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ABSTRACT

Distributed clientisewer models are becoming increasingly preva-
lent in multimedia systems and advanced user interface design. A

multimedia application, for example, may play and record audio,
use speech recognition input and use a window system for graphical

I/O. The software architecture of such a system can be simplified

if the application communicates to multiple servers (e.g., audio
servers, recognition servers) that each manage different types of

input and output. This paper describes tools for rapidly prototyping
distributed asynchronous servers and applications, with an empha-

sis on supporting highly interactive user interfaces, temporal media,
and multi-modal UO.

The Socket Manager handles low-level connection management
and device I/O by supporting a callback mechanism for connec-

tion initiation, shutdown, and for reading incoming data. The Byte
Stream Manager consists of an RPC compiler and rnn-time library
that supports synchronous and asynchronous calls, with both a pro-

grammatic interface and a telnet interface that allows the server to
act as a command interpreter. This paper details dte tools developed
for building asynchronous servers, several audio and speech servers
built using these tools, and applications that exploit the features

provided by the servers.

KEYWORDS
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1 INTRODUCTION

The software tools described in this paper draw from predecessor
systems, and emphasize the features found to be important in build-

ing user interfaces and highly interactive applications involving
speech and audio. The goal of this work is to provide an environ-

ment for the rapid prototypirtg of distributed asynchronous servers
and applications, with an emphasis on supporting multiple media

and multi-modal l/0, while working with existing user interface
software and within cument software engineering paradigms.

Distributed clientherver models have been in use for over a decade,
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and are becoming increasingly prevalent in multimedia systems and

advanced user interface design. In many current graphical user
interfaces, such as those using the X Window System, client ap-

plications communicate with a window system server that manages

screen output and mouse/keyboerd input [17]. It is advantageous to

use a similar software design methodology for developing new user
interfaces that use other forms of I/0, such as speech recognition and

synthesis, or incorporate temporal media, such as recorded speech.
This distributed design allows multiple applications to share limited

I/O resources (e.g., a display, microphone, loudspeaker, etc.) with-

out any knowledge of the ofher applications. The software tools
described in this paper assist in the creation of servers and client

applications, and address some of the issues of prototyping and
debugging in such a distributed environment.

1.1 Application Environment

A multimedia application may play and recotd audio, use speech
recognition input speech synthesis outpu~ access remote infor-

mation services, and use a window system for graphical VO. The
architecture of such a system can be simplified if the application
communicates to multiple servers (e.g., audio servers, recognition
servers, synthesis servers) that each manage different types of in-

put and output. In such an environmen~ it is desirable to: (1) build

many servers on a standardized maintainable low-level architecture,

rather than hand-crafting each server, and (2) develop tools that ad-

dress the specific needs of managing time-varying media, such as
audio.

Several audio servers have been based on the X Window System
model of client applications communicating with a server that man-

ages all speech and audio I/O in the workstation [1, 2, 4]. Client

applications make reqttesk to the server to perform audio functions
such as playing a sound tile. These requests are ideally asyn-

chronous to avoid round-trip network delays, and to permit the
server to send user input events to clients. User interface servers

that handle temporal media, such as audio or video, must also be

concerned with other types of events. For example, after an applica-

tion places a request to start playing a sound, the application should
ideally receive asynchronous notification when the play action has

completed. An application can also request events from the server
at regular intervals. For example, while a sound is being recorded,

energy information sent by the server can be visually displayed by a
client application. These types of events are significantly ditTerent

from those associated with window systems, yet are essential when
using temporal media [7].
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1.2 Overview

The SocketManagerhandles low-level connection management and

device I/O. It supports a callback mechanism for connection inki-
ation, shutdown, and for reading incoming data. The Byte Stream
Manager is a higher level tool consisting of a run-time library and
a remote procedure call (RPC) stub generator, The specifications

used in the RPC compiler are identical to the syntax used in the call-
ing and called programs, and both synchronous and asynchronous

calls are supported. Servers built on the RPC library simultaneously

supports both a programmatic interface and an ASCII telnet inter-
face. The ASCII interface is a simple yet powerful tool for rapid
prototyping and debugging servers and applications.

This paper first describes the asynchronous server building tools.

It then details audio and recognition servers, as well as several
applications, that are built using these tools. The paper concludes

with a review of related work.

2 SOCKET MANAGER

The SocketManager(SM) library simplifies handling asynchronous

input and the communications setup of distributed programs. The
SM hides the underlying interprocess communication code that

deals with socket binding, listening, and accepting that is repli-
cated when building network based applications. The SM currently

runs under Unix using internet domain sockets with reliable TCPAP

communications [10].

A client opens a connection to a server by specifying a service
name and an optional host name. When a new service is created,
a callback procedure is registered with the SM. This procedure
is asynchronously executed when an incoming service request is
received. A callback is also registered for reading data when it is

available from a communications socket or device. The application

(or the Byte Stream Manager) is responsible for the actual reading

of data. In addition to handling information from sockets, additional

file descriptors can be registered with the SM. This allows physical
devices, such as digital sound equipment or speech recognizes, to

be used within the framework of an SM-based server.

The SM library is used by both servers and clients. Once initialized,
the server and application processes block untik (1) there is data to
be read from a device or socke~ (2) there is a request for setting up
or tearing down a connection, or (3) an application defined timer
expires.

The portion of the SM that executes callbacks when data is avail-

able overlaps in functionality with the X Toolld (Xt). To allow

maximum flexibility, the SM library is built in two forms; one is for

stand-alone client and server processes without graphical interfaces,
the other is a compatibihty library that uses the SM functions built
on top of Xt routines.

A single server can support multiple clients as well as multiple
services (see also section 4.1 ). For example, a server that provides
speech processing capabilities can support two related services: one
service can provide the raw signal processing capability to clients,
while the other service can provide current status information about
the server itself, such as number of clients, memory usage, ete. Each
service is provided on a separate communication port.

2.1 Clients, Servers, and Peers

The terminology of “client” and “server” can be confusing, par-

ticularly when dealing with asynchronous messages sent in both
directions by communicating parties. In the framework described

in this paper, a client communicates with a server by a synchronous
remote procedure call or an asynchronous message. The server

Server Client

REsl
P%-+
I Operating system J

Application code I

Operating system

Figure 1: Server and client architecture.

typically sends asynchronous messages, or RPC replies, back to the
client. The client and server processes thus act as both sender and
receiver of messages.

There is a symmetrical peer relationship between an application and
a server. The Byte Stream Manager and Socket Manager exploit the

duality between clients and servers, thus simplifying the design and

implementation of the software. A single mechanism is used for
communicating between client and server, and for communicating

between server and client.

3 BYTE STREAM MANAGER

The Byte Stream Manager (BSM) works on top of the Socket Man-

ager to format and manage asynchronous messages and remote
procedure calls. The BSM consists of an RPC compiler (stub gen-

erator) and run-time library tuned for writing X-like servers and
clients. The overall architecture of a typical server and client is

shown in figure 1.

The BSM simultaneously supports three communication modes that

are selectable on a per-connection basis:

1. “C” programming interface with efficient (non-human read-

able) data encoding.

2. “C” programming interface with human readable data encod-
ing. This mode is used for debugging clientkerver communi-

cations.
3. An ASCII telnet interface for interactively communicating

with a server. In this mode the server acts as an interpreter,

and is useful for testing and debugging purposes.

3.1 The Asynchronous RPC Library Generator

The functions supported by a server are defined in a procedure
call specification file. The format of the specifications is based on

function prototypes in ANSI C. Complex data types, such as arrays
and structures, are deliberately not supported since their inclusion

would complicate the ASCII tclnet interface to a server.

The specification of a function and its arguments implicitly define
whether a call is synchronous or asynchronous. If the function
returns a vrdue, or can modify any of ita argumentsl, the function
is handled as a blocking RPC ca~, if the function does not return
a value and cannot change any of its arguments, the function is
handled as an asynchronous message. A remote procedure call is

implemented as one asynchronous message from client to server,
and a corresponding reply from server back to client.

Procedures are declared as either returning an int or as void (no
return value). One argument is required for the connection-specific

‘Le., at least one arsument is call by referenee.
2I.e., all arsuments sre call by value.
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file descriptor that identifies the entity on the other end of the peer

connection. Any number of other setver-specific arguments can be
specified. The following data types are currently supported:

data type description

int 32 bit integer

double double floating point number
char single character

string null terminated C string
bytes a structure containing arbitrruy data, and its length

(such as for sending audio data)

A pointer to a data type (call by reference) is designated with a
preceding “*” if an argument can remodified by a remote procedure.

The syntax of an RPC declaration can be summarized as:
int I void funcmaoe ( int f d

[, datatype [*]name] . . .

);

Typical specifications look like:3
1. void s_start (imt fd, int timeMs) ;

2. void s_record ( int fd, string name) ;

3. int s_get_length(int fd, string name) :
4. void s_get_dir(int fd, *string dirName) :

Examples 1 and 2 are sent as asynchronous messages. Example 3 is
a synchronous RPC since the function returns a value. Example 4 is

also synchronous since the string dirName is passed by reference,
to be filled in by the server.

After an RPC is started, the BSM buffers all incoming messages
until a response is received that matches the original RPC request.
Once the RPC is complete, and all application code has finished

executing, the buffered messages are dispatched in a first-in first-
out (FIFO) manner. Each message contains a sequence number

and a time stamp. The sequence number is used for consistency

checking, and for synchronizing RPC return values. The time stamp

is available to time-dependent applications and user interfaces.

Because of the symmetrical relation between applications and ser-
vices, there are usually two specification files associated with each

service. One file specifies the synchronous and asynchronous calls
from the client to the server, the other specifies the asynchronous
events that are sent from the server to the client.4

Compiling an RPC specification file5 produces three code files (. c)

and a header tile (. h). ‘llvo of the code tiles represent the RPC

stubs for the server and client respectively. The third code tile is

typically linked into the application, providing an improved pro-

grammatic interface to the application registered callbacks. Rather

than enforcing predefine callback names on an application, the ap-

plication registers interest in particular events, that in turn call local
client-defined functions. This mechanism allows run-time, rather

than compile-time, binding of functions to server generated eventa.

3.2 The Telnet Interface

Telnet [10, 16] can be used to interactively communicate with a
server, allowing it to act as a command interpreter. This allows ac-
cess to a server from any machine without having any code running
on the remote machine. Figure 2 illusmates a sample telnet session
for the audio server described in section 4.1. This ASCII string
interface also allows clients to be written in environments where

3Note that any number of nrgumenta can be used.

4A server typically does not make any RFCS te a client.

3’Ilre RPCstub generator ia built using 1 ex and yacc, standard cempiler buildhrg
tools.

the C-oriented RPC generator cannot easily be used (e.g., from a

lisp machine).

Server functions are called with the names (or shortened names)

and arguments defined in the specification file. Function names and
arguments are entered as strings, for example a function call of the
fotm s_start ( f d, 8000 ) would be entered in the telnet inter-

face as “s_start 8000” or more simply as “start 8000”!
Asynchronous events from the server, or the return value and argu-

ments of synchronous RPC calls, are similarly sent and displayed

as ASCII strings. The telnet interface also supports a crude form of

help that is generated by the BSM compiler. A list of all functions
supported by the server (with their arguments) is printed if a “?” is
sent to the server.

This style of interface to a server was found to be extremely useful

for debugging servers and applications. Commands for a server can

be easily typed or pasted into a window with a telnet connection to
a server. This allows commands or scripts to be interactively tested
without compiling any code. In addition to the telnet interface, the

BSM library can be run in a mode where all the data packets sent
between peers are printed. This feature is useful in the often difficult

task of debugging distributed programs.

4 SERVERS

This section details several audio and recognition servers that have
been built using the SM and BSM. In addition, several other systems
have been implemented including: a server for finding out where

users are located [13] and a video snapshot server.

4.1 SparcStation-Based Audio Server

An existing high-level library interface to the audio capabilities of

a Sun SPARCstation [20] was convertsd to run as an asynchronous
server. Replacements for the old synchronous procedure calls fell

into three categories:

1. Calls to obtain status information from the server (e.g., how

much of the current sound file has been played) were converted
into synchronous RPCS.

2. Calls to set parameters (e.g., setting playback gain) or per-

form simple operations (e.g., copy a sound file, start playing a
sound), were replaced with asynchronous messages.

3. Asynchronous events are sent to the application when the

server completes a time-based operation. Originally, the appli-
cation would poll, using a library routine, to determine when

playing or recording was finished.

The termination condition (e.g., maximum length reached, silence

detected) of all time-based operations is passed into the application

registered callback function. For example, when an audio recording

has ended, an asynchronous “record done event” message is sent
by the audio server indicating why the activity completed. Figure 2
shows a sample interactive telnet session with the audio server.

In addition, a variety of new asynchronous calls were created that
were awkward to implement in a conventional library-based proce-
dure call environment. For example, a callback can be registered to
asynchronously receive energy values while recording, at intervals

specified by the application. A mechanism was also created for
asynchronously playing or recording from buffers managed by the
application. To play from buffers, the client sends a message to
the server including the first buffer of audio data. When the inter-

nal buffer in the server needs more data, an asynchronous message

6Since only one connection is possible with telnet, the tile descriptor (the tint

argument) is not used. Function names of the form 44SoundS t ar t“ can be shortened
to “Start”.
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Userinputis inthisfont. Server output is in this font. Comments

‘!

void .sAalt
int s.length (string) fileName
void s-pause-detect (int)trueOrFalse
void s.get.dir (string *)dirName

.,.

length greeting.snd

“reply” returnValue=3 457

get-dir
“reply” dirNeme=’’/sound/barons “

pausedetectl

record test.snd

“.%record-begin-ev” data=O handle=O

“sxecord.done-ev” data=O terminati-on=5 handle=O length=3604

play test.snd
“s-play-begin-ev” data=O handle=O
“s-play-done-ev” data=O terrnination=6

play test.snd
“s-play-begin-ev” data=O handle=O
halt

“.%play-done-ev” data=O termination=l

handle=O

handle=O

position=3604

position=926

listserverfunctions andarguments

halt current play or record action
getlengthofasound file

enable pause detection when recording
getcumentsound directory

etc.

what is length of sound tile greeting.snd?

length is 3457 milliseconds (3.457s)

what is current sound directory?
directorynameis returned

stop recording when user pauses

record sound file
record started event

recording terminated after 3.604s

play sound file

play started
play ended normally

play sound file
play started
user interrupts playing
play intemupted after 0.926s

Figure2: Sample output from interactive telnetsession.

is sent to theclien~ executing theclient-defined callback. In this

callback, a new data buffer is typically sent back to the server asyn-

chronously. This sequence of operations is stiller in spirit to an

RPCbythe server toobtaindats from the client. However, with
this scheme neither the client nor server is ever blocked waiting for
the reply to a synchronous remote procedure call.

Sounds can be played or recorded by the server from either files
or buffers. Playing from files is easiest for an application, as the

server internally handles all tile manipulation and I/O. Using buffers
provides more flexibility for an application, permitting, for example,

sounds that are synthesized on-the-fly to be played in real-time.
When using buffers, however, agreater burden isplaced on the

client to manage file I/O and send data to the server when it is

requested.

Multi-client support is incorporated into the audio server. The

current model of sharing of audio resources falls into the areas
of client priorities, locking, and data interest events. In general,
the XWmdow System philosophy is followed-provide flexible
mechanismsin theserver,rather thanpoliciesof howtheserver is
to be used. However, some management ofresources isnecessagr,
and, for now, a sharing policy has been incorporated into the server.
This allows multiple applications to use the server simultaneously,

without having towriteaseparate audio manager (the equivalent of
awindowmanager).

Priorities

Applications are classified by three priority levels (urgen~ normal,
background). Priorities are assigned on a per application basis,
rather than on a per command basis—for the types of audio applica-
tions envisioned, this coarse priority structure appears sufficient.7

A higher priority application will preempt a lower priority applica-

7AlthouSh it is possible to for an application to chanse its priority dynamically.

tion. Forexample, ifanormalpriority application isplaying sound

A, andarequest arrives from a high priority application to play
sound B,sound Aishalted andsound Displayed. Whensound Bis

tinished playing, sound Aisresumed.8 ‘I’heserv ersendseventsto

the lower priority client indicating the preemption and resumption
of the play activity. After receiving apreemption even~ the client
can cancel the pending play request so that it is not automatically
resumed. Requests of equal or lower priority that arrive from other

clients are queued in a first-in first-out manner, and are executed
when the audio play or record resources become available.

Recording priorities are handled in a simiiar manner, except that

record actions are terminated on preemption, and are not automat-

ically restarted. This behavior was chosen so that applications
can provide appropriate prompting or feedback to the user before

restarting a recording.

Locking

For some applications it is desirable to lock resources in the server
for the exclusive use of the client. This ability is needed if an

application must ensure an uninterrupted sequenee of play or record
actions. For example, one application could request to play sound
file A, then sound tile B. AfterA starts playing, a separate application
with the same priority can request to play tile C. However, because

of the FIFO queue of play requests, the sounds maybe played in A-
C-B order instead of the desired A-B-Corder. A similar intermixing

of playing and recording is also possible as the server is capable of
playing and recording simultaneously.

A client canrequestto lock all the server’s resources for its exclusive
use .9 An example where this is needed is in a workstation-based
telephone answering machine. The answering machine application

6Tbe sound is restarted at a point several seconds hefore the interruption.

9The VOX audio server controlled a lqer mray of speech and audio devices and
allowed lockins of subsets of devices, rather than the entire server [4].
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must lock the server before the telephone line is taken off-hook,

since no other applications should be able to play or record over the

phone until the call is completed.

Application writers are discouraged from locking the server unless

absolutely necessary, and should release the server lock as soon as
possible, because all other audio activity is blocked while a client has

the server locked. Once the server is locked, the client has complete
control of the server-a higher priority client cannot interrupt or

preempt it.

Data and Interest Events

To allow for flexibility in the types of applications10 that can be
written, clients can register interest to receive events for a variety

of server activities. A clien~ for example, can request an event

whenever the server begins playing or recording for any client.

Multiple clients may need to simultaneously receive sound data

during recording, however, only one process (the audio server) can

read audio data from the recording hardware. For example, while

one client is recording a telephone message, another client may

want to receive a copy of the recorded data to detect the presence of
DTMF tonesll, or to present a visual display of the record level (e.g.,

a VU meter). To enable such clients to work together, the server
allows record data to be distributed to any number of interested
clients,

Clients register the circumstances under which they wish to receive

record data, as well as their intended use of the data. For example,
a client can specify that it is going to perform speech recognition
whenever another client is recording. This scheme is flexible, al-

lowing clients to get record data under a variety of conditions, such

as: (1) when any other process is recording, (2) when another pro-

cess is performing a particular operation on the record data, such as
DTMF detection, or (3) at all times, regardless of other audio server

activity.

Data interests are considered “background” tasks, and multiple data

interests are handled simultaneously. Priorities are only used with
“primary” tasks, such as when the server is playing or recording
from files.

The recorded data is distributed to interested clients as asynchronous
events. The data is not broadcast or multicas~ as the clients may

have started recording at different times or may have requested

to receive different length data packets. A process that captures

background speech (section 5.1 ), for example, may want to receive

large packets of audio at infrequent intervals, while a DTMF detec-
tion client may want small packets to reduce latency in interactive

applications.

Queuing Requests in The Server

Most requests, such as halting a sound that is playing, are executed
when received by the server. However, requests to the server are
queued if they cannot be handled immediately. For example, while
playing a sound file, any subsequent play requests from the client
are queued until the previous requests are complete.

In some applications it is desirable to explicitly queue commands
that would normally be handled immediately. The audio server
allows the speed of a sound to be changed during playback (con-

stant pitch time-compression), so, for example, a graphical slider
can be used to interactively adjust playback speed. However, an

application may want to play all of sound A, then play sound B at

10And ~ventuall y, aUdIO managers.

11TouchTones.

a different speed. Sequentially sending three requests to the server

to (1) play A, (2) set the speed, and (3) play B would not have the
desired effect as the speed of sound A would change as soon as the

second message arrived. The client could wait until receiving the

done event from the first play request before sending the other mes-
sages, however, that would entail a round-trip between the server

and clien~ possibly causing a discontinuity of the played sounds. To
overcome this hdation, it is possible to explicitly turn command

queuing on and off in the server. For example, the application can
send commands to the server to (1) play A, (2) turn on queuing,

(3) set the playback speed, and (4) play B. Wkh this technique, the
requests to change speed and play B are queued until the play A
action is completed.

A similar approach to command queuing was taken in the VOX and
DEC audio servers [1, 4]. This simple mechanism is sufficient for

many applications, but is inadequate for others. Some applications
may want to perform more sophisticated branching and logic in the
server, based on termination conditions or user input. Rather than
relying on this simple queuing mechanism, an audio server should

ideally support an interpreted programming language (such as Tcl
[15]) so that client defined procedures can be executed within the

server. Such a programming and extension capability is provided

by the Network extensible Window System (NeWS) [24].

Status Service

In addition to the primary play and record service provided by the
audio server, a secondary status service is provided for debugging

and logging purposes. The internal state of the server such as

number of clients, current play/record status, error information, etc.
is sent to all clients of the status service. This facility is more

powerful than simply logging this information to a file for several

reasons. FmL the real-time operation of the server can be easily

monitored simultaneously from a variety of locations. Second,
when a status connection is established, the current internal state of

the server is sent to the client in summary form-such information
may be difficult to visually extract from a log file.

4.2 PC-Based Speech Recognition Server

An existing library interface to a PC-based speech recognize was
converted into an asynchronous server by adding several SM calls,

and defining an RPC specification file. The library communicates
to an external speaker-dependent isolated word speech recognize

by a serial interface [12]. During initialization of the server a file

descriptor for the recognition hardware is registered with the SM.

Most of the server functions are accessed from the application by

asynchronous messages. Once the application has requested that the
server load a tile of speech templates and has started recognition,

the server asynchronously sends events to the application when a
word is recognized. The events provided by the recognition server

arc more closely related to keyboard or mouse input than to those
related to temporal media, such as provided by the audio server.

4.3 Software-Based Speech Recognition Server

A second speech recognition server with the same software inter-

face has been built using a software-based recognize [9] that runs

entirely in a SPARCstation. This speakerdependenL isolated word

recognize runs in real-time on the SPARC processor. The recogni-
tion server gets speech data from the audio server via data interest
events, applies the recognition algorithm, and sends recognition
events to interested clients.

A typical application using this recognition server requires a very
distributed software architecture. Clients will often communicate
with the audio server, the recognition server and a window server.
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I client I
L I

1’ recognition server I

I window saver II audio server I
Figure 3: A client that uses audio, recognition, and window servers.

The recognition server, in turn, gets recorded audio data from the
audio server. Such a configuration is shown in figure 3.

We are refining our application progr ammiug interface (API) to

support recognizes with varying performance characteristics. We

would liie to support different classes of recognizes (speaker inde-
pendent continuous, etc.), as well as be able to handle recognizer-

specific attributes such as differing training protocols.

5 APPLICATIONS

A variety of applications have been implemented by the Speech

Research Group that use the audio and recognition servers. In

addition to the two applications detailed in this section, several

applications have been built that take advantage of multiple audio

servers that execute in parallel on separate machines. We are in the
process of migrating all of our speech and audio applications to use

the SPARCstation-based audio server.

Such an environment can lead to a highly distributed configuration,

allowing a variety of sound processing servers to be layered on top
of the audio server (see figure 4). In addition to several applications
and low-level servers, two “mid-level” servers that obtain data from

the audio server are shown.

5.1 Capturing Background Speech

An application has been built using the audio server that continually

records background audio into in-memory buffers for later playback.
Both a graphical and a speech-only interface have been built to ac-

cess the recorded audio information. The graphical interface uses
the audio server, and an X Window Server for graphical output

and mouse input [11 ]. The speech-only interface uses the recogni-
tion server for controlling the playback of the captured audio ([23]

describes a similar system running in a Macintosh environment).

5.2 Voice Mail Message Collection

Voice mail in the Speech Research Group is gathered by a client

application running on a Sun SPARCstation. This application com-

municates to a “phoneserver” process that monitors ISDN telephone
activity. When a call is answered, messages are played and recorded
using the audio server. Recording is controlled using real-time si-
lence detection functionality provided by the audio server.

Information about the callhg and called parties supplied by the
phonesemer allows the messages to be delivered electronically.
Recorded messages can be heard remotely over the telephone, or
locally on a workstation using an interactive graphical interface

[22]. This application and the audio server are an important part
of the software infrastructure of the Speech Research Group—the
voice mail application runs continuously, and answers dozens of
telephone calls per day.

6 RELATED WORK

6.1 Hand-Built Servers

Several hand-crafted servers have been used in the Speech Research
Group to provide information services to interactive applications

(e.g., [13, 26]). Since our research environment contains diverse

machine architectures, a least common denominator approach to
network communications was usually taken: an ASCII string pro-

tocol was used on a predefine communication port. Servens were
written to support either synchronous or asynchmttous calls.

This arrangement had several drawbacks. FirsL the communications
portions of the servers and clients evolved in an ad hoc, and unmaiu-

tainable, manner. Second, to access the server from a procedural
interface required translating commands into properly formatted

strings, and then parsing the output strings sent by the server-the

serialization and deserialization of the data stream was coded by
hand.

The ASCII telnet interface was found to be powerful enough to be
required for all servers designed by the Speech Research Group. The
tools described in this paper support both an ASCII interface and a
procedural interface to a server, and provide high-level abstractions

for establishing connections between clients and servers.

6.2 Remote Procedure Calls and Message Passing

Most remote procedure call systems built to date operate in a syn-

chronous manner [8, 14]. One process sends a call message to the ,
other process, and blocks until a reply is received—in such a model

only one process is active at a given time. This master/slave rela-

tionship is sufficient for many kinds of distributed environments, but
is not ideal for constructing interactive applications, or multi-modal

user interfaces.

An RPC system is often used instead of asynchronousmessage pass-

ing because procedure calls are the primary control structure and
data transfer mechanism in most progr amming languages. Mes-
sage passing is better suited than RPCS for “dialog systems” where
multiple conversing parties reside on different hosts, and in “mail-

ing systems” where information is sent regardless of if it can be

processed right away [21].

An RPC stub generator is a compiler that helps reduce development

time by simplifying the coding and debugging of low-level rou-
tines [25]. RPC generators automate the process of serializing and

deserializing data passed by a remote procedure call, often convert-
ing the data to into a machine independent format and dispatching
incoming calls to the appropriate routines.

The tools described in this paper allow the use of both RPC and
message passing within a procedure call framework, and provide

several data serialization formats.

6.3 X Window System and X Toolkit

Version 11 of the X Wiodow System uses an asynchronous message

passing protocol, however, for some requests the library acts like an
RPC system and waits for an expected reply. The X Window System

was intended to be completely independent of operating systems,
network transpo~ and programming languages, thus instead of
using an RPC generator, a protocol was defined for performance
and portability reasons.

The X Toolkit provides a comprehensive event selection and dis-
patching mechanism to client applications [6]. Xt also allows appli-

cations to register additional devices and application specific t&ers
to be handled in the main event loop. Unfortunately, these extensive
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Figure 4: A multiple server environment.

facilities are only available to applications that use the toolkh and
window system. Not all user interfaces require graphical displays

or mice—some of the Speech Research Group’s current work deals
with hand-held and “speech-only interfaces” where a keyboard and

display are not used [3, 23].

Early work on remote procedure call systems suggest that the pro-

cedure call was well understood by programmers, thus it was easy
to adopt the RPC paradigm. The prevalence of the Xt mechanism

for callback-based programming, now allows sidnr mechanisms

to be used in a range of multimedia user interface applications.

Xt supports communication of window-related data between clients,

but does not provide a general communication mechanism between

clients and other types of servers. The tools described in this pa-
per provide many of the low-level communication, even~ and dis-
patching mechanisms provided by X and Xt without requiring the

presence of a window system.

6.4 Previous Audio Servers

An early serial-controlled audio server developed in the Speech
Research Group [18] relied on a hand-built client side library, and

only supported a single client.

The remote procedure call compiler used in the VOX Audio Server

[5] supported both synchronous RPCS and asynchronous messages,

however, it was necessary to explicitly declare if the data was to
be sent synchronously or asynchronously. VOX supported complex

client-defined constructs in the server that represented audio routing

configurations needed by the client. VOX, however, did not allow
data to be exchanged between the server and a client.

The DEC audio server [1 ] was modeled closely on the X Window
System server, and hence uses a protocol rather than an RPC gener-

ator. The server design was also based on the VOX Audio Server,
and has complex server-side constructs. However, as a means of
sharing resources, the DEC server mixes multiple sounds when they

are played simultaneously.

The tools described in this paper use an RPC generator for rapid
developmen~ rather than hand-crafting code to support a protocol.
The RPC specifications implicitly define whether calls should be

synchronous or asynchronous. The Spare-based server directly
supports files, and also allows data buffers to be exchanged between
the server and clients.

7 CONCLUSIONS

New user interface and software engineering paradigms are emerg-

ing because of the ubiquity of network-based services. The tools

described in this paper provide a flexible and rapid prototyping en-

vironment for creating networked servers and applications. These
tools allow servers to be built easily, while retaining the power and
familiarity of remote procedure calls, and callback-style program-

ming using asynchronous messages.

A simple specification file generates code for both synchronous
RPCS and asynchronous messages. The procedure call generator,

though currentJy limked to simple data types, supports several com-
munication modes, including a telnet interface that allows direct
interactive use of a server.

Future directions for the software include adding an interpreter into

the server to reduce the traffic between the client and server, and

to eliiinate the queuing mechanism. Also under consideration
is porting the system to use Apple Events under the Macintosh

operating system.

It has recently been suggested [19] that RPC is evolving into the
mainskeam mode of communication in client-server models, and

that it will be the key component in distributed applications and
distributed operating systems. The tools described in this paper

provide a different perspective that should be considered when de-
signing future RPC systems, in particular, the usefulness of asyn-

chronous messaging for multi-media applications and systems that

manage temporal media [27].

These simple but powerful tools allow applications to easily incor-
porate new media and new interaction styles. Facilities such as

these promote the development of new applications and user inter-

face techniques, especially those involving temporal media such as
speech, audio, and video.
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