are unique, but a large minority are also shared (i.e. more than one person with
that name, but no other name has the same ‘telephone spelling’).

In both databases there are more shared names than colliding names. The first database
has 38 people surnamed “Smith”; the second has 290 entries for “Lee”.

This problem has nothing to do with the means of entering the name. It would be just
as bad if the last name were to be entered with a conventional keyboard. Other studies
have found similar results. Lesk, with a database of 213,071 people, found that first and
last name alone identified half the individuals [6]. Adding the name of the town raised

this to 82%, and adding the street name brought it to 97%. In general, after obtaining
the first five or so letters of the last name, it is much more useful to get some other kind
of information, such as the first name, street, or town. Marics (personal communication)
has similar results. Last name uniquely identified only 16% of the people in her database.
Adding the first name raised this to 88%, and adding state brought it to 94%.

Entering English text may be possible

Implicit disambiguation using word lists appears feasible. Can one then consider free text
entry as a problem of selecting a word from a very large word list — namely, a full dictionary?
Note that there is no problem with synonyms, as there was with like-named people. It does
not matter that there are two distinct words named “wind”. But consider the number and
size of the collisions for a full dictionary, as shown in table 4.

Size Count %

1 42813 95.0
2 1713 3.8
3 349 0.8
4 123 0.3
5 35 0.1
6 11 0.0
7 6 0.0
8 4 0.0
9 1 0.0

Table 4: Collision set sizes for Webster’s Seventh Dictionary

More than three quarters of the collisions involve just two words, and the size falls
off rapidly after that. From this we can conclude that it is feasible to enter words from
the dictionary. Only rarely will there be a collision, and there will usually be only two
alternatives. This suggests, for instance, the possibility of an online dictionary to provide
definitions and pronunciations for words entered on the telephone keypad.

But English text is not composed of words selected at random, and the collision table
is misleading, as it is not weighted for frequency of use. Many of the most common words
have ambiguous spellings. In addition, there are many words missing from the wordlist. To
determine whether entry of actual sentences is possible, one must examine actual texts.

I examined several collections of texts (the Wall Street Journal for 1988, and three
Sherlock Holmes stories), counting each word as either “okay” (having a unique spelling),
“ambiguous” (non-unique spelling) or “missing” (not in the Webster’s Seventh dictionary).
Table 5 shows the results:

To be sure, these are somewhat unusual texts — the Wall Street Journal has a fair

Source Number Unique % Ambig % Missing %

of words words words words
Wall Street Journal 20,691,239 8,049,923 38.9 8,633,941 41.7 4,007,375 19.4
A Study In Scarlet 44008 15132 34.4 23992 54.5 4884 11.1
“Baskervilles” 59699 21570 36.1 32854 55.0 5275 8.8
The Sign Of Four 43741 15572 35.6 24119 55.1 4050 9.3

Table 5: Distribution of words from text corpuses shows that about half have ambiguous
telephone spellings, and a substantial number are altogether missing from the dictionary.

number of company names, acronyms, and abbreviations, and the Arthur Conan Doyle
stories use an English different from modern usage in the USA, but they were the best
I had, and I believe the following conclusions still apply. Clearly the number of missing
words alone makes full text entry impractical. (It would be most interesting to determine
how many of these missing words were simply derived forms — plurals, verb tenses, and
such, and how many were proper nouns.) Even worse though is the number of ambiguous
words. Fach ambiguous word will require an action from the user. No matter how easy this
action is, it will be unbearable to be required to make it on every other word, and if the
vocabulary is expanded (to pick up missing words), this can only get worse. It is possible
than additional knowledge (syntax) could be applied to provide further disambiguation at
the word level, but that is a topic for further research.

Implementation

The Direction Assistance program [1] includes a module for telephone spelling. In that
module, a word list is stored as a REDUCED LETTER TREE. Where an ordinary letter tree
has 26 branches at each node, a reduced tree has one branch for each digit used in the
reduced telephone alphabet. Given a digit sequence [Dy, Ds,...D;], one begins at the root,
taking the Dq’st branch, and so on for each digit. A path through the tree encodes a spelling
in the telephone alphabet. At each node are stored a list of all words with the spelling. For
certain vocabularies it may be economical to store words at the node corresponding to the
shortest unique substring that spells the word, rather than spelling the word in full. Such
a representation makes it easier to provide completion where the user enters only enough
letters to uniquely identify the desired word.

Disambiguation by using statistics

An alternative knowledge source to a word list is information about the statistical com-
binations of letters in English. It ought to be possible to eliminate at least some strings
simply because they can’t form words, for example, “843” can’t be “VGF” since those three

letters never occur together in a word. There are many different kinds of knowledge about
English that one might use, for instance one might notice that “VGF” has no vowel, so it
can’t be a word (although it might be an acronym). In the ideal case, by using knowledge of
this sort one could pick out all and only the possible English words for input digit sequence.
If this worked, this would allow input of full English text, without needing a dictionary.

Is it possible to use statistical knowledge about English for free text entry? I investigated
the use of trigram letter probabilities as a source of knowledge for disambiguation. A trigram
is a sequence of three letters L1 Ly L3, and a trigram probability is just the probability that
Ly Ly will be followed by Ls. For any two initial letters, the sum of all trigram probabilities
that begin with those two letters (27, one for each of the 26 letters, plus one for end of
word) is 1, no matter how rare the letter pair is. A trigram frequency table records some of
the redundancy in English — for example, having seen the letters “TH” you would expect
to see a vowel or perhaps “R”, but “X” would be unlikely in most styles of writing?.

Constructing a trigram frequency table requires a large body of text. I used the Wall
Street Journal text mentioned above. To apply the trigrams to phone spelling, I collapsed
the table according to the placement of letters on the keypad. The collapsed table shows
the probability for each pair of letters L1 L, and for each digit D, that the next letter will
be L3, given that Lz is one of the three (or four) letters assigned to the D key. This then
allows me to estimate the probability of a given letter string being the intended string for a
supplied digit string. It is simply the product of the reduced trigram probabilities for each
letter. It is then straightforward to write a program to enumerate all possible letter strings
for a supplied digit string, compute the probability of each, and collect the most likely ones.

If this representation captures sufficient information about English, then one should be
able to take a word, reduce it to a string of digits, and collect the most likely strings for that
digit string. If the target word is often the first in the list, the scheme is likely to succeed.
If the word appears low in the list, or worse, does not appear at all, the scheme will fail.
I examined a word list of 473 words (< ten letters long) chosen randomly from the Brown
Corpus word list to see whether this would be so. I found that 100 of the words were rated
either highest, or second highest. Unfortunately, many of the other words were lower in the
ordering, so the mean position was 6.86, and 133 of the words were not found at all by the
algorithm (that is, the estimated probability was below an ad-hoc cutoff value). I conclude
that trigram frequencies are not sufficient information for disambiguation.

In retrospect, this should have been obvious, since Shannon’s estimate of the information
content of a single letter (in a trigram model) is 3.3 [10], and each digit contributes but
3.17 bits. It may be, though, that the trigram spelling algorithm could be improved by
adding additional knowledge about English — such as the frequencies of word initial and
word final di- or trigrams; or a filter to discard strings which can’t be broken into syllables;
or a larger, and more accurate, set of letter frequency data.

'One exception to this rule is the work of George Lucas.

Discussion

Implicit disambiguation is a useful technique for spelling words with the letters on the
telephone keypad. To use it, the system designer must identify enough constraints on
the possible inputs to reduce the information per key to below 3.2 bits. Whether this is
possible depends on the application. If every, or almost every, string of letters is a possible
input (as for example, in stock market abbreviations or computer passwords) then implicit
disambiguation is impossible.

This paper has considered only the entry of letters. Some applications might require
users to enter non-alphabetic data, e.g., numbers or punctuation. It is possible that some
such applications could employ implicit disambiguation as well, for example, using syntactic
constraints on the form of arithmetic expressions.

In many cases implicit disambiguation will be only partial, and there will be more than
one possible word for a given input. When this happens the system will need to either
employ explicit disambiguation on the word level, or look for some higher level knowl-
edge source to provide additional implicit disambiguation. How often this will be required
depends on the vocabulary, in particular on its size and the average word length.

Implicit disambiguation seems to be practical for selecting from sets of named entities
(streets, words, people) when a word list can be provided. Designers of practical systems
need to consider two additional issues, namely completion (allowing the user to specify only
part of the name) and spelling correction. Implicit disambiguation does not appear feasible
for entering unrestricted English text. Free text often uses words not found in dictionaries,
and many common words are ambiguous. It is possible that further research could identify
sufficient additional knowledge about English to make this possible. It is also possible that
some applications may use sufliciently constrained subsets of English that free text entry
would be possible. This remains a subject for further research.

Acknowledgments

I thank Chris Schmandt and Mike Hawley for providing databases and helpful comments.
Comments from Barry Arons, Debby Hindus, and Sanjay Manandhar are also appreciated.
Of course the author takes all responsibility for any folly which remains. This work was
supported by a grant from the Nippon Electric Company Home Electronics Division.

References

[1] James R. Davis and Thomas F. Trobaugh Direction Assistance MIT Media Laboratory
Speech Group Technical Memo 1 December, 1987

[2]

[11]

[12]

M. Detweiler and R. Schumacher, Jr. and N. Gattuso Jr. Alphabetic input on a
Telephone Keypad Proceedings of the Human Factors Society— 34th annual meeting,
1990

L. Fast and R. Ballantine Dialing a name: Alphabetic Entry Through a Telephone
Keypad SIGCHI Bulletin 20 (2) : 34. 1988

John D. Gould and Stephen J. Boies Speech filing — An office system for principals
IBM Systems Journal Vol 23 No 1 1984 65-81

John D. Gould et al The 1984 Olympic Message System: A Test of Behavioral Princi-
ples of System Design Communications of the ACM Vol 30 Number 9 September 1987
758-769

Mike Lesk Name Overlaps in Touch-Tone Coding in a Large Directory. Bell Labora-
tories unpublished memo 1979

M. Marics How Do You Enter “D’Anzi-Quist” Using a Telephone Keypad? Proceedings
of the Human Factors Society— 34th annual meeting 1990

Samuel P. Morgan Minicomputers in Bell Laboratories Research Bell Laboratories
Record Vol 51 July Aug 1973 pp 194-201

David L. Reich An Automated Telephone Book Using Synthetic Speech. Research
Report RC 9958 #44137 April 25 1983 IBM Thomas J Watson Research Center, York-
town Heights, NY 10598

C. E. Shannon Prediction and Entropy of Printed English Bell System Technical
Journal 30 50-64 1951 Reprinted in Key Papers in the Development of Information
Theory, edited by D. Slepian, IEEE Press 1974

John C. Thomas and John C. Carroll Human factors in communications IBM Systems
Journal Vol 20 No 2 1981 237-263

Tan H. Witten Principles of Computer Speech Academic Press, 1982

Jim Davis received his PhD from the Media Laboratory in September 1989. His research
interests include computer generation of natural language, voice interaction with computers,
and developing computers as intelligent partners for musical performance.

