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Abstract. Chatter is a conversational speech agent for supporting the exchange of informa- 
tion anlong members of a work group. It explores interfaces centered around the (.onversa- 
tional and interface agent paradigms. While the recent integration of speech recognition 
technology into user interfaces has brought great promise for ease of use, the dreams go 
largely unfulfilled because speech is still used mainly in the command-driven style. In natu- 
ral conversation, participants exchange thoughts fluidly and dynamically. As applications 
do  more, users cannot remember all capabilities of the interface, so applications must take 
more active roles in the conversational experience by recognizing user goals and suggesting 
the appropriate capabilities of the program. Chatter is distinguished by its maintenance of a 
user-computer discourse model, which is used as a basis for inferring user interests, suggest- 
ing courses of action and alerting the user to  potentially interesting information and events. 
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As computers become smaller in size, it becomes more difficult for them to sport visual dis- 

plays or  keyboards. The use of speech as an interface modality, for input and output, has 

gained interest recently because it does not take up physical space ro effect. What gains are 

made in space are lost in time; old paradigms of human-computer interaction need to be re- 

thought. As a channel for humancomputer interaction, the audio domain is relatively 

impoverished compared to visual mediums. Whereas a great amount of information can be 

presented a t  once on a visual display for a user to simply glance at, a similar audio display 

requires time to hear. 

Most interactive speech-only applications today have command-style interfaces, which are 

usually slow and inefficient. Simply listening to a menu of commands takes time, and in 

order to  choose anything, the user has to remember all of the available options, or  know 

what he wants to do  ahead of time and then catch the command as it is announced. If a 

menu is repeated, that rakes time, too. Repeating a menu entails navigation, which is not 

instantaneous as in the visual domain because the user has to  recognize what he is hearing 

to know where he is. The effort in listening to  synthetic speech not only is time-consuming 

but also demands a greater cognitive load [Pis8S]. In the speech domain, the command- 

style becomes even more problematic when the number of commands becomes large. Since 

the list is large, it cannot all be remembered by the user. To be presented, it needs to be spo- 

ken, taking up valuable time. One solution is to  group commands into logical sets and place 

them into hierarchical menus. However, the process of choosing actions becomes rigid and 

modal1. Working through a set of hierarchical menus does not correspond to the way peo- 

ple use speech everyday. 

What can be done in speech-only interfaces when the application becomes complex and 

many capabilities are available? How can these choices be made known t~ the user without 

costing too much time? If the ever growing group of non-trained users has to make effective 

use of the power and diversity the computer provides, current speech interfaces will prove 

to be insufficient. 

1. Modal is used to describe an interaction in which the user is forced to operate in a limited context imposed by 
the system before any other operations can be done. One common example of a mode is a dialog box which 
asks the user a question. He has to answer OK or cancel before proceeding. The user is said to be in a mode, 
and the interaction is modal. The interface is also said to be in a modal loop waiting for the user's response. 



1.1 The Advantages ~f Conversation 

The solution pursued in this thesis is to model more closely the interactions that people use 

when they communicate with one another-conversation. When a person talks to someone 

else, he may frequently interrupt a topic of conversation and move on to another topic. If 

the participants resume an old topic, they would like to continue where they left off. A 
command-driven system offers iittle means for the interaction to develop a shared context 

among its participants, imposing an unnecessarily rigid structure to  the exchange. 

Imagine a scenario in which a user can interact in a relatively natural dialog with a com- 

puter about his mail and their authors (C is the computer agent; H is the human): 

. . . 
C: This message is from Barry. Do you want to  hear it? 
H: Where is he? 
C: He's in Lisa's office. 
C: Call him? 
H: Read it. 
C: reads Barry's message 
C :  The next message is from Don. 
C: Read it? 
C: waits for Has answer.. . 
C: You just received a voice message from Barry. 
C: Play it? 
H: Yes. 
C: plays Bany's message 
H: Where's Barry? 
C: He's in the sound studio. 
... 
User converses with the agent one hour later. 
C: Barry sent you a message while you were away. 
C: Play it? 
H: OK. 
C: plays Barry's message 

Figure 1.1: A modei dialog. 

The interaction is fluid, efficient and dynamic because the interface can keep up with the 

user's commands and questions at any time. Such interfaces can remove some of the rigidity 

in a speech interface by allowing the user to jump from point to point in the conversation, 

going in and out of task contexts and later resuming at the point of departure if desired. 



1.2 The Advantages of Learning 

Good conversation cannot occur if the computer is not a good conversationalist. The inter- 

face must become more active in its behavior; instead of the user always telling a program 

what t o  do, the program can make suggestions to  the user about what can be done. Inter- 

faces assume more active roles by suggesting appropriate information and actions t o  users 

based on  learned experiences with the user. They can guide the user through the interaction, 

instead of simply awaiting the user's next command. 

Computers also need to  be better listeners and learners if they are to  be better conversation- 

alists. The suggestions they make can be a result of an inference process the agent makes 

about the user's goals and interests. These inferences can be used to  track changing interests 

for particular kinds of information, and the user can be alerted to  it as soon as it arrives or  

in a later session. In the above scenario, the agent has inferred that the user was interested 

in reaching Barr~r and alerted him to  information of interest as soon as he conversed again 

with the agent. 

1.3 Research Challenges 

This thesis explores the issues involved in building a conversational agent in the speech 

domain. The new salient capability of such interfaces will be their dialog modeling and its 

suggestive behavior, based on machine learning algorithms. The research focuses on an 

application called Chatter, which is designed to  facilitate communication in a work group. 

To this end, Chatter allows users t o  perform multiple communication-oriented tasks, such 

as reading message sent by other users, finding information about people, locating them, 

and calling people on the phone. The interaction is characterized as an agent which tracks 

the usercomputer discourse and make inferences about the user's intenrions. The former 

lets the interaction occur more naturally. The latter enables the agent to  find and alert the 

user to  useful iniormation and actions. 

Chatter is a telepho. ,c-based application that offers users remote access to  personal desktop 

information, such as e-mail, voice mail and rolodex information. Input and output is pro- 

vided through a telephone interface using a recognizer for input and text-to-speech synthe- 

sis for output. 

Speech provides a challenging yet rewarding domain in which t o  study conversational inter- 

faces. First, it is possible to  leverage the strong implicit rules governing conversational that 

people have. If it is possible to  mimic, and not violate, some of these implicit rules in an 

interface, computers can become more efficient and natural to  use by voice. Second, speech 



is already an established medium for remote communication and information. There 

already exists a wide array of media-telephone, e-mail, voice mail-with its complement 

of services and information available through audio access. More and more information 

will become available by voice, so the need for integrating these disparate sources and con- 

trolling them in a easy way will become important. 

1,4 Overview of this Document 

Chapter 2 analyzes the motivations surrounding the design of Chatter. It discusses the 

strengths and weaknesses of speech interfaces and argues that discourse modeling and 

machine iearning may facilitate the use of speech interfaces. 

Chapter 3 provides background research and applications related to Chatter. This chapter 

reviews research from several areas, including discourse, conversational interfaces and 

agents. 

Chapter 4 describes an architecture for performing interaction over mixed mediums. It 

describes the implementation of an event server called Zm.  

Chapter 5 begins the discussion of Chatter's implementation by describing how speech 

input is processed into a semantic representation. It also describes the advantages of using 

both speech and buttons in a speech interface. 

Chapter 6 outlines the discourse modeling aspect of Chatter. It reviews the GrosdSidner 

theory and explains Chatter's implementation. This chapter also addresses the interaction 

issues, including those of choosing segment boundaries, resolving pronoun references, ter- 

minating a segment, asking questions, reintroducing segments, generating responses, and 

repairing errors. 

Chapter 7 addresses the agent and machine learning aspects of Chatter. It introduces mem- 

ory-based reasoning and describes how it is integrated with the interface. Ths major issues 

it addresses are: how it is used to decide on interesting mail, suggesting courses of action, 

feedback to  learning algorithms and integration of learning and discourse. 

Chapter 8 talks about issues involved in using recognition in the context of a speech dis- 

course system. It describes the design of Chatter's vocabulary and a recognition server. 

Chapter 9 offers some conclusions and possible future work. 

The appendices provide further technical detail about the implementation. Appendix A 
gives the Application Program Interface (AH) for the recognition server. Appendix B 



explains how to interface with the event server so that other applications may be written 

for it, and Appendix C shows the object-oriented design hierarchies. 

1.5 Document Conventions 

The conventions used in this thesis for distinguishing user speech and interface feedback are 

straightforward and hopefully decipherable from its context. Except in figures, user and 
machine utterances such as hi, who's this3 are italicized instead of quoted. Actual imple- 

mentation constants or  code like the string *$who are documented in Courier font. Finally, 
data structures and object classes are bold, such as IMlBRStore. 



2. Designing Chatter 

This chapter describes the considerations and motivations behind the design of the Chatter 

interface. It considers the tasks for which Chatter is intended, describes its functionality, 

and motivates the choice of discourse model and learning agent techniques to  address some 

of the issues inherent with speech. 

Chatter is an agent for facilitating communication in a work group. It is designed to be a 

front-end for a group of users who send and receive e-mail and voice mail, and who seek 

information and whereabouts about people with whom they collaborate. The scenario 

being considered is one where a group of users are working in several places, at the office or 

home and even during travel. As available communication devices become more portable 

and ubiquitous, the task of reaching people gets more complex because the means are more 

varied. People's work habits become mobile, and the steps involved in getting information 

to intended recipients are less direct. This mobility renders the once easy task of communi- 

cating with group members more troublesome. 

Computers can be used to tie the communicarion efforts of all remote users together, 

through either real-time synchronous or store-and-forward asynchronous communication. 

Chatter addresses the following challenge: how does such a group of users keep in touch 

with one another when they are in remote places? How can users asynchronously deliver 

messages to one another from remote locations? How can remote users stay in touch with 

important events at the office? How can computers facilitate the desire of some users who 

want to  switch from asynchronous communication to synchronous? This thesis seeks to 

answer these questions by providing a system which facilitates these goals. 

To facilitate the exchange of information in a work group, the Chatter application provides 

a remote interface for staying in touch with the office when one is away. Because the tele- 

phone is a ubiquitous device, it can be used effectively as the peripheral for supporting com- 

munication. 

2.1 Chatter Funetl~nallty 

When people become mobile, communication usually means messaging, the ability to store 

and forward messages for other users they can read when it is convenient for them. Whilc 



communications becomes mostly asynchronous in this scenario, some types of tasks can be 

performed more effectively with synchronous communication or conversation. Chatter is 

designed to  facilitate both synchronous and asynchronous means of communication by 

offering the following basic functionality: 

E-mail reading. Often, work is accomplished by passing e-mail messages back and 

forth, so the ability to read messages is almost critical for staying in contact. Chatter 

allows the user to play text and multimedia mail messages and to reply to  them by send- 

ing voice messages.' Messages can be formatted as voice mail or multimedia mail with 

a voice attachment. Facilities for maintaining the user's mailbox is also provided; the 

user can save messages to temporary files for later viewing, delete or forward them to  

another user in the group. 

Voice mail playing. Voice mail is even more important for interfacing to the outside 

world, so Chatter has the ability to  play a user's voice mail him through the interface. 

Voice mail messages are automatically maintained as digital audio files on the worksta- 

tion and also have associated time of receipt and caller ID [StiSI], so it is possible to  

call a message's sender if the caller ID is available. Like the e-mail reader, the user has 

the ability to  play, reply, delete and forward voice mail messages. 

0 Phone dialing. With a telephone as the interface, the user would expect to be able to 

place calls to people. How can Chatter facilitate this task? One of the common difficul- 

ties in reaching someone is having the number handy. Chatter can use telephone num- 

bers found in the user's rolodex to place calls for the user. When the user makes a 

request to call someone, Chatter initiates a conference call, dials the number and 

patches the third party into the call. Chatter waits a brief period before terminating its 

participation so that the participants can converse. The purpose of the waiting period is 

to enable the user to  cancel the call, say, because the called party does not answer. 

Rolodex access. To further facilitate the conmunication process, Chatter allows the 

user to access the information in his rolodex. While the rolodex is maintained at the 

workstation, its data is still useful remotely. For example, the user may need to find 

someone's fax number while the recipient is unavailable. The rolodex includes informa- 

tion about people's home, work and e-mail addresses, home, work and fax numbers, 

and any remarks about the user. These fields are all accessible from Chatter. 

Activity information. To facilitate real-time communication, Chatter can also inform 

the caller on the whereabouts of other's in the work group. This information is useful in 

1. For users without the ability to receive multimedia mail messages, a facility for typing text replies using 
TouchTones is also available but is nor incorporated due to time constraints. 

16 



case the user wants to know whether he can call someone at the office when it is more 

convenient to talk to him. Information about the location o i  users is collected from the 

group's set of active badges [Wan92], which people wear to receive notification of mes- 

sages and to  inform the system where others can find them. Information about worksta- 

tion usage is also recorded. If people do  not wear badges, it serves as a backup system 

for locating people. For example, the user may ask Chatter to locate the user mul l ins ,  

and the system can respond with mul l ins  is  i n  h i s  o f f  i c e ,  active on monad- 

n o c k o r m u l l i n s  w a s  last  seen about  45 minutes ago on whitney. 

Chatter borrows many of the capabilities from the group's Phoneshell application. The 

major objects of dialog in Chatter involves messages and people. The thesis is concerned 

about how this functionality can be fitted into the context of a dialog and how the interface 

can generate interesting ~uggestions of messages to read and commands to  perform. 

2.3 Chatter: A Sample Dialog 

First, a script of a Chatter session is provided to demonstrate many of the ideas in the the- 

sis. It is annotated to provide an account of the noteworthy aspects Chatter builds into the 

dialog. Note how the agent makes suggestions about both interesting messages to read and 

courses of action to perform. Also, note how the dialog weaves in and out of different top- 

ics, ?roviding a natural flow to the user's interaction with the interface. In the script, 

recordings are given in italics: 

C: Hi. Who's this? 
H: It's Eric. 
C: Mi Eric! You have two messages. Hear them? 
H: OK. 

C: Message 1 is a voice message from Lisa. 
Hi Eric, it's Lisa. I have the references you 
asked me about. I'm going to be at home 
today and may or may not get to Lab. I f  you 
need them in a hurry, give me a call. See ya. 
End of message. 

The user logs on to Chatter and 
identifies himself to the system. 
Chatter makes a suggestion about 
messages to read, and the user only 
has to answer with OK to  go ahead 
or  say something else he would like 
to  do. What the user does first is 
remembered by the interface so it 
can be suggested later. 

Chatter plays Lisa's recorded voice 
mail message for the user. The 
interface ranks messages from most 
to least interesting by observing 
how the user reads mail. Read mies- 
sages are considered more interest- 
ing than those which are skipped 
over. 



I H: Where's Lisa? 
C: Lisa was last seen about ten minutes ago on 

Phoneshell. Call her? 

H: OK. Call her at home. 
C: Calling her at home. 
Convmatio~r with Lisa takes place. Eric clecides to 
go to Lisa's house to  go pick up papers. 

C: Anything else about Lisa? 
H: Yes, what's her home address? 

I C: Her home address: 572 Main Street 1118, 
Cambridge, MA 02139. 
OK. 

C: Message 2 is from Don Jackson about "a 
phoneshell bug". Read it? 

H: OK. 
C: Eric, this message seems to be break 

phoneshell. Can you try to fix it? Thanks. 
---original message from SPOOL@north- 
eastern.edu follows: 

h e  user interrupts the current 
:opic of dialog to  ask where Lisa is. 
Since Chatter has location informa- 
tion about users, it can give infor- 
mation a b u t  when Lisa was last 
seen. Chatter infers from past situ- 
ations that the user is probably 
interested in calling the person 
when he asks this question, so it 
makes the suggestion. 

The user affirnzs the suggestion and 
adds additional information to the 
command about calling her at 
home. Chatter uses the phone num- 
ber stored in the user's rolodex to  
dial the number. Note the use of 
pronouns by in the user's utterance. 

After the call completes, Chatter 
reminds the user they've been talk- 
ing a b u t  Lisa and asks if he w w l d  
like t c  know anything else aboue 
her. 

Note how Chatter echoes the 
important information back to the 
user in the next utterance. Since 
speech recognition may often com- 
mit mistakes, the user at least has 
the opportunity to ask for the 
information again if the query was 
incorrectly heard. The address 
information is provided by access- 
ing the user's rolodex. 

The user finally says OK, an 
acknowledgment that the topic 
about Lisa has completed. 

Chatter returns to reading mes- 
sages for the user. Unlike the grevi- 
ous message, Chatter first asks if 
this message is to read because it is 
potentially long. 



:: End of message. Send a reply? 
H: No, forward it to Jordan. 

C: Record your voice message to forward to Jor- 
dan. 

H: Jordan, this is Eric. Can you see i f  you can fix 
this hug? Don is having some trouble with it. 
Tharrks. 

C: Sending your message. 

H: Call. 
C: Call Don? 
H: Yes. 
C: Calling Don at work. 

No answer from Don. 
H: Cancel. Send a voice message. 
C: Send a voice message to Don? 
H: Yes. 
C: OK. Record your message. 
H: Hi Don, it's Eric. I forwarded your bug report 

to ]ordun, so it should be fixed pretty soon. 
Let us know if there are any other bugs you 
encounter. Thanks. 

C: Sending your message. No more messages to 
read. OK. What now? 

H: Good-bye. 
C: See you later. 

I'he agent has noticed that the user 
usually replies to messages Gom 
Don, so it makes the suggestion to 
the usel: ?'he user turns down the 
request for another. This situztion 
is recorded so that the agent can 
better predict the user's future 
actions. 

The user records a voice message 
for Jordan. Chatter knows that Jor- 
dan can receive voice messages, so 
it decides that it would be easiest 
for the user to record a voice mes- 
sage. 

The user says call, an ambiguous 
command because no person is 
speciffed. Because sf context pro- 
vided by the message being read, 
the agent makes a guess as to who 
it may be. 

Don is not at his phone, so the user 
exits from the call and decides to 
send a message. Again, since the 
send command has been com- 
pletely specified, context is used to 
verify the recipient. 

All messages are read, so Chatter 
has run out of topics to talk about. 
It asks the user what he would like 
to do, and the user signs off. 

An hour later: 

C: Hi. Who's this? 
H: Eric 
C: Hi Eric! Don left a reply to your message. 

Hear it? 
H: OK. 
C: Eric, thanks! Don. 
C: No more messages. OK. What now? 
H: God-bye. 

The next time the user lo&s in, Don 
has left an e-mail message for him. 
Chatter considers this message to 
be important because the user has 
tried to call Don and was unsuc- 
cessful, so this message may be 
important. 

Chatter. 



The dialog above shows how Chatter operates in a fairly natural dialog with the user. Not 

unexpectedly, spoken dialog is shown to be a meaningful medium for Rumancomputer 

interaction because it is very expressive. Chalfonte, Fish and Kraut found that a paper revi- 

sion task could be done more expressively if subjects communicated in speech instead of 

only being limited to marking up a paper draft [ChaSI]. Subjects offered the most expres- 

sive, high-level comments for the task if they interacted even by one-way speech, while 

video andfor text mark-up only resulted in less expressive comments such as ones about 

diction and grammar. In their study, the addition of a visual display did not add much to 

the expressiveness of the subject's comments. The implication for speech-only interfaces is 

that they have the potential to  be even more expressive than even visual interfaces in some 

cascs, given that a computer can handle the expressive input. 

2.4.1 Using discourse and speech 

It seems clear that dialog is expressive because many conventions are already built in to 

make it faster. Many thoughts can be said in little time because participants already assume 

the conventions that others will follow. One of the most these conventions is the existence 

of a focus, a topic of conversation. The focus shifts from one topic to another during a con- 

versatioc, providing a structure to  the conversation. The focus establishes the object under 

discussion, upon which participants have come to agree. Unlike interfaces which do not 

keep history, conversations are efficient because participants maintain state, and they can 

use expressions such as pronouns to refer to that state without having to  repeat everything. 

Unlike moded interactions, topics of conversations can also be interrupted; the speaker may 

decide to  change or  interrupt the current topic to establish another, while at some later 

point, he may want to reintroduce a previous topic and continue where he left off. If an 

interface can follow these conventions, the hope is that human-computer interaction can be 

faster. 

The ubiquity of speech devices, such as telephones, also makes it a convenient medium to 

use. In portable situations, when the user's hands or eyes are busy, a modality such as 

speech allows users to operate the application without requiring them to switch their visual 

attention to operate the interface by physical controls. Conversation is also a natural means 

of interaction for people in the Chatter domain. Leaving and sending messages for people 

already encourages the user to converse, so the interface becomes more natural if it can be 

controlled through channels already being used. 

Designing a good conversation requires making the computer's feedback brief and inter- 



ruptible in order to conserve time and reduce the amount of information that the user must 

remember [Rud91] [Wat84]. In studying audio communication over telephories, researchers 

found that speakers alternate turns frequently, and utterances are typically either very 

short, or  five to  ten seconds long [Rut871 [Wi177]. 

It is also important for the user to have the appropriate mental model of Chatter. The dan- 

ger of attributing too much understanding or  intelligence to the computer once it can recog- 

nize speech is always present, for the user might conclude that the somputer will now 

understand anything he says. As Negroponte notes about agents, "...And remember, we are 

not talking about discusshg Thomas Mann, but delegating, which more or  less means: issu- 

ing commands, asking questions, and passing judgments; more like drill sergeant talk." 

[NegSO] So, drill sergeant talk will do for now. 

2.4.2 Uslng agency 

Using conversational techniques for interacting in speech seems reasonable, but they will 

not work well if the dialog is always one-sided. If the user has to speak all commands, then, 

with the exception of the novice, users will be slower performing tasks speaking than using 

buttons. The conversation must be supported by a "desire" on the part of the interface to 

make useful conversation. In the realm of tasks, useful conversation means suggesting rele- 

vant courses of action. As Seneff, Hirschman and Zue note, "At one extreme would be a 

system that acswers user's questions without a t  any point asking questions or  making sug- 

gestions. At the other extreme would be a menu system that forces the user into a very lim- 

ited range of choices" [SenSl]. They argue that the middle ground of the spectrum is the 

interesting aspect of spoken language systems. A system can take the initiative to reduce the 

time for spoken input by phrasing suggestions as questions, and the user has only to 

acknowledge the recommendation to proceed. Since individuals have varying habits in the 

domain, this motivation suggests the use of agency, a facility for learning about the user so 

that customized suggestions can be made. Since users can also have changing preferences 

over time, a learning agent can also adapt to them more easily than a strictly rule-based 

agent. 

The concept of an agent is a powerful one. As Laurel states, "An interface agent can be 

defined as a character, enacted by the computer, who acts on behalf of the user in a virtual 

environment. Interface agents draw their strength from the naturalness of the living-organ- 

ism metaphor in terms of both cognitive accessibility and communication style" [LauSO]. 

As with real-life agents, the user ascribes certain sensibilities to a program if it is called an 

agent. The metaphor Chatter seeks to present is one of an electronic assistant who tells the 

user about messages left for her since he last checked in. Since the assistant has chatted with 



her before, it knows about her habits and style for managing messages. The user therefore 

expects the competent agent to  make the right suggestions, and the computer can do so 

because it is expected by the usea: 

Maes also makes an important point about learning agents, as opposed to those who are 

fully competent right away. A learning agent should build up a trust relationship between it 

and the user. It is not a good idea to give a user an agent that is from the beginning already 

opinionated, albeit qualified. Schneiderman argues that such an agent would leave the user 

with a feeling of loss of control and understanding [Mye91]. On the other hand, if the 

agent gradually develops its abilities-as in the case of the learning approach taken with 

Ghatter-the user will be given time to gradually develop a model of how the agent makes 

decisions. Initially, the agent is not very helpful as it knows little about the user's prefer- 

ences. Some amount of time will go by before the assistant becomes familiar with his hab- 

its, preferences and particular work methods. Yet, with each experience, the agent learns, 

and gradually more tasks that were initially performed by the person directly, can be made 

more efficient by suggestions. 

A hazard of calling an interface an agent may be that the user may ascribe too much com- 

petence to it and expect it to do or  learn more than it is capable of. However, as in real life, 

assistants are not expected to know everything about their clients (although as much as 

possible certainly helps). Agents do  not have to  be omnipotent or  omniscient beings but 

may have personalities that exhibit particular strengths and weaknesses, and any program 

will have strengths and weaknesses depending on how it is designed. 

2.4.3 Building a portable esmmunlcatlon base 

Interface issues aside for a moment, as computing becomes more ubiquitous, the need for 

providing infrastructure to support interaction at any place and time increases. Instead of 

having one desktop terminal from which to access the information, there are now several 

interaction devices. Such a distributed system raises the issue of collecting and disseminat- 

ing information in a consistent fashion. While the desktop interface has enough computing 

power to  be smart about the uscr's preferences, can a small pager device also exhibit some 

of this same (or even simply consistent) intelligence? A related and interesting challenge is 

how to provide a channel for collecting training data for the agent, given that interaction 

techniques among the different media are different. This thesis hopes to address some of 

these issues as well. 



Chatter is designed with the above interfzce design motivations in mind. To try out these 

ideas, it is important to build a real, workable interface to receive the user's input and gen- 

erate output. This thesis also describes the subsystems constructed through which the agent 

can communicate with the user. Figure 2.2 presents the high-level architecture of Chatter, 

showing the basic interaction loop of the system: 

Audlo sewr w 
Figure 2.2: Overview of Chatter. 

The shaded parts of the figure are addressed in the thesis. Information flows through the 

system in the following way. First, telephone audio is captured on the workstation through 

an audio server process. A recognition server receives audio from the server, and speech is 

converted into text. Then, parsing and semantic analysis are performed on the data to 

obtain a data structure representing the user's utterance. Processing takes place in the con- 

versation module and interest reasoner, which share information about what is interesting 

and how to present it. The conversational model provides the context for the reasoner, 

which generates appropriate responses for the user. The response is given syntactic form by 

the speech generator and is finally synthesized for output to telephone. A DECtalk, a device 

for converting text to speech, is used to generate speech for output. 



3. Background 

Some of the groundwork is already set for the construction of conversational systems like 

Chatter. This chapter outlines the work preceding Chatter and begins to address some of 

the challenges in building conversational interfaces. The research for this thesis meets at the 

crossroad of several areas, including computational linguistics, system design and artificial 

intelligence. 

Perhaps the most necessary requirement for building conversational interfaces is to first 

come up with models of everyday conversation. Much work has already been performed in 

discourse theory, which studies and formaiizes the conventions people use in conversing 

with each other. By following the converrtions found in human-to-human discourse, com- 

puters can communicate with humans in a more natural way. Unfortunately, this field is too 

broad to describe in a chapter, so the topic will only be addressed briefly. 

The most well-known theory in discourse is the GroszISidner model, whose major contri- 

bution is that conversation is organized around some kind of stack. [Gro86j. Lnguistic 

utterances in a conversation can be considered as means to  achieving goals. Goals may have 

sub-goals, so discourse assumes a recursive structure that is recorded on this stack. As soon 

as the main purpose of the conversation is satisfied, the dialog completes. 'Tbe theory pro- 

vides a framework for investigating other aspects of discourse, including planning and ana- 

ghoric resolution. In Chapter 7, we go into greater detail about this theory, which we use to 

model discourse in Chatter. Recently, the field has emended these basic ideas to  model more 

closely language acts--committing, accepting and negotiating-and their effects on the 

internal states of conversational participants [Sid92]. 

Essential to figuring out suggestions to give to the user is figuring out what the user is trying 

to accomplish. Determining the user's intentions from his utterances is a major area of 

research called plan recognition. The basic approach to modeling intentions has been the 

embedding of a set of knowledge dependency trees into a natural language system. These 

trees track the state of the user's knowledge and discourse, allowing the system to  maintain 

a set of possible high-level goals that a user may have ar any one point during the exchange. 

When the computer wants to know what the user wants to do (perhaps to  assist him), the 



computer generates a query based on its set of hypotheses of what the user wants. Kautz 
gives a good overview of the issues and approaches of plan recognition in the last decade in 

[KauSO]. 

Many of these: systems are confined to text-based interfaces, where either the user or  an 

experimenter's have keyed the input, from which natural language processing occurs. 

In contrast to  text-based natural language interfaces, several other spoken language systems 

have already been built. Spoken systems, perhaps with some visual add-on, dominate the 

work that has been completed in the area of conversational interfaces, although some have 

applied discourse theory to multi-modal communication [Wah92]. This limited research 

has concentrated on the coordination of hand and eye gestures in disambiguating descrip- 

tions and anapkora in verbal input. Like Chatter, the following systems attempt to capture 

an interaction in a specific domain. 

3.2.1 ConvenatlonaP Desktop 

The most demonstrable conversational interface to  date is the Conversational Desktop 

[Sch84]. The Conversational Desktop provides an integrated interface for accessing voice 

mail, rolodex, calendar and other workstation-accessible information. Noteworthy is the 

dialog repair mechanism built into its grammar, which allows it to accept and repair par- 

tially recognized utterances by generating questions to prompt the user for the unrecog- 

nized input [Sch86]. The Conversational Desktop employs multiple modalities of 

interaction, combining both visual and audio interfaces for input and output of informa- 

tion. The environment suggests courses of action using hardcoded rules and information 

about what the user is doing (for instance, who he is speaking to on the phone to make 

decisions). It is a proof-ofconcept system that makes only conservative use of past interac- 

tions to guide future behavior. Like Chatter's task domain, the Conversational Desktop is 

designed to facilitate work group communication. 

A precursor to  this conversational interface was Phone Slave [Sch85]. It used dialog tech- 

niques to take a telephone message, asking callers a series of questions and then recording 

the answers in separate audio segments. Although no speech recognition was used, struc- 

ture was provided in the audio recordings, and the segments could be assumed to corre- 

spond to the answers of the recorded questions. 



3.2.2 Voyager 

Voyager is an attempt to use a more sophisticated discourse model with speech recognition 

[ h e 8 9 1  [ZueSO]. It is an urban exploration system which can answer questions about 

landmarks and roads in Cambridge between MIT and Harvard University. It has a speech 

recognition bont-end and generates output in the form of a map, written answers and spo- 

ken output, %me things one may ask the system are do you know the most direct route to 

Broadway h e m e  from here or can you tell nze how to get to the Chinese restaurant? If a 

new command is nol: completely specified (perhaps the destination is ambiguous or the 

source is unknown), the system generates questious to obtain the missing information. Voy- 

ager uses a simple discourse model for pronominal resolution using two slots which refer to 

the most recently referenced set of objects. It d s o  maintains a stack of incompletely speci- 

fied commands, which gets popped off and executed when new information completes tht 

ambiguous commands. 

In their papers, Voyager's designers drew several significant conclusions about speech sys- 

tems: first, speech recognition must be integrated with natural language in order to  achieve 

speech understanding. Second, systems must be designed to suppon realistic application 

domains and be able to translate spoken input into appropriate actions. Third, systems 

must begin to deal with spontaneous speech, since people do not always speak grammati- 

cally well-formed sentences when conversing. The last point highlights the importance of 

studying natural language processing in the context of spoken speech. 

Recentiy, more ambitious attempts are being made to study discourse in the context of 
speech. The MIT ATIS system, or Air Travel Information System, answers questions about 

airplane flights for a traveler interested in booking a flight [sen91].' Its database consists of 

tables from the Official Airline Guide containing information about destinations, flight 

numbers, fares, times, connections, seat availability and meals. One of the most interesting 

aspects of the MIT system is the design of its initiative-taking interface. The system can be 

operated in both "non-booking" and booking modes. In the former, the user can ask ques- 

tions and get responses. In the latter; the computer takes the initiative by engaging in a goal- 

directed dialog with the user, carrying him through the booking of a round- trip ticket. The 

system asks questions in order to  fill in an'on-screen facsimile of a plane ticket, and the user 

can negotiate with the system to find the best available package. This ticket is incrementally 

filled in as the information is given and provides visual feedback that the information has 

1. ATIS is a DARPA-funded program aimed at developing guidelines for evaluating spoken language systems. 



been accepted. The two modes of intxaction are switched manually. 

Seneff, Hirschmaxi and Zue described the lessons they learned about the importance of dis- 

course systems: 

0 A system should permit the user to build up a solution incrementally and therefore 

make implicit and explicit reference to information from earlier pans of the dialog. 

In certain domains, it is natiaral to have the system play an active role in the dialog. 

Spoken language programs will never reach a practical level of performance unless 

attention is paid to issues of discourse i n d  dialog. 

3.3 Audlo-Only Interfaces 

Some researchers have recently begun to explore the interface issues surroui~ding audio- 

only interfaces. The main challenge in this domain is that information feedback and user 

feedback must be entirely auditory. Unlike graphical displays where lots of information can 

be organized and displayed simultaneously, the auditory domain is linear and its bandwidth 

must more limited. New methods must be developed so that information and feedback can 

be presented coherently. Chatter is an audio-only interface that allows user to scan through 

a list of messages, so scanning techniques must be used to allow access efficiently. The fol- 

lowing projects explore how user feedback can be given for navigating information spaces. 

These examples also demonstrate that speech and audio can be made more usefur when 

StrUChlre is given to  audio. 

3.3.1 Hyperphone 

Hyperphone is an audio-only hypermedia system for exploring voice documents [Mu190]. 

Voice documents are composed of nodes (small fragments of text) and links connecting 

nodes. A linear sequence of nodes is called a Parsed Voice String (PVS), v~hose  purpose is to 

organize collections of fine-grained text objects to  provide a linear pres~n:n.ti?n and also 

allows for interruption and "excursions" to  related subtopics. Links can be literal or  vir- 

tual. A literal link is a semantic connection between two pieces of information while a vir- 

tual link is a temporal connection, which is created dynamically as a result of user 

interaction. An example of a virtual link is the most recently traversed node. This allows 

the user to issue a query such as where were we? 

The user interface for Hyperphone is speech-only-navigation through a voice document is 

controlled by voice input and the output is generated using text-to-speech synthesis. Navi- 

gational commands are provided by a speaker-independent recognition vocabulary. Since 



the recognition lacked many of the necessary technical and domain-specific words, the 

authors propose tRe use of "voice direct manipulation" to handle navigation of the data- 

base. For example, a voice menu would be presented and the user could select an item by 

saying that one or  do  it when the desired item is spoken. Muller and Daniel, the authors of 
Hyperphone, found that very fine-grained objects are needed in order to provide a conver- 

sational dialog instead of a fixed menu structure for navigation. Fine-grained segmentation 

of the information allows queries such as tell me more about this topic, skip the details, and 

topic-specific queries such as who wrote the paper you're describing? They also emphasized 

the importance of interruptibility because of the sequential rather than simultaneous nature 

of the speech interaction. 

Hyperspeech is another hypermedia system [Aro91] similar to  Hyperphone. Hyperspeech 

provides the ability to navlgate through a network of digitally recorded segments of speech 

using isolated-word speech recognition. Information is presented using digitized speech 

output as opposed to synthetic speech. The recorded information is spontaneous speech 

from interviews with five interface designers on the topic of the future of the human-com- 

purer interface. Responses to questions were manually segmented into nodes, and links 

were added between related nodes. 

Users can navigate through the database using a variety of link types. For example, a name 

link allows the user to jump to comments made by a particular speaker related to the cur- 

rent topic. Another link type called a control link provides navigational commands such as 

browse, scan, more and continue. Browse makes a transition to the next summary topic 

node, and more makes a transition ro a detail node in the current topic. This navigational 

concept has recently been extended by others to  browse a series of news articles captured 

from radio. The news browser is called Mypernews [Mu193]. 

Arons, the author of Hyperspeech, concluded from this project that: speech interactions 

should be streamlined to provide concise yet informative feedback; system actions should 

be interruptible and the systems' response to the interruption should be timely; a flat recog- 

nition vocabulary, where all commands are always active, takes advantage of the goal- 

directed nature of speech. 

Unlike the previous two projects, VoiceNotes enables the collection and retrieval of user- 

authored audio data. VoiceNotes is an application for a voicecontrolled hand-held com- 



puter which allows users to create, manage and retrieve user-authored notes stored as voice 

[Sti92] [Sti93]. These notes are small segments of digitized speech containing thoughts, 

ideas, reminders or chings to do. VoiceNores explores the problem of capturing and retriev- 

ing spontaneous ideas, the use of speech as data, and the nse of speech input and output in 

the user interface for a hand-held computer without a visual display. 

In VoiceNotes, recorded speech is stored in segments called voice notes, and such notes can 

be organized into lists. The interesting aspect of VoiceNotes is that audio can be arbitrarily 

structured by the user. New categories can be dynamically created and note management 

can be performed completely using speech. Later, notes can be retrieved by saying the name 

of the list under which they are stored. New work on VoiceNotes allows other attributes 

besides list membership to be attached to notes, so that they can be used to cross-reference 

notes across several lists. 

Among other sig~ificant conclusions, the author emphasized the importance of providing a 

modeless interface that can more closely follow the non-linear interactions humans have 

when using speech interfaces. They expect to  he able to change the contexr of interaction 

easily, without the system imposing unexpected contctual  interpretation to user com- 

mands. She also noted that the use of speech did not displace the need for physical controls, 

such as buttons, for navigating in fine-grained information. 

3.4 Computers and Telephony 

Work in speech-only interfaces has also been performed in the context of telephony. Since 

telephony encourages conversation, it is a natural arena for exploring applications using 

voice. Interesting research examples include Etherphone from Xerox PARC [Ze188], MICE 

from Bellcore [Her87], PX from BNR [KamSO] and Phonetool from MIT and USC-IS1 

[Sch89]. Such applications can allow users to  place calls from on-line address bmks; cap- 

ture calling party information to  assist with replying to voice mail, and even route calls 

based on who is calling, the time of day and other conditions Pon911.  Chatter's interface 

is used over a telephone, bringing unique design considerations as a device with a pre- 

defined set of button controls. The following systems have explored how TouchToncs can 

be used as interaction controls. 

3.4.1 DVR systems 

The largest group of telephony applications are so-called Interactive Voice Response sys- 

tems. These are usually commercial programs used mostly by the general public for access- 

ing up-to-date information, and applications include operator assistance, bank account 



queries, movie listings, and telephone directory assisrance. Such systems use voice as output 

and TouchTones for input. Recently, limited speech recognition has been used to make 

input more natural. Yet, recognition is used little more than as "speech buttons," where a 

spoken utterance might contain a keyword which directly corresponds to some keypad 

press. These applications are also geared toward a wide range of users, so the functionality 

of such interfaces is usually designed to  be simple and limited. 

Revisiting some of the challenges in the Conversational Desktop project, the Speech 

Research Group at the MIT Media Laboratory has recently created an IVR system geared 

to the more experienced user, in an attempt to study issues raised by the need to present 

more complex information in the audio domain [Sch93] [SchSO] [StiSI). Phoneshell is a 

telephone-based interface to  personal desktop information such as e-mail and calendar. The 

application allows the user to  dial in to access workstation inforr,Idtion through a suite of 

applications and menu choices. It is ar, attempt to compensate for, and possibly duplicate, 

the informational expressiveness cf graphical media in the audio medium. It attempts to  

accomplish these aims by filtering and summarizing information before presenting it to the 

user. The command suucture is very much conventional, however, and is completely user 

d '  men.  

Phoneshell is an system which allows users to  access voice mail, rolodex, calendar, dial-by- 

name, e-mail and pager management applications stored at a workstation. Users log into 

the system via telephone and command it via TouchTones. The system gives verbal response 

PO the commands given by the user via synthesized speech generated by a DECtalk. The 

menu structure of the program is rather conventional, consisting of a hierarchy of menu 

choices navigated through the use of telephone keys. Upon entry to the system, Phoneshell 

presents a top-level menu for choosing any one the six applications mentioned above. These 

choices are presented sequentially-it annomces, for voice mail, press 1;  for your rolodex, 

press 2; ... When the user chooses an application by pressing a TouchTone, Phoneshell acti- 

vates the appiication requested. The interaction is then rather moded; all subsequent inter- 

actions with the system are limited to  the domain of the active application, and users 

cannot jump from application to application without first exiting the current application. 

For instance, if the user wants to listen to  new messages, he hits a key to start the playback 

of the first message. To listen to the next message, he may either hit another key to play it or 

wait until the first message has finished play and a time-out period has occurred. To activate 

another application, the user must exit the current application by pressing a key to return 

to the main menu and then entering another application. 



The following section will briefly describe the hnctionality of each application within 

Phoneshell. 

9 Voice mail. This application allows the user to read, send and maintain a mailbox of 

voice mail messages. Voice mail messages for the group are stored on the workstation 

as digital sound files, and this application allows access to those files. The application 

lets the user play newly-rcceived message, listen to old messages, send or forward mes- 

sages to other voice mail subscribers, delete unwanted messages, and record personal 

voice memos that appear only on the workstation screen. 

Rolodex. The talking rolodex, called Rolotalk, can be used to find information a bout 

people kept in a personal rolodex database. The user punches the first few letters of a 

persoa's first or last name and Rolotalk finds the cardis) matching the letters. Any field 

of the card can then be recited ta  the user through a choice of options. Since an e-mail 

address field is kept on each card, the user can send a voice message to the person 

within the application. N s o  noteworthy is the ability to use the phone number fields on 

each card to directly place a call to the person. This ieature obviates the need to memo- 

rize phone numbers. 

Calendar. The application lets the user find out what appointments and reminders he 

has on his calendar. The application not only gives day iiews but also provides week-at- 

a-glance and month-at-a-glance views that give high-level summaries of the information 

on the calendar. This calendar is unique because audio segments can be recorded or 

transferred from voice mail into the calendar to serve as reminders. In addition, a user 
can request that his calendar be faxed to him by specifymg a fax phone number. A 
description of its design appears in [Sch90]. 

Dial-by-name. Dial-by-name is a rather standard implementation of the dial-by-name 

service found in many IVR systems. A user can enter a voice mail subscriber's name and 

the system will place a call to the recipient. 

Electronic mail. The user can use this application to read e-mail messages in his mail- 

box. The user not only can read his messages but can also reply to  or send new mes- 

sages by either recording a voice message, whish becomes encoded in one of the many 

available multimedia mail types, or use the telephone keypad to type in a text message. 

The mail reader uses a filtering scheme based on a regular expression search that allows 

it to  present more important messages first, enabling the user to  get to the more relevant 

messages quickly. Similar to the calendar, the user can also request that lengthy mes- 

sages be faxed to him. 

o Information. A facility is included for accessing information about traffic and weather 



and listening to  news broadcasts from several sources. 

Phoneshell currently runs on Sun workstations and is available for all members of the 

group to  use. The system has been used regularly by several members of the group, who use 

it on a daily basis to access their messages when away from the office. 

Once machines can speak and be spoken to, it seems inevitable that people will begin to  

impart them with human-like personas, so researchers have thought that computer systems 

can be made more realistic by actually giving them personalities. The idea of using agents in 

the interface to which tasks can be delegated was introduced by Negroponte [NegSO] and 

Kay [Kay9O]. Agents are listingukhed from other interfaces by their ability to learn the 

user's habits and adapt to them over time. Several computer makers have touted the idea of 

agents to illustrate their vision of the ultimate interface. Two of the most visible are Apple 

Computer Inc.'s Knowledge Navigator and Japan hAIlIss FRIEND21 project. In these dem- 

onstration videos, the interface is personified as a agent with speech and visual representa- 

tions. Yet, the most interesting aspect is that the user interacts with the agent mostly by 

speaking to it (or him or her), pointing to the naturalness of speech as an interaction 

medium. Even though much rhought has gone into modeling and constructing agents, cur- 

rently available techniques are still inadequate from being able to produce the high-level, 

human-like interactions depicted in these videos. 

Recent studies indicate that agents used in the context of interactive speech interfaces result 

in more information-efficient interactions than non-interastive, one-way systems [Ovi92]. 

The reason is that users are able to assume the existence of some being, either real or ficti- 

tious, who can serve as a memory for ~bjec ts  and relationships presented in the past, The 

efficiency is also shown to  stem from the greater use of pronouns in the conversational 

mode than in non-interactive or  written modes, making it possible for utterances to  be 

abbreviated. If elements of this natural efficiency in conversation can be captured in an 

agent, it may pave the way to more fluid, natural interfaces. Here, we outline some of the 

work in agent interfaces. 

3.5.1 Oval 

An elaborate example of manual customization is the Oval system, which, among other 

functions can, implement an agent for sorting, delivering and flagging e-mail as it arrives at  

the user's mailbox [Ma187]. In the system, an agent is viewed as a set of rules. Each rule is 

specified as a set of features-the sender, recipient, subject heading, and so forth--that can 



be detected given a message. The actions of rules that match are automatically taken, which 

may include delivering the message to  any one of a user's mailboxes or simply deleting the 

message. 

Directly specifying has the advantage that the user can explicit tell the system what to do in 

given circumstances. This capability wields muck power, particular if the user knows how 
to express these rules to the system. However, Oval, and other rule-based systems, exhibit 
several difficulties from the user perspective: first, a user must learn how to  translate his 

thoughts into the rule language, which may be arcane. Second, a user's preferences and 
work habits may change over time, requiring him to  maintain and evolve these rules. The 

difficulty is exacerbated by the fact that since the rules are difficult to interpret and repro- 

gramming is only done on occasion, the user must re-learn the rule language time aker 
time. Most significantly, as experience with rule-Saxd systems suck as [Won91] demon- 
suzre, the behavior that the user wants his agent to  exhibit cannot always be c~ptured  in a 

concise rule set; there are aften exceptions to the rules that rhe user wants. These exceptions 

cause frustration tb  the ustr who wants his computer to eakn note of Lem. 

Instead of having user-specified rules, UCEgo is an attempt to  encode all tt.2 rules for a par- 
ticular domain and then to  deduce which set applies to  the user [Chi92]. Chin built UCEgo 
to  try to infer from a user's questions his higher-level motives. The UCEgo agent has a large 

knowledge base about how to use M, incorporating goals and meta-goals and performs 
planning, for example volunteering information or correcting the user's misconceptions. In 
this system, an interface agent called UCEgo gives on-line natural language text help to 

computer users through the detection of a hierarchy of goals and meta-goals of both the 

user and system. It uses the awareness of these goals to  drive the contents of help messages 
as the user follows a particular line of questions, adding more information to  responses of 

questions asked. Because UCEgo is isolated from the rest of the system, it cannot actually 
execute commands on behalf of the user. Most of the dialog is constrained to telling the 
user what to do. This leads to several limitations, the most significant one being that it is 

not possible to incorporate the actual command execution in inference about the user's 

goals. 

As Maes notes in [Mae93], a limitation of UCEgo is that it requires a large amount of work 

from a knowledge engineer; a large amount of application-specific and domain-specific 
knowledge needs to be encoded and little of this knowledge or the agent's control architec- 

ture can be used for building othei agents. A second problem is that the knowledge is static, 

possibly incorrect, incomplete, not useful or  even idiosyncratic to the designer. The knowl- 
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The agent records a history of all interactions and their results, using it as a basis for com- 

parison to new situations. The authors use a memory-based reasoner [Sta86] to  store past 

occurrences to infer appropriate actions for new situations, arid a reinforcement learning 

algorithm to adjust weights of importance of keywords and proper names. When the agent 

is asked to  schedule a meeting or new e-mail arrives, the agent inspects its database of 

examples and makes a prediction. Depending on how confident the agent is about its pre- 

diction, it either carries out the recommendation on the user's behalf or asks for confirma- 

tion. 

Learning is accomplished either by passively observing the user in real and t ra in i~~g situa- 

tions or  by actively asking for feedback when an incorrect prediction is made. In this case, 

the user is asked to weigh some of the factors used in making the decisior.. Tor the meeting 

scheduling task, these include the importance of the hitiztor of the meeting plus the impor- 

tance of the schedules of other participants. In the e-mail task, factors include the irnpor- 

tailce sf the sender, time of day, subject line, and other fields in a message's header. 

3.6 Summary 

Chatter in many ways combines and builds on research already performed in the areas dis- 

cussed in this chapter. It extends the concept of the agent interface by combining ideas from 

discourse and machine learning, both of which are crucial in constructing agents in the 

speech domain: 

0 Even though spoken language systems such as Voyager and ATiS have been built using 

ideas from discourse theory, these systems so far have relatively simple models of dis- 

course. Chatter represents a more ambitious attempt to model discourse more fully for 

use across several tasks and domains. This functionaiity entails the modeling of inter- 

ruptions and reintroduction of topics in dialog. A secondary goal is to build a general 

framework or  toolkit on which conversational systems for other domains can be con- 

structed. 

While systems like UCEgo and Phoneshell allow the user access a mass amount of infor- 

mation, there is little facility for custonlization or personalization of the information. 

As spoken language systems become more conversational and personal, it seems desir- 

able that they should listen and tune themselves to user preferences. VoiceNotes allows 

personalization to the point of arbitrary information structuring, yet the interface is still 

completely user-controlled. Chatter attempts to define a new role for interfaces by 

learning about user preferences and suggesting appropriate courses of action in the con- 

text of a dialog. 



Charter also attempts to integrate some agent-oriented work, such as Oval and the 
work by Maes and Kozierok, and embodies them in the realm of speech interfaces. This 

project studies how interfaces can be designed so they can naturally collect information 
necessary for learning. 



4. Bullding an information Base 

As computers become smaller and more ubiquitous, work patterns will become increasingly 

distributed as people are freed from the electronic shrines at their desks. Wireless networks, 
dong with laptops, palmtops, pagers and portable phones, enable users to keep in touch 

with their information away from tt: office. In turn, the advent of ubiquitous computing 
has enabled computers to gather previously uncollectible data about people's daily activities 

for use by other users. Such a distributed system raises the issue of collecting and dissemi- 
nating information in a consistent fashion; it becomes more challenging because the ?.-am 

of g~thering and distributing information are much more varied :han before. With remote 

interfaces such as Chztter, the information infrastructure needs to be szthought to make 
collection and dissemination workable in the distributed setting. 

This chapter outlines the design and implementation of an information server called Zeus, 
an active process for collecting information from disparate sources and disseminating it in a 

consistent manner: 

In the Chatter domain, two types of information need to be collected for use by the inter- 
face: (I) static information whose contents do not change. A mail message is the key exam- 
ple of static information. They are objects that may be manipulated as a whole; they are 

read, deleted or forwarded indivisibly; (2) dynamic information about users. This informa- 
tion includes people's locations and their nearest phone number. In contrast, the contents of 

this information changes quickly. 

While remote communication devices allows for new means through which to access infor- 

mation, they also introduce the need to maintain consistency among the different channels 

through which users can communicate. Abstractly, the user can be considered to have sev- 
eral interface devices through which he can access a database of information--either using 

a hand-held computer, a telephone or the workstation at his desk. The user would like the 
changes he makes at  one terminal to be reflected at all other terminals. This way, he gets a 

globally consistent view of his information. Yet, such of a user's personal information is not 
stored in 3 dorm that conveniently allows for this degree of consistency. 

Most of a user's information is stored in files in a filesystem, and it levies burdens on each of 

the application programs which try to maintain consistency with these databases. For 



example, electronic mail is frequently stored as a flat file or  a set of files. In the past, when 

mail was usually read in one place, this method sufficed as a means of storing the informa- 

tion. Today, it is possible and desirable to  read mail using a remote interface. Since users 
will want to perform maintenance on their mailboxes at the same time, it is also desirable 

to have the desktop graphical mail-reader take note of these changes. To maintain consis- 

tency under the current scheme, participating programs not only have to  be careful not to 

overwrite each other's changes during updates, they also have to update their in-memory 

store ot the data with the changes other programs have made. Not only are there synchro- 

nization problems, there are also practical consequencss of requiring each applicatbn to 

know how to retrieve information from such databases and to know how LO reconcile the 

updates that have been made. As a result, programs become larger in size and run slower. 

With distributed computing, multiple processes are beginning to access personal databases 

that were only meant to be accessed by one process at a time. 

One issue which complicates this picture is the response time of agent interfaces. Invariably, 

intelligent agents must perform some preference processing on the information for the user, 

and this processing usually takes a non-trivial amount of time. If the information changes, 

the agent will often need to  recompute these results. If this operation isn't performed until it 

is actually required, such as w h e ~  the user logs into the interface, then there may be a 

lengthy start-up time, for the agent must load the database, resolve the changes with its 

own in-memory database and finaily perform the extra processing. If the computation can 

be done ahead of time, as soon as a change is made, then such interfaces will have a better 

chance to be ready for use when their users demand it. 

On the information collection side, the kinds of information that are beginning to he gath- 

ered about users come from a variety of sources. This information usually comes in a raw 

form that must be processed before it becomes useful. For example, one of the most oft-dis- 

cussed devices are active badges [Wan92]. These badges are tracked by a set of sensors 

spread out across an area. Information from each sensor needs to be pooled with informa- 

tion from other sensors to build a soherent picture of a person's location. Though the com- 

putation is straightforward, some processing must first be done before it becomes 

semantically meaningful to processes trying to use the information. The necessity of pro- 

cessing tends to hold for any distributed sensory system where there is an abundance of 

sometimes conflicting information. These include active badge networks, networks of csm- 

puters, or  networks of phones whose usage is being tracked. 

The consequence of distributed data collection is that the means for acquiring such infor- 

mation becomes more complex, and it is reasonable to conclude that processes which use 

the information want it at  a higher semantic level than sensors can directly provide. 



These challenges call for an information architecture in which some intermediate ground is 

provided between information providers and users. The middle ground should provide a 

common-denominator representation of information which all processes can consider use- 

ful. Providers can deposit their processed information with this entity, from which informa- 

tion users can obtain information they can readily use. An information server can give this 

intermediate ground. 

Figure 4.1: General information server architecture. 

An additional benefit of this architecture is that providers do  not have to know exactly who 

the users are or  how to deliver the information. As Lovstrand argues [LijvSl], separating 

the tasks of information generation and delivery gives several advantages; it relieves the 

producers of having to know how to deliver the goods to the appropriate recipients, the set 

of which may be changing and the means varied. For the receiver, this scheme alleviates 

them from having to know how to find the information, which may be coming from didfer- 

ent sources. Lijvstrand casts the argument in the context of a group of users, but the argu- 

ment applies convincingly as well to a network of users and active agent jmcesses accessing 

information. The server is a repository where information is recorded ar, d used. 

4.2 Related Work 

An information server, also called an event server, has been implemented to store event 

information and electronic mail messages. Khronika is an event browsing and notification 

system developed at EuroPARC for calendar events [LijvSl]. It is implemented as a shared 

network server with client processes, which add events to the server and receive automatic 

notifications of other user-preferred events. In Malone's Information Lens system [Mal87], 

an Anyone server serves as intermediary between senders and recipients of messages. Users 

send messages to  the Anyone server rather than directly to individual users or mailing lists, 

and the server processes all potential recipients' rules and determines the actual recipients. 



The unique aspect of an event server for the purposes of this interface is the diversity of 

information to  store. Not only do we want to  store calendar events snd mail messages, bur 

we also want to  save location and activity data about people, or even the latest weather 

inforrnation. Any information that can be potentially accessed over multiple interfaces is a 

candidate for storage in the event server. At present, thc kinds of information to  store 

include electronic mail, voice mail, activity information about people, and phone calls peo- 

ple receive. We want a general scheme for representing the differing kinds of information. 

All of this information can potentially be used by an application such as Chatter, but 

cleariy, the information is also useful for on-screen applications. 

4.3 Deslgn Criteria 

The information server serves as a repository for information about people as well as other 

relevant entities. It should be sinple in nature; the "smarts" for interpreting and using the 

events will reside in separate processes. We make the distinction between d e n t  and damon 
processes. Clients are processes which deposit information into the server, and daemons are 

processes which use information in the servez: The distinction is not critical because both 

access the seiver in the same way, and indeed a process can serve as both client and daemon 

to the infosmation servec. The central design issues for the information server called Zeus 

are: 

Extensibility. As new sources of information are found to be useful, users will want to 

add them to the pool of existing information. New event types should be able to  be eas- 

ily added to the database. The number of types ought to be dynamic, and adding new 

types to  the server should not require any protocol extension of the entire server. This 

makes the server easily extensible for new types of events in the future and allows for 

fast prototyping of information representation. 

Representational flexibility. Data will likely come from different sources, and their 

structure and content will likely vary from one another. No fixed representation will 

adequately meet the diversity of all the information to be stored. A large class can prob- 

ably be represented as records of key-value pairs, but the value fields may contain any- 

thing from a number to audio data. The structure of the information the server can 

store should be as flexible as possible, allowing clients which provide and use the data 

to choose the best representation for the information at hand. Again, this feature allows 

for fast prototyping of information representation. 

Notification. The ability of the server to notify clients of changes in information is a key 

feature of any server that purports to maintain information that changes often. This 

feature allows clients to  be notified of changes as they happen so that processing can be 



done, rather than requiring them to inefficiently poll for changes. Zeus makes it easy for 

clients to be notified of information updates in the server. Since the set of event types is 

not predefined, there can be arbitrary kinds of events in which clients can register inter- 

est, and the challenge lies in specifying a protocol which provides a simple way of regis- 

tering interest and getting notified of changes independent of event type. 

* Efficiency. The information server will likely serve 2 host of proceses for a host of 

users, so it is dlesirsb!: to have the server be as quick as possible in its transaction pro- 

cessing. Since it is a central store, it is easjr to see that the server will become a bortle- 

neck for processes if retrieviug information takes time. 

Zeus is designed to be flexible in the information that it is able to store. The server only 

makes minimal assumptions about the illformation contents and structure. 

4.4 Server Deslgn 

This section describes the design of the server. It describes how information is structured in 

the server and the data representation used to store the information. 

4.4.1 lnformatlon structure 

To meet the above design goals, Zeus is constructed as a hierarchical database with notifi- 

cation capabilities attached to  points in the record space. A hierarchy is used because it pro- 

vides a convenient way of organizing groups of related information, and it is also fairly 

straightforward to implement. Information is organized around a set of folders and 

records. Folders represent parent nodes in the database tree and can store records as well as 

folders. The amount of folder nesting is arbitrary. Folders are a means for structuring the 

stored information. Three types of changes can occur to them: (1) new records or folders 

can be added to  folders; (2) the contents of existing records or folders can be changed; (3) 
records o r  folders can be deleted from the folder. Records represent the child nodes and 

store the actual information. The form of this information is discussed in more detail 

below. Folders and records have unique identifying strings. For example, rhe folder which 

keeps information about users in the group is called /user. Within it are folders for users, 

such as /user/mullins and /user/:isa. The / character is used to  delineate nesting 

level. The naming convention tor folders and records in Zeus is similar to that used for the 

UNIX file system and was also inspired by FRAMER [Haa92], which uses the same naming 

scheme for frames. 

Notification is performed on a per-folder basis. Processes which want notification are called 

hemom, and they inform senrers ~f their interest by registering a callback function for a 



given folder. Whenever the contents of a folder are changed, all registered processes for that 

folder are notified of the change. If the change was an addition or change, then the new 

contents are also passed dong  to receivers in case they may be interested. The notification 

mechanism is designed to be simple and straightforward. 

The server protocol then simply allows clients to create, delete and change folders and 

records, and it also enables them to register for notification. The protocol is unencumbered; 

it does not actually specify what information is stored in the server but deals only with fold- 

ers and records. 

To make few assumptions about what information is stored or how it may be represented, 

we need a representation system that is fairly flexible. The questions of actual representa- 

tion should be left to the information providers and users, who can best choose the repre- 

sentation appropriate to the task. We decided to use dtypes, a simple and powerful object- 

oriented representation scheme based on Lisp-like lists [Abr92]. dtypes store data inside 

objects. Atomic dtypes include integers, reals, strings and binary streams, and an aggregate 

list dtype allows for the combination of these, including lists inside lists. The flexibility of 

list dtypes, both in the kinds of data they can store and their variab1e length, is the key fea- 

ture which gives the server its representational flexibility. This is the main reason dtypes 

were originally chosen to be the storage scheme. A specialization of a list dtype, called an 

environment, can be used to represent frames with key-value pairs. For example, an envi- 

ronment representing an e-rnail message is: 

(("daten 'Sat Peb 27 22:40:52 1993' 
("fromn 'lisa@media.mit.edu' 1 
("name" "Lisa Stifelman" ) 
( g t o n  nmullinsQmedia.ndt.edun ) 
("subject" "mail filtering" 1 
("h-offset" 45345 ) 
("b-offsetn 45944 ) 
("b-charsn 976 ) 
( ' r a n k "  2 ) 
(*sayw wimpoztant 3s" 1 
1 

Figure 4.2: Example dtype environment. 

where the parentheses represent list nesting. The first string in each sub-list is the name of 

the field; the second is the value of that field. Environments have convenient access methods 

for storing and looking up keys and values. Since key-value frames are likely to be the 

most-often used representation of information, dtypes are also used for this purpose. dtype 



objects can also read and write ASCII and binary representations, making them readily 

amenable to  creating persistent databases. The representation of the actual events are 

described in more detail in "Organization of Events" on page 45. The use of dtypes allows 

the arbitrarily-structured information to be stored. The server also stores records as dtype 

objects, and clients can create dtypes and send and receive them from the server. 

4.5 Server Implemeatatiorro 

The server is essentially implemented as a manager of dtype objects. Since dtypes can con- 

veniently store other dtypes, the memory of the server is one large dtype holding all records. 

A corresponding dtype structure holds directory information about this memory. Besides 

storing directory names, this structure also holds attributes for each directory, such as the 

number of daemons who have registered for notification and how many clients are cur- 

rently updating in it. 

One practical consideration of the notification scheme is the cost of communicating 

changes to processes. If a client wants to make a series of changes to a folder and there are 

several processes desiring notification of such shanges, then every change will result in a 

wave of notification messages to each notifiable process, and the time for performing the set 

of changes and resulting updates will be longer due to network traffic overhead. 

To solve this problem, a simple buffering scheme is implemented. A client which knows 

that it will make a series of changes can inform Zeus that it is about to do  so. The server 

will accumulate the changes until it is told that all updates have completed, at which point 

it notifies daemons of all changes. Since multiple processes may want to update the same 

folder, an incremerddec~ement method is used. When a prmess notifies rhe server for 

update, the folder's update count is incremented. Similarly, a process which has finished 

updating results in decrementing the folder's update count. When the count is 0, daemons 

are then notified of the changes. Another caveat is that the buffer is not a simple history of 

changes. If during a buffered update, a record is deleted and then later recreated, a daemon 

can view the update of that record to be a change, not a deletion and a creation. This corn- 

pilation in effect makes the update atomic, makes the bookkeeping for updates simpler and 

more efficient to transmit. A simple state machine is used to handle these transitions: 



1 New I New n/a none Changed I Stab 

I Deleted / Deleted Changed d a  
lda I 

none New Delete Change 

I Changed I Changed d a  Deleted Changed I 
Figure 4.3: Buffering state changes on records. to/B means the transi- 
tion is not allowed. none means the update information is discarded. 

4.5.2 Data pmisteace 

The information server is designed to  run continuously from the clients' point-of-view. 

Indeed, one of the ideas for having such a server is to abstract away the storage details for 

clients. In theory, all server data can be stored in memory without the need to go to  disk, 
since the information is relatively small, will be frequently accessed, and will be updated 

often. In practice, the machine on which the server runs will be restarted periodically, so the 
server should make some provisions for storage in a more permanent place. 

To do this, Zeus implements a simple method for saving state. It maintains a timer, which 
periodically expires and instructs the server to dump its state to disk. The older contents of 
the file is entirely replaced, so that the file contains only the latest state of the server. When 

Zeus is restarted, it checks the existence of this file and loads it into memory if possible. In 
addition, a "prepare for shutdown" command can be manually given to the server to write 

its state to disk on demand. 

This simple method suffices because the information retained in the server can be recom- 

puted relatively quickly. Even if state is lost or  not saved, the nature of the information is 

such that it can be recalculated by the client processes, so saving state should only serve as 
a backup in case that clients or  their environments cannot be restarted. 

Zeus operates as a separare process ;rmd communicates with clients over the UNIX sockec- 
based facility. It relies on a set of tools developed in the group called the Socket Manager 
(SM) and the Byte Stream Manager (BSM), which simplifies the implementation of inter- 
process communication [Aro92]. SM handles low-level connection U0, supporting a call- 

back mechanism for connection initiation, termination and data transfer. BSM is an 

abssraction above SM, providing an RPC compiler and run-time library that supports syn- 



chronous and asynchronous calls. On each end, application code uses BSM to communi- 

cate with the other process. The client-server architecture is illustrated in this diagram: 

Figure 4.4: Zeus-client communication architecture. 

The dtypes are transferred via BSM as binary streams, so additional mechanisms on both 
sides automatically convert dtypes to and from their binary representations. 

4.6 Organization of Events 

Information in the server is organized around a set of users and is stored on a per user 

basis. Each user in the group has a folder referenced by login name. For example, the infor- 
mation about user l i s a  is kept in a folder called / u se r / l i s a .  Embedded folders and 
records keep information abour lisa; l isa 's  list of new elestronic mail messages is kept in 

/ u se r / l i s a / ema i l .  The organization of information is not established by the server but 
by clients producing the information. 

Sat Feb 27 22:40:52 1993 Mon Mar 2 18:32:011993 Frl Jan 15 45024 1993 

Figure 4.5: Present organization of the information in Zeus. Folder 
and record icons are shown. 



At present, the following information is kept in Z m  and is maintained by a set of corre- 

sponding client processes. 

An email folder is used to keep a user's new messages. Messages are represented as envi- 
ronment dtypes with fields for the date it was received, the sender's mail address, the send- 

er's name, recipient, subject and fields for accessing the actual contents of the message in 

the mail s p l  flee These fields consist of the beginning point of the message header, the 
beginning point of the body and the length of the body. Each message also contains a 
"rank" field representing the predicted interest of the message. (See "CoElecting message 

features" on page 82 for a description of how the rank is computed.) In an more ideal set- 
ting, the actual messages should be stored in the server directly rather than requiring other 
processes to  find them. Doing so would better fit our design criteria for providing better 
representations to user clients. Yet, we believed that the information in the server should be 

kept as compact as possible; such messages have a tendensy to become rather large, espe- 
cially if they contain multimedia attachments. 

These mail records are constructed by an polling process which periodically checks a user's 

mail file to  see if there are any new messages. Polling must be done on the file, but note that 
this process is the only one which polls the file. Messages are identified by the time and date 
during which they are received. Rather than rebuilding the entire list of message records in 

the server, only changes in the state of new messages are sent to the server. This has an 
important implication for daemons of new messages; they are only notified of changes in 

the mail file instead of getting a list of all new messages every time the update occurs. 

Besides the telephone interface, a small program called zbiff, similar to the UNIX program 
biff, was written to use the server's notification system to inform the user of newly-arrived 

mail. 

Records describing each user's voise mail messages are stored in a file on the desktop work- 
station [StiSl]. Similar to the above poller, another pollef checks for newly-arrived mes- 

sages and delivers records of them to Zeus. A record for each new message is stored in the 
server, with fields for message date, sender, filename of the recorded audio, message length, 

and the phone number of caller, if available. 

Since the prosess of retrieving new voice messages is so similar to that of retrieving text 

messages, we made use sf  code inheritance. A generalized poller class is written with a spec- 

ified API, and file access and server data conseruction methods are specified in subclasses to 

poll the appropriate file and create information for the server, respectively. The e-mail and 



the voice mail pollers are thus implemented as a set of subclasses of the polling agent class. 

Figure 4.6: Polier class hierarchy. 

The inheritance scheme makes it straightforward to implement other kinds of pollers which 

need to poll files to  gather information. 

A person's whereabouts and status are collected from active badges, lab workstations and 

telephones and analyzed by a set of processes, which report the final result as a record for 

each person.1 Each user in the group has an activity recard in the server. The record con- 

tains information from the group's Activity Server process, including the person's name, 

location (this could be a place or a remote machine), the last time the record was updated, 

the person's nearest phone, the host where the person is logged in to, the amount of activity 

on the host, and a time stamp of the last update. 

The server can easily store other types of information, but due to time constraints only this 

information is stored currently. 

p-~~ 

1. Lorin Jurow cartied out this work. 



5. Speech Input 

This chapter describes the design considerations and implementation of the speech input 

subsystem of Chatter. It discusses the design of Chatter's vocabulary, how parsing is then 
performed on this vocabulary to obtain a semantic representation to be used by the dialog 
system, and finally the need for having button controls for input even if fully conversational 

systems are possible. 

5.1 Vocabulary Beslgn ConsBderatlons 

Since it is not yet possible for computers to interpret all human speech easily, the applica- 
tion designer must still decide what is possible and reasonable for an application to under- 
stand. The goal is to enable the user to speak naturally and freely into the system. However, 

some trade-off must be made for efficiency's sake. Chatter's vccabulary is created with the 
following motivations in mind: 

Multiple ways of saying the same things. One of the benefits of human-to-human 
speech communication is that great redundancy exists for giving the same orders. If an 
interface is to appear easy to pick up and use, it must mimic this redundancy by allow- 

ing users several ways of expressing the same thoughts. For example, to send a message 
to Chris, the user should be able to say any one of send a message to Chris, send mail to 
Chris, send Chris a message, record a message for Chris, and so on. The user should 
even be able to say send a message, from which point the interface engages him in a dia- 
log to get the rest of the information. The vocabulary should have enough words and 

structure to support this multiplicity. 

0 Conversational utterances. Conversational speech is different than written speech. Spo- 

ken sentences tend to be more fkagmented or incomplete. FOP instance, if the interface 

poses the question send a message to whom?, the user is not likely to say send a mes- 
sage to Chris but more likely to elide the answer by saying to Chris or even just Chris. 
The vocabulary should be designed to handle such fragments. 

0 Faster speech input. While speech is faster than typing, it is slower than buttons for cer- 

tain functions. For example, imagine having to say read the next message several times 

to scan a list of messages. Not only is the utterance already long enough, having to say 
it more than once makes it tedious. The vocabulary should have some "shortcut" 

words for scanning information, like next message and prevr'ous message or even just 

next and previous. 



The vocabulary is written for Chatter with these considerations in mind. It is given in "Rec- 

ognition Grammar" on gage 107. Although no user testing has yet been performed on the 

grammar or  its vocabulary, it is adequate for prototyping purposes. Testing will be neces- 

sary if the application is put into actual use. One way to test the vocabulary is to draw up a 

questionnaire asking potential users how they would ask the system to  perform certain 

Chatter tasks. The questions should also be framed in the form of a guided interaction, 

inviting fragmented responses from the user as well. Because a questionnaire cannot ade- 

quately capture all the states of the interaction, user testing must also be done on the run- 

ning application. Transcripts can be recorded to determine the vocabulary's weak points. 

5.2 Parsing Speech input 

The following section describes how speech input from the recognizer is parsed into a 

semantic representation. We assume that the user's spoken utterance is returned as a string 

from the recognizer; and the goal is to decompose it into a semantic representation useful 

for the dialog system to  process. (The dialog system is described in the next chapter on 

page 54. Issues related to recognition are discussed in Chapter 8 on page 90.) 

Parsing is performed with a simple, customized backtracking lexical analyzer in conjunc- 

tion with yacc. Although English is not context-free, a limited but useful amount of spoken 

language, at least, can be captured by a context-free grammar. On the parser's side the 

grammar is specified with yacc, a U N X  tool for parsing Left Associative Left Recursive 

(with one token lookahead) or LALR(1) context-free grammars1, and lex is frequently used 

with yacc to convert strings of characters into tokens that can be passed to yocc for process- 

ing. However, natural language is in general neither EALR nor context-free, and lex does 

not provide any backtracking capability on the token level. Usually, natural language 

requires backtracking to parse.2 Therefore, some additional mechanisms are implemented 

to parse the spoken language input. A backtracking lexical analyzer is written to  be used in 

conjunction with yocc to accomplish parsing. 

One of the reasons a backtracking mechanism is needed is that English is filled with wt-rds 

that have multiple meanings. Many words fall into several syntactic categories. For 

instance, the word reply is both a verb 2nd noun. The lexical analyzer allows words in the 

lexicon to be labeled with multiple categories. It is desirable not to limit Chatter's vocabu- 

lary simply on  the basis of such category ambiguities. 

To simplify parsing, the lexicon also accepts strings of words, called word groups, which 

1. See [Ah0881 for 3 description of LALR grammars. See [Mas901 for a tutorial on len and jlacc. 
2. A chart parser is commonly used to parse English, but one was unavailable for this thesis. 
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the analyzer processes as single words. Word groups are groups of words that always occur 

together as a functional or  conceptual unit, so it is also convenient to  process them in this 

way. For example, v o i ~  mail is a word group that refers the a concept of voice mail, 

although voice and mil are separate words that have their own meanings. Other examples, 

are e-mail message, which means the same thing as e-nwil (at least in Chatter's domain), 

and phone numbel, which means the same thing as number. Since e-mail and e-mail mes- 

sage refer to the same concepr, they can be represented by the same parse tokens and reduce 

the need to model language syntax more closely. 

Chatter's lexicon is given in a text file. Each enuy presents a word or  word group and its 

types and possibly subtypes separated by colons. For example, a partial listing of the lexi- 

con is: 

'ernail " 
"email messagen 
"message 
"reply" 
tom 
"the" 

Figure 5.1: Sample lexicon listing. 

Here, the phrase e-mail message is a word group whose type is om and whose subtype is 

OBJ-EMAIL. The type roughly corresponds to the syntactic category to  which the word or 

word group belongs, and the subtype gives its "meaning."'The word reply has two types: it 

is a verb with subtype ACT-REPLY and also an object with subtype OBJ-REPLY. These types 

correspond to  actual token types for yacc. 

When a string is received from the recognizer, the lexical afialyzer uses the lexicon to make 

possible token labelings to words in the utterance. Because of the existence of overlapping 

words and word groups and multiple word types, there can be several possible labelings. 

Consider reply to the e-mail message, which, according to  the above lexicon, can be labeled 

in different ways because reply has multiple types and e-mail message can be broken up 

into e-mail and message or  taken as a whole. The possible liibels for the utterance are: 

=P~Y to the email message 

VERB:ACT-REPLY PREP DET:MI)D-THE 0BJ:OBJ-EMAIL 

V;ISRB:ACT-REPLY PREP DET:MOB,THE OBJ:OB3,EMAIL O&T:OBJ-MSG 

DBJ:OWT-REPLY PREP DET:MOD,THE OBJ:O&j',PIAIL 

O W  : OW-=PLY PREP DET :MOD,THE O W  : O W - M l L  O W  : CIBJJSG 

Figure 5.2: Sample labeling of parser. 



The g o d  of the lexical analyzer is to find a labeling for which a non-backtracking parser 

like yacc can successfully parse the utterance. The analyzer uses a backuacking algorithm 

which iteratively enumerates over all assignments of word groups. Beginning with the first 

word or  word group in the utterance, it finds the &st possible labeling for the word group 

in the lexicon. It passes the candidate type and subtype label to yacc as a token. The algo- 

rithm also prefers to label the longest possible word group before fragmenting it. If yacc 

does not reject the token labeling passed to it, the analyzer continues to find labelings for 

successive words. Otherwise, it tries to  relabel the word without changing the breakdown 

of the utterance. Finally, if simple relabeling does not work, then the algorithm recomputes 

the word groups in the utterance and attempts to relabel them again. 

In the above example, no backtracking is actually necessary because the first labeling results 

in a successful yacc parse. While it is rejected because it is not defined in Chatter's grammar, 

the third labeling may also be considered valid in certain circumstances as a fragment to a 

question. For instance, it may be a valid reply to the question send what to Chris? If the 

grammar is extended to  accept this utterance and the dialog's context prefers the third 

interpretation over the first, then yacc can be explicitly told to  reject the first labeling, caus- 

ing the lexical analyzer to  backtrack until it finds the third, acceptable labeling. 

The complexity of this lexical analysis algorithm is not good, although it is not at all severe 

for average cases. In the worst case, the complexity is the product of the number of possible 

word group labelings for the utterance times the number of permutations for assigning dif- 

ferent categories to words. The longer the utterance, the higher the required processing 

time. Since the user's utterances will be relatively short, the worst case is not too bad. In 

many cases, there is only one possible labeling for the utterance. 

5.2.1 Organblng information Into a speech frame 

The i  formation is collected by the parser into a data s tructui~ that represents the meaning 

of the utterance. For this purpose, a data structure of type SpeechFrame is defined3. A 
SpeechFaame contains all the semantically useful information distilled from a speaker's 

utterance. It contains a main type followed by fields, which essentially serve as arguments 

to this main type. The type gives the kind of information in the spoken ut teranceis  can be 

an action, a questiotr, an acknowledgment, or an other type. The motivation for choosing 

to use these t y p s  is simple: they seem to represent the range of utterances that a user may 

give in conversational systems, and by analyzing an utterance in this manner, it provides a 

convenient means of dividing the processing tasks of analyzing and acting c n  what the user 

3. The SpeechFrame data structure is actually a C++ class. Besides containing the public variable mcmtxrs to be 
mentioned, it has methods for creating, destroying, initializing, copying and printing out of its contents. 



has said. A function can be written to process all action commands, while another function 
can be written to process all questions, and so on. The other type provides a catch-all for 

other utterances types which do not logically fit in with other named categories. 

The type of structure is always set, although the remaining fields only contain real values if 

it was given in the latest utterance. They assume an "unknown" value by default. A Speech- 
Frame contains these fields: 

T w .  It gves the type of utterance: an action, a question, an acknowledgment or an 
other type. A sentence fragment is casteci .so the other type. 

Acknowledgment value. If the sentence uttered contains an acknowledgment of some 
form, either yes, no, or OR, then this acknowledgment value is placed into the field. 

Action value. This field gives the action if the user specified one. In Chatter, it may be to 
send a mail message, call someone, or  read the next message. 

Modifier value. The modifier field records a modifier for the following object field, arid 
it may contain either an indefinite reference such as a or an, a definite reference such as 

the, or values indicating old, new, next or previous. With the exception of the adjec- 

tives, the article; are more often than not confused by the recognizer so their use is 
unfortunately severely limited. 

Object value. The objects of Chatter are the objects of the application, a message, a 

name, an address and so on. In addition, a special value indicates the pronoun it. 

0 Person value. If a person was given in the utterance, the string of the person's name is 
given here. 

0 Other value. Like the other type, this field is intended as arm appendage for information 
which does not fit into the other fields. Currently, it is being used to return a mail for- 

mat when sending messages. 

The utterance itself. An exact copy of the recognized string is included in the structure 

in case the dialog system needs access to it. Currently, the only use of this field is to 

inform the user what the recognizer heard in case the utterance cannot be processed in 
any way in the context of the discourse. 

For example, the above utteranse reply to the e-mail message generates the frame, where 
the above fields are given in order: 

[Action n / a  ACT-REPLY MOD-THE OBJ-EMAIL n /a  n/a  
"reply to the email messagen] 



The given SpeechFramc is rather simple because of the application domain, but it is meant 
to be reconstituted to contain richer information should an application domain require it. 

5.3 Speech and TouchTone Controls 

While speech is intended to be the primary interface medium, Chatter also enables the user 
to control the application with both speech and a TouchTone interface. The availability of 
speech input does not supplant the use of button controls, such as TouchTones on the tele- 

phone, in conversational systems, and this section addresses the reasons for needing both. 

The Chatter user interface combines multiple complementary input and output modalities. 
Chatter can be operated using speech alone or buttons alone or a combination of the two. 

The command layout of phoneshell is retained in Chatter as it is independent of the issues 
in this thesis. 

The implication for conversational systems is that the discourse management system is not 

only updated by speech input but also by button conuol. Pressing a button to initiate an 
action should make the appropriate updates to the discourse model. Fortunately, button 
input tends to be less sophisticated than the expressiveness of speech, so adding button 

input may involves more sf  a grafting process than a redesign. 



6. Modeling Dialog 

Perhaps the most important aspect of designing conversational interfaces is the creation of 

dialog models-how an interface manages to track what the user said in the past and pres- 
ently fits them into the context of a discussion. This chapter describes a framework for con- 

structing conversational interfaces. It reviews the well-known GrosdSidner discourse model 

for task-sriented dialog and presents a design for implementing the theory's key ideas. It 

outlines Row this framework is applied to construct Chatter's dialog system, addressing 

issues of building discourse systems in the context of imperfect speech recognition systems. 

6.S Grosz/Sldner Discourse Model 

The GrosdSidner theory was first proposed for task-oriented discourse involving partici- 

pants accomplishing tasks.' According to  this model, discourse can be analyzed into three 

interrelated components: a linguistic structure, an intentional structure and an attentional 

state [Gro86]. Together, they capture the external and internal structure of d i~coorse :~  

Linguistic structure. The linguistic structure is the external decomposition of a linear 

sequence of discourse utterances into discourse segments, which serve as convenient ele- 

ments for analysis. Like words in a single sentence forming constituent phrases, the 

utterances in a discourse are aggregated into segments, which fulfill certain functions 

for the overall discourse. These segments can be embedded within others to reflect dis- 

course-related dependency relationships. The determination of segment boundaries is 

usually performed through the use of linguistic devices in the discourse, such as cue 

phrases (examples are in any case, incidentally and therefore), intonation and changes 

in tense. B~undaries can also be determined by observing changes in the intentional 

structure and/or the attentional state, changes in which signal changes in this linguistic 

structure. 

Intentional structure. Segments are associated with goals or  intentions-the reason a 

particular segment is being discussed-and this structure is captured in the intentional 

structure. Discourse intentions are the internal goals or purposes that the current seg- 

ment of discourse is being devoted to fulfilling by the segment's initiator. This structure 

-- -- 

1. Another theory of conversation is proposed by Clark and Schaefer [Cia871 [Cla89], which describes the step 
by-step construction of local structure, according to the status of mutual understanding. See [Cah92] for a corn- 
putational treatment of these ideas. The GrosdSidner model was chosen because it is more comprehensive and 
simpler to implement. 
2. The explanation in ICah92aJ provided a useful guide for the development of the ideas in this section. 



roughly corresponds to the "logical" organization of sub-purposes and overriding pur- 
poses for having the discourse. The purpose for initiating the entire discourse in the first 

place is known as the Discourse Purpose JDP), and individual segments have associated 

Discourse Segment Purposes (DSPs), which are used to  fulfiil the overall DP. For exam- 

ple, certain things must be explained or introduced before other things can be said, as in 

the case of giving step-by-step instructions. Each step can be considered a segment with 

its own DSP, and the DP is the purpose of giving the instructions in the first place. These 

dependency reiztionships induce the embedding of segments in the linguistic structure. 

A segment begins when the DSP of a previous segment is satisfied and a new DSP is 
intended to be fulfilled. A segment terminates when its DSP is satisfied. Correspond- 

ingly, a discourse ends when its DP is satisfied. 

While related, the intentional structure differs from the linguistic structure in that 

changes in the linguistic structure can signal changes in either the attentional state or 

the intentional state but not the other. The intentional structure only represents the 

DSPs of discourse, while the linguistic structure is a record of the entire discourse's his- 

tory. The intentional structure a!so provides an abbreviated yet fully meaningful way 

for computational representations of discourse to be kept. 

0 Attentional state. The attentional state i s  a dynamic internal representation of the 

objects, properties and relations salient at each point in the discourse. This information 

represents the objects introduced into the discourse and known by the discourse partic- 

ipants. The state will be used to compute references to previously-introduced objects in 

case they are mentioned anaphorically.3 Similar to  the intentional structure, the atten- 

tional state also has different levels of embedding related to the objects introduced for 

the purposes of the discourse DSPs. Yet, the two are distinct because the intentional 

structure represents the full record of the intentions of the discourse, while the atten- 

tional state is intended primarily to represent the current attentional space. 

6.9.1 Computational aspects of the theory 

Cornputationally, the attentional state is the primary data structure which must be main- 

tained during human-computer discourse. This state is represented by focus spaces, which 

store the objects of attentions of the currently active discourse segment. A focus space exists 

for each active segment of the discourse. Discourse segments can be nested, so focus spaces 

are placed on a focus space stack, which is pushed and popped with focus spaces during 

3. Anaphora is a linguistic term essentially meaning some referring expression. It is a grammatical substitute 
used to refer to a preceding word or group of words. Well-known anaphoric expressions include he, she, i t ,  this, 
this one, that and that one. 



segment changes. The focus space stack is not used strictly as a stack because a process can 

reach through the top focus spaces to get information stored in lower spaces without 

removing the top spaces. 

6.1.2 An illustration sf the theory 

These concepts can be more clearly explained by an example. In the following simple dia- 

log, the computer initiates a dialog with the user to read a message it has just received. The 

user is asked whether he would like to  read Barry's message. The user asks about Barry's 

whereabouts, and upon getting an answer and a suggestion to call him, he decides to read 

the message instead: 

C: There is a message from fw Barry 
undefined Barry. Do y m  want to hear it? n: ~arry 's  message 

H: Where is he? 
C: He's in Lisa's office. 

L H: Read it. 

Ebny is In Usa's oMce. 

A message from Bany. 

he: Barry 
h e :  Lisa 
/t Barry's message or 

Usa's phone or 
Lisa's office 

A message from Bany. he: Bany 
ahtx undefined 
It: t3arry's message 

Figure 6.1: Changes in discourse structure. The dialog takes place 
between the computer (C) and human (H). 

Though it is relatively simple, this dialog embodies all of the above concepts. The linguistic 

structure of the dialog is represented by the brackets in the figure. Discourse regment 2 is 

embedded in discourse segment 1 because DS1 is a continuation of the message-reading 

dialog, but it is a new segment because a new DSP has been established, namely the inten. 

tion of locating Barry. To the right of the dialog is a display of the changes that occur in the 

focus space stack. After the computer's initiation, the stack contains one focus space, repre- 

senting the objects in the discourse. DSPl represents the intention of this segment-the 

computer seeks to play Barry's message. If the word it is used in an utterance, ir would 

unambiguously refer to Barry's message at this point. If the pronoun he were resolved, it 

would refer to Barry. This knowledge can be used by both human and computer to shorten 

utterances and make interactions more efficient. In general, resolution of anaphora is a 

domain-dependent problem which requires domain-dependent knowledge. 



With the question, the human introduces a new focus space, which is asserted on the top of 

the stack. The contents of the second focus space shows the state as it would be after the 

computer's response to the question. As noted, the DSP2 rer .ssents the intention to deter- 

mine Barry's whereabouts. It seems that the it referent can be resolved to one of any num- 

ber sf objects, depending on the semantic requirements of the utterance in which it is used. 

If read it is spoken afterwards, then it clearly refers to the message, because it is the only 

object which can be read. Compare this utterance with what's its numher? and where is it? 

The multiple use of a single pronoun makes the resolution of it and other anaphora more 

difficult because it requires domain knowledge of what operations can be performed on 

objects. However, this is not the standard theory of anaphoric interpretation. 

Finally, the user ends DS2 by signalling that DSP2 is satisfied and returning to the main 

point of the dialog. DS2's focus space is popped off the stack, and its previous reference res- 

olution in restored. 

6.1.3 Modeling Interruptions 

For spoken conversations, one of the most important aspect of any discourse theory is its 

account of interruptions-discontinuities in the progression of dialog. When tasks become 

even slightly compiex or involve several steps, the user will want to  interrupt a lengthy task 

to perform another, whose completion may depend on the success of the original task. 

The theory adopts three types of interruptions for performing tasks: true interruptions, 

flashbacks and digressions. An interruption induces a new segment, with corresponding 

changes in the focus space stack. True interruptions are discourse segments which have 

totally unrelated purposes or  objects from the previous segment. An example is the follow- 

ing discourse: are there any messages from Barry? Where's Ch;is? OK. Read them, where 

the question where's Chris? is unrelated to the original discourse's purpose. In the cornputa- 

tional domain, the most significant difference is that an impenetrable boundary must be 

placed below the focus space of the true interruption. This boundary prevents entities in the 

spaces below from being available to the spaces above. Flashbacks, the sesond type of inter- 

ruption, are used for interrupting the flow of discussion because some purposes, proposi- 

tions or objects needed to be brought into thc discourse but have not been. This 

interruption type may be introduced by the linguistic cue oh yeah, I forgot to tell you ... The 

third interruption type is the digression. Digressions commonly get introduced by that 

reminds me, b y  the way, or speaking of ... The digression segment makes reference to some 

entity that is salient in both the interruption and the interrupted segment and yet the dis- 

course purpose is different, so in contrast to the way processing is done for true interrup- 

tions, only locus spaces associated with the interrupted DSPs are placed on an auxiliary 



stack until they can be reintroduced into the conversation. The main stack is then used to 

track the digression9s discourse. 

We now apply the GrosdSidner theory to implementing a conversational model for Chatter. 

6.2 A Framework for OrganOzlag Conversation 

Implementing a dialog system involves using domain-independent (the discourse theory) 

and domain-dependent code ithe domain knowledge). The dialog system described in this 

thesis consists of two stages: it implements a general framework for building conversational 

systems, on top of which the dialog specific to Chatter is built. ?'he goal is that the basic 

framework is general enough that it can be resutfitted for other applications. 

The implementation organizes discourse around a set of data structures representing seg- 

ments. Since the three components of discourse interrelate, it is convenient to construct 

data structures representing segments of discourse and associated focus spaces. The basic 

approach we take is to divide the interaction into a set of dialog segments, each c f  which is 

represented by a data structure that maintains state of the segment's dialog. Each dialog 

segment roughly corresponds to a major task of the application. For instance, a segment 

exists for reading messages, another exists for sending and replying to messages, and so on. 

The s e p e n t s  also have computational capabilities for resolving pronouns, generating user 

feedback and subsetting the vocabulary for the recognizer. 

The segment data structures are implemented as a set of classes in an object-oriented lan- 

guage (C++). These data structures are formed from a root DialogSegment class, which 

implements the discourse theory. The DialogSegment class provides a skeleton on which to 

build application-specdic dialog segments. Instances of Dialogsegment subclasses are 

placed on a stack owned by a Conversation object, which manages the entire conversation. 

The basic execution of a conversational application then consists of creating a Conversa- 

tion object and initializing its stack with some default dialog segment, from which user 

interaction causes other segments to be pushed and popped from the stack dynamically. 

In this framework, we will call the entity known as the focus space stack the dialog stack to 

signify that the theoretic model and implementation are not exactly the same. Similarly, the 

implemented version of a focus space will be called a dialog segment. Dialog segments are 

slightly different from the theoretic discourse segments because they combine both linguis- 

tic and intentional structures into the same structure. The state of the dialog stack repre- 

senes both the linguistic nesting (for purposes of anaphoric resoheion, say) of the dialog as 

well as its intentional state (goals of the current tasks). A dialog segment, segment, or Dia- 



IogSqynent will be used interchangeably to refer to subclasses of Dialogsegment. Below, we 

present the algorithms used in this framework in general terms and how they are used in 

Chattel: 

6.2.1 Choosing apprspdate segments 

Conversing with an interface consists of many smaller conversations, and it is often neces- 
sary to  divide the conversation into one or more segments of discourse. Choosing the 

appropriate breakdown of segments is not well defined. One rule of thumb is to create seg- 

ments in such a way that each segment collects a major task of the application. A task can 

be defined as either: 

A function having informational requirements, or better, a command with associated 

arguments. For example, the task s f  sending a message requires some information 

before it can be executed: a recipient, the type of message (e-mail or voice mail), the 

actual tzxt or voice message to be sent?, the mail format if it is to be a multimedia c- 

mail message. These pieces of information must be known before the task can be exe- 

cuted. 

A dialog centered around some object or functionality. For example, the user may 

engage in a dialog with the interface to find information in his rolodex, consisting of 

queries and answers to the database for information. Another example is a calendar. In 

this case, the dialog may consist of finding out about or scheduling appointments. 

Some tasks may be quite large and complex and require sub-tasks, so it may at rimes be 

desirable to define new segments which manage sub-tasks. If the interaction in the sub-task 

is likely to be complex, creating a new segment makes the dialog modeling less complex 

and more easily extensible. 

These ideas inspired the segments of dialog created for Chatter. Eight segments are created, 

and they encompass the Chatter's interaction with the usel: The purposes of each segment 

are expjained below: 

BaseSegment. Always resides as the bottom of the dialog stack to serve as the default 

segment. This segment does little else than ask the user what he would like to do. 

CallSegmcnt. Manages the task of calling a person. Chatter allows a call to be placed 

from within the application. If the user wants to cancel out of the call, hc may do so by 

saying Chatter, hang up. The user is then returned to the interface where he can per- 

3. The message may be represented as a pointer to a file containing text or audio. 
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form other tasks? 

CsmgoseSegtnent. Allows the user to  compose an e-mail or voice mail message. This 

segment guides the interaction for sending a message in any situation, such as sending a 

new message, replying to  a message, or  forwarding a message. Because users have dif- 

ferent media from which t o  receive messages (say, voice, text or  various mail addresses), 

the segment also contains knowledge about how to best deliver messages to asers based 

on the information in the user's rolodex as well as other databases. It queries the user 

about mail delivery methods it cannot find. 

Exit-ent. Becomes active at the end to terminate the conversation with the user. 

Currently, it does nothing more than understand good-bye as the command for termi- 

nation. 

Greetsegment. Initiates a Chatter session with the user. This is the initial segment which 

helps establish the identity of the user; it is the top segment of the dialog stack when a 

Chatter session begins. The segment asks for the user's name and then asks for him to 

speak a secret password or  type in a security code. 

HoldSegrnent. Handles the dialog for putting Chatter on hold. It may be desirable to 

suspend a dialog with Chatter from time to time because the user is being interrupted 

by external events, such as conversations with other people, loud background noise, or 

the need to  turn attention to another task. This segment is initiated by the user speaking 

stop listening and completes when the user says pay attention.s 

PersonSegmer:~. Responds to user's questions about a person's information, such as his 

e-mail address, work and home addresses and phone numbers. It also answers ques- 

tions about a person's whereabouts. To answer these questions, this segment uses the 

information stored in the user's rolodex as well as a ser of active badges and UNIX fin- 

ger sensors. 

Readsegment. Handles the reading of electronic and voice mail messages. It allows the 

user to  scan among a list of messages, read and save messages, and to  query about vari- 

ous aspects of a message, including its subject, who it is from and the time it was 

4. An interesting idea is t o  have Chatter remain on-line during the phone call to  serve as  an assistant who is lis- 
tening in on  the conversation. This assistant may be called on  from time t o  time t o  provide various kinds of 
information for both listeners (e.g. Chatter, what's Lisa's phone number?) or  for the user t o  perform other tasks 
in the presence of the other listener. Since the conversational dynamics of a three-way conversation over the 
p h m c  are different than a one-to-one exchange, we may be able t o  exploit some pretstablished conventions t o  
avoid insertion errors with the recognizer. For example, we  could require that the user t o  say Chatter before ini- 
tiating a dialog with the agent interface. Other  methods need t o  be developed t o  detect the end of a dialog with 
Chatter. 
5. Time permitting, this segment should also allow users t o  ask questions like where was I? 



received. This segment also incorporates some intelligence to suggest "interesting" mes- 

sages for the user to read first. See the next chapter for a description of the learning 

algorithms that makes this suggestion possible. 

Figure 6.2: IUiaisgSegment hierarchy for Chatter. The lower eight 
segments are specializations of DialogSegment which implement the 

discourse for Chatter. 

8.2.2 Responding Po speech frames 

This section outlines the way in which the dialog hamework processes user input. It 

assumes that linguistic processing has already been performed on the recognized input and 

the information is provided in some semantic representation. In the last chapter, we 

explained how Chatter converts recognized speech into semantic SgeechFrame data struc- 

tures (see "Organizing information into a speech frame" on page Sl), which the dialog sys- 

tem then manipulates: 

Figure 6.3: Sketch of the speech system. 



Processing a SpsecMrame is the responsibility of the application's DialogSegments, the 

classes implementing the application's specific dialog models. These segments are a conve- 

nient place for such processing because they already implement the necessary domain-spe- 

cific knowledge for the dialog. Each segment has individual methods for receiving the 

various SpeechFrame types. 

The dialog stack is initially empty, and segments are activated and pushed on the stack as 

they are needed to process SpeechFrames. Upon ieceiving a frame, the dialog system first 

looks on the stack to find an appropriate segment that can process it. The algorithm for 

finding the appropriate segment to process a frame is as follows. 

1. Send the SpeechFrame to  the top segment on the stack and see whether it can process 

the frame. If so, the segment performs the appropriate execution and returns a value 

indicating that it has prcxessed the frame and the algorithm is finished. 

2. If the top segment cannot process the frame, then try the frame with the next lower 

segment on the stack. Continue to do so until the a segment has been found which 

can process the frame. 

3. If no segment on the stack can process rhe frame, then see whether one of the inactive 

segments can process the frame. Each segment class implements a function which 

determines whether the segment can respond to a given SpeechFrame. The Conversa- 

tion object finds the first segment class which can respond to the frame, instantiates it 

and pushes it onto the top of the stack. 

As a simple execution example, consider the following scenario where the user speaks read 
my messages, hears the first message and says send him a reply. Initially, the dialog stack 

contains only BaseSegment: 

Base Base- 
Segment 

Figure 6.4: Example of dialog stack operations. 

Afrer receiving a SpeecWrame for the first utterance, the system realizes that none of the 

segments on the stack can process it. It finds that the Readsegment class can process the 



frame, so it instantiates the new segment and pushes it onto the stack. At the second utter- 

ance, the system realizes that neither ReadSegment nor Basesegment can respond to the 

second frame, so it finds that the Composdkgnent class can respond, instantiates one, and 

pushes it onto the stack to handle the frame. 

6.2.3 Resolving pronoun reference% 

As in a focus space, each segment also records objects, relations and properties that can be 

used in resolving anaphora. The root DialogSegment class accommodates this storage by 

having functions for resolving pronouns. As mentioned previously, pronoun resolution 

requires domain-dependent knowledge, so it is only possible to provide a domain-specific 

algorithm. Currently, the system is unsophisticated6; it defines only references for it, him 

(or his) and her. The pronouns are tokenized as REF-IT, REF-HIM, KEF-HER, respectively. 

R E F I T  also has sub-types, such as REF-MSG or  REF-PHONE, for correctly resolving multiple 

possible it  references. 

Each segment maintains a database of possible references, which it is responsible for keep- 

ing up-to-date as the state of the its discourse changes. An asserted token has an associated 
application-defined record giving information about the referent. For instance, as a user 

moves from message to message, a Readsegment's references for REF-IT (with sub-type 
REF-MSG), REF-HIM o r  REF-HER changes. REF-IT derefcrences to a record of the currently- 

read message. This record contains the message's file path, message type and sender's 

address. 

When a segment wants to "borrow" a reference from another, such as a ComposeSegment 

being invoked by forward it to Gayle from a ReadSegment, the following simple algorithm 

is used. It begins at the top of the dialog stack and searches segment-by-segment until it can 

find a reference matching the description. If none can be found, a null reference is returned. 

8.2.4 Twminatlng a segment 

Determining when a segment should complete and be popped off the dialog srack depends 

on whether the purposes of the segment have been fulfilled. With task-oriented discourse, 

the answer depends on whether the task at hand has completed. There are several issues ro 

consider: some tasks have "logical" end points, while for others, such points may be less 

clear. For those tasks having natural breakpoints, the interface may terminate a segment 

6. With the possible exception of the HoldSegment, the modeling of true interruptions, where impenetrable 
boundaries are placed below the interrupting segment so  that incorrect resolution docs not occur, is not imple- 
mented due to rime constraints. 



when such points arise. For the ambiguous case, deciding when to  terminate is an issue of 

arbitration between the user and agent. Either the user or agent can terminate a segment, so 

the problem reduces to whether the user or interface is driving the dialog. Fortunately, some 

tasks are amenable to being more user-driven while others arc more application-driven. For 

instance, it is fair to  construct the ReadSegment so that it does not terminate until after all 

messages have been read (or it has been told not to present more messages). The interface is 

driving the completion of this segment. Likewise, a ComposeSegment does not terminate 

until a message is delivered. In the case of a PersonSegment, the segment completes as soon 

as it receives a SpeechFrame for which it cannot process. It assumes the user has gone on to 

another segment and terminates. Consequently, the user is driving its completion by asking 

the questions. When the arbitration is more arbitrary, some learning mechanism can be 

used to discover the user's habits and discover plausible stopping points. This is an area of 

future work. 

In the implementation of DialogSegments, a segment decides when it shouid self-terminate. 

The decision to terminate is usually a result of processing the latest speech frame or a timer 

expiring. A DialogSegment issues a terminate message to  itself, and the dialog mechanism 

will remove and free it from the dialog stack at the end of the event cycle. 

Even for segments with natural termination points, determining when ro terminate is not as 

straightforward as discussed above. Often, !caving a segment active on the stack after the 

task has completed is necessary because the user's next request may force an otherwise ter- 

minable segment to  remain active. For example, a ComposeSegment invoked for replying 

to a message may be considered terminable when its message is delivered. Yet, the user may 

want to continue the topic by saying something lik: send the reply t o  Atty, forcing the seg- 

ment to  remain active because the reply needs to be resoived. (In general, the user may actu- 

ally want to continue or refer to focus that is long past in the discourse. In this case, a more 

ccmplete history of the discourse needs to  be memorized and algorithms for calculating ref- 

erences. This may be the topic of future work.) 

One simple but perhaps inelegant method for solvin~, .his problem is to leave the completed 

segment on the stack but to set it to some terminable state. If the next speech frame does 

not require the use of this segment, it is then terminated and actually removed from the 

stack. ComposeSegment uses this method for determining its termination condition. 

6.2.5 Asking questions 

One aim of having a conversational model is to make the system more active in its interac- 

tion, and asking the user questions is one method for achieving this. Chatter uses questions 



mainly for two purposes: 

e Hiciting missing information. Tasks requiring a number of arguments may nor be given 

by the user all at once, so any missing information is solicited using questions. 

Making suggestions. The system makes a suggestion based on its knowledge base and 

asks for user confirmation before executing a task or  accepting the suggestion. Here, 

the reply may be a simple yes or OK, but it may also be a correction to the suggestion, 

like no, Bury. We deal with the topic more deeply in "Repairing Errors" on page 69. 

Computationally, posing a question always occurs inside a segment because the question 

either introduces a new focus space or  is part of the current one. Asking a question invites 

an answer, implying the expectation of an answer. Maintaining expectations can be repre- 

sented as the setting of state inside a segment. Within Chatter segments, this state is repre- 

sented most conveniently by a state variable. h o t h e r  method is to represenr state by the 

execution state, such as a modal loop. The reason for using a variable over a modal loop is 

that the user may not always answer the question immediately. Therefore, the interface 

should not be modal, expecting an answer before something else can occur. The state serves 

as additional contexc in interpreting user input. For example, a response of OK must be 

interpreted as an answer to some particular question. A segment must enumerate its ques- 

tioning states so that responses can be interpreted. 

Here is a dialog with Chatter, which illustrates many of these concepts: 

H: Send a message. 
C: Send it to whom? 
H: To Barry. 
C: Send Barry voice mail? 
H: OK, voice mail. 
C: Record your message now. 
H: records a voice message. 
C: plays back the message and asks, Go ahead and deliver it? 
H: OK. 
C: S n t .  

Figure 6.5: Example dialog with questions. 

In the above example, the interface asks questions to fill in the missing information needed 

to deliver the message. When it asks whether the user would like to send Barry voice mail, 

the system is employing domain knowledge to make a suggestion. By looking in a voice 

mail database, it determines that Barry is a local voice mail user and assumes that he prefers 

receiving voice messages instead of decoding an audio e-mail message. 



When handling questions and tasks, segments may possibly be suspended so that a sub-task 

can be performed. Interruptions are disconnected flows of interaction. In this dialog frame- 

work, they are detected when a segment responding to a SpeechP;rame is not at the top of 

the stack. In this case, all segments above it are considered to be interrupted. When this 

occurs, an auxiliary stack is created, and these segments are temporarily stored on the aux- 

iliary stack. When the interrupted segments are reintroduced, they are returned to the main 

stack. Continukg with the example in "Example of dialog stack operations." on page 62, 
suppose that while the user is sending a reply, he asks what's the next message? The Corn- 

pose§egmeat he was using for the reply is interrupted because the lower Readsegment pro- 

cesses the command, so the ComposeSegment gets placed on an auxiliary stack. When he 

reintroduces the topic by saying finish that reply, the C o m p o s ~ r n e n t  is replaced on the 

main saack and the acxiliary stack is deleted. 

At the present time, it is not known whether more than one auxiliary stack is needed, since 

it seems reasonable that an interruption should be interruptible. The system currently 

allows multiple interruptions by maintaining a series of auxiliary stacks. However, in actual 

practice people may only rarely interrupt an interruption. 

'flnlsh that reply." 

Figure 6.6: Interruption on the dialog stack. 

6.2.7 Relntroduclng Interrupted segments 

The ability to  interrupt segments creates the need for mechanisms to reintroduce inter- 

rupted or unfinished segments. Reintroducing a topic can occur in two ways. First, the user 

may want to return to a segment that was prevlody interrupted. The segment to which he 

is interested in returning is below the top of the stack or in one of the auxiliary stacks. For 

instance, the user is in the midst of replying to  a message using a ComposeSegment. He 



then asks for the sender's phone number, invoking a PersonSegment. Then he says, OR, send 

the reply to him. The phrase the reply effectively ends the PersonSegmeno segment and rein- 

troduces the previous C o m p o s e ~ e n t  by referring to the definite reply. In the second 

case, the application may want to reintroduce a segment. A segment has completed and is 

popped off the discourse stack, leaving an old active segment on top of she stack. One 

example of this situation is one where the user has just finished sending a message with a 

CompostSegment. Me was reading mail previously with a ReadSegment, so the interface 

may ask him whether he would like to continue reading messages. This question serves as 

the reintroduction of the urhished task of reading mail by the interface. 

Implementation-wise, allowing for segment reintroduction means two things: first, the 

algorithm in 6.2.2 is modified so that any interrupted segment is allowed the chance to pro- 

cess a speech frame before the dialog system instantiates a new segment. Second, the vocab- 

ulary for reintroducing a segment must remain active in the recognizer. This vocabulary set 

may be more restrictive than the one used when the segment is on top of the main stack. 

Some segments have explicit reintroductions while others have implicit ones. For example, 

an interrupted Compose§egment can be reintroduced by finish that message or finish that 
reply. For the Readsegment, reintroducing an interrupted segment is implicit: the same 

command for reading another message while in the mail reading context san also be used to 

reintroduce the task, such as what's the next message? 

8.%.$ Subettlng vocabulary 

Subsetting the space of words is a necessary step to make recognizers function more accu- 

rately. The possible interaction of any speech application is defined by its vocabulary, yet 

not all words of the vocabulary may be appropriate at all times in the interaction. Pruning 

away inappropriate vocabulary makes the recognizer more accurate and faster, since fewer 

word choices need to be t e ~ t e d . ~  A simple instance is the case where the utterance yes does 

not make sense at the start of a conversation. 

A vocabulary set usually corresponds to  its task, so it is convenient to  organize subsetting 

functionality around dialog segments. Note that a segment may also have multiple vocabu- 

lary sets that can be selectively activated, depending on its state. As the state of the dialog 

changes, the state of the active vocabulary correspondingly changes. At any time, the active 

vocabulary is the union of all vocabularies of the following segments: 

8 The currently active segment. Vocabulary for carrying on any dialog relevant to this 

7. This section assumes a particular style of recognizer which uses a constraint grammar for recognition. 
Clearly, one of the biggest drawbacks is that speech out of the vocabuiary is either not recognized or incorrectly 
done so, so care must be exercised to design the vocabulary and how it is subsetred. 



segment should be activated. 

a Other segznents on the main stack and interrupted segments on auxiliary stacks. The 

vocabulary for reintroducing these segments should be active. 

Uninitiated segments. Similar to the previous, the vocabulary for initiating one of these 

segments should also be active. 

The dialog framework facilitates vocabulary subsetting in a simple manner. Each segment 

only needs to  determine what vocabulary set it needs to have activated. The rest of the sys- 

tem computes the correct union based on the segments' location on the dialog stack as 

described above. See "Using start hypotheses" on page 92 for more details on how subses- 

ting is accomplished with Chatter's recognizec 

6.2.9 Speech generation 

The dialog system uses a straightforward scheme to generate responses and queries based 

on a template-matching method. Each Dialogsegment maintains a set of templates, which 

are used to generate actual responses. A template is a complete utterance with temporary 

placeholders called keys which can be filled in with information at generation time. A key is 

any word preceded by a % symbol. These keys correspond to  the information to be echoed. 

For example, a template for responding t o  a user who has asked to send mail may be: 

send a %msg-type message to %who? ('%msg-type' "%whoa ) 

where %msg-type is a key for the type of message to be sent, either "voice" or "email" 
for instance, and %who for the recipient. Also associated with each template is a set of keys, 

any of which may or  may not be mentioned in the template's string. This set of keys speci- 

fies the exact set which needs to be asserted for the template to be used. In the above exarn- 

ple, the required set is given in parentheses. Not every key is mentioned in the string 

because not everything needs to be literally echoed to the user. Each segment contains a 

database of such templates. 

in addition, segments maintain a database of collected keys with associated values that con- 

tain the information provided by the user in the last utterance. If templates are provided, 

generating appropriate speech feedback becomes an relatively task. During semantic analy- 

sis, keys containing information are collected into the database. The order in which keys 

are asserted into the database does not matter. Once analysis is done and it is time to gener- 

ate a response, a function is invoked to match the key database with the template set. The 

first template whose associated keys match exactly those asserted in the database is chosen 

as the template to be used for generation. All keys in the string are replaced by the key's 



value and then spoken. The database is sleared again in preparations for the user's next 
utterance. 

Not only are keys a useful means of echoing information, they can also be used as a means 

of directing conversation--such as reporting the result of a task or asking for additional 
information. Since every template has a required-key set and new key types can be arbi- 

trarily created, they may be used as an simple way to relay execution state to the user. For 
example, the above template can be extended to a success and failure form: 

sent a %msg-type message to %who. ("%msg-type" "%whow "%okM) 
unable to send a %mg-type message to %who. 

("%msg-typew "%whow "%failw) 

Then, completion of the composing task would also include the assertion of either %ok or 
%fail into the database, and the success of the operation can also be given to the user in 
the same utterance. 

This template-based approach has an important advantage: it separates the information to 
be spoken from its syntactic construction from a per-utterance standpoint. The templates 
provide the syntactic structure for building responses while the key database maintains the: 

information the system needs to communicate. The tasks of information construction and 

syntactic construction are then separated and can be performed more easily on their ou7n. 

Clearly, if many different combinations of information exist in the dialog and causes varia- 
tions in sentence structure to become large, then the number of templates needed also 
becomes excessively large. In the case of this scaling problem, however, the method can be 

extended so that templates can also serve as subparts for other templates. For the given 
class of conversational speech systems, this basic approach appears to be very usable. 

Detecting and repairing error is perhaps one of the most difficult problems to solve in inter- 

active systems. A system which remembers the history can become quite confused if it 

remembers false information from sentences that were incorrectly recognized. The general 

problem is that user or computer may develop different assumptions and then follow a line 
of interaction, only later discovering that some previous assumption was incorrect. How do 

the user and interface untangle its misunderstandings and consequences so that both once 

again agree? To attempt to answer this question, it is necessary to examine the types of 



errors which can be generated. 

6.3.1 Types of errors 

Assuming the interface makes no incorrect deductions8, we can point to these types of 
error, most of which are made at the recognition stage. 

e Insertion error. The user did not say something, yet the recognizer reports a result. This 

error occurs when the user intends to speak to someone else and his voice is detected by 

the recognizer or  there is excessive background noise. 

Q Substitution error. The user says one thing but the recopizer reports another. With 

continuous speech recognizers, this type of error occurs either on a single word (like a 

name) or the entire utterance, 

0 Rejection error. A user's utterance is not recognized because of background noise or 

unknown words. 

r The user misunderstood or changes his mind. The user misheard some piece of infor- 

mation generated by the interface or wants to  change his mind about something in mid- 

stream. Perhaps he started a task not knowing all the correct information. 

Because the recognizer uses a constraint grammar; it should not be possible to have parse or  

semantic error in Chatter. A constraint grammar defines the possible vocabulary space, so 

in theory, the application ought to be able to account for everything that can be spoken. 

6.3.2 Commands for repalr 

Chatter deals simply with errors and provides only minimall mechanisms for error repair. 

First, because it is impossible to tell when any utterance is actually correctly recognized, 

any information is always echoed back to the user. Hopefully, this echoing providing a 

chance for the aser to detect an error if one has occurred. For insertion errors, we imple- 

ment stop listening and pay attention commands, described above briefly. Upon hearing 

stop listening, the interface suspends itself until a pay attention is heard. These commands 

allow the user to effectively turn off the interface to stop extraneous insertion errors. 

Rejection errors unfortunately cannot be handled satisfactorily because the system cannot 

detect any input and lissumes that the user has placed the interaction on hold. 

8. Chatter's domain is simple enough that this assumption car1 be considered to  hold, but it does not in many 
domains. 



Substitution errors are the most challenging to repair. Consider the dialog: 

H: Send e-mail to Barry. 
Computer heard send e-mail to Eric. 
C: Record your e-mail message for Eric. 
H: Send e-mail to  BARRY. (with emphasis) 

Figure 6.7: Dialog with misrecognition. 

In the above example, Bany is misrecognized for Eric, so the user repeats the entire original 

utterance hoping to clarify his request. Assuming the recognizer correctly recognizes at this 

point, the problem is that the system does not know whether the user has interrupted the 

task with a new one, or  he is trying to make a repair. To avoid the problem of resolving the 

discrepancy, the following convention for repairing information has been adopted. When- 

ever a piece of information is misrecognized, the user can repair the incorrect information 

but preceding a correction by no. In the above example, the mistake can be corrected by no, 

Barry. Of course, this correction is also verified by the response send it to Barry instead? 

More serious errors or  misunderstandings can be cancelled by a scratch that command, 

which allows the system to completely forget all information that was newly introduced in 

the most recent ut;erance. This roughly corresponds to an "undo." 'This command is dis- 

tinct from a cancel or never mind command, which has the effect of aborting the active seg- 

ment. 

Sometimes, a user may simply want to find out where he is in the interaction, so help? or 

where am I? commands gives the user a description of the state of the interaction. 



7. Capturing User Preferences 

As programs and the information they access become increasing complex, interfaces must 

become more active in alerting the user to the appropriate capabilities of the interface at the 

appropriate times during an interaction. However, implementing a strong user mode! has 

its drawbacks: it takes lots of time, and users are different from one another. This chapter 

describes the machine learning approach taken to user modeling in Chatter. It outlines the 

memory-based reasoning (MBR) algorithms, the main method used to capture user inter- 

ests and preferences. The chapter then discusses how this algorithm is integrated into the 

conversational framework presented in the previous chapter. Learning is used to infer user 

interests about messages and support interaction in the context of dialog segments. 

7.1 Background 

Three approaches for building interface agents can be distinguished. We outline these 

approaches and related work from the oldest to newest. Most of the systems which perform 

inferencing on user actions have been termed keyhole recognition, referring to the com- 

puter attempting to  look through a tiny channel to figure out what the user is doing. 

Perhaps the most basic approach is to have the user specify rules for how he would like the 

system t o  behave under given circumstances. There are several systems which demonstrate 

this method. Systems like Oval explore this method in great detail [Ma1871 (see "Oval" on 

gage 32 for a description). Another rule-based system is the widely-used public-domain 

program Procmail, which can be used to  filter and sort incoming Internet e-mail into user 

mailboxes [Van93]. Regular expressions can be specified in a user configuration file to 

match message header files or  some content in a message's body. These rules are invoked as 

soon as new mail arrives. The rules also have associated actions, including delivery to one 

of several folders or  some arbitrary command execution. The trade-offs of this approach 

are discussed in the section describing Oval. 

7.1.2 Plan aecsgni%8on 

Another approach, described briefly in Chapter 3, seeks to  model the domain more strongly 

by directly encoding the intentions of users and inferring why they are performing certain 

tasks. This approach is known as the knowledge-based approach, which consists of endow- 



ing a system with a domain-specific background knowledge about its application and user, 

often called the domain model and user model, respectively. This approach is adopted by 
the maiority of people working on  intelligent user interfaces. At execution time, the inter- 

face agent uses its knowledge about the domain t o  recognize a user's plans and find oppor- 

tunities for contributing to  them. The UCEgo system is one system which uses this 

technique for making inferences about what UNIX novices arc trying to d o  (see "UCEgo" 

on  page 33). 

7.1.3 Knowledge-Based Agents 

The third approach actually uses machine learning tschniques t o  construct the user model. 

Two examples of this method, both by Maes and Kozierok [Mae93], are outlined in 

"Learning interface agents" on  page 34. While there are several approaches to  machine 

learning, the authors use memory-based reasoning and reinforcement learning algorithms 

to  make inferences about new situations based on a memory of past, similar situations. 

Chatter relies only on the memory-based reasoning aspect. 

In order to  work for machine learning to  work effectively from an interface design stand- 

point, Maes notes that several conditions need t o  hold in the application domain: 

0 The use of the application has to  involve a lot of repetitive behavior. If this condition is 

not met, a learning agent will not be able to  learn anything because there are no regu- 

larities in the actions to  learn from. 

0 This repetitive behavior is different for different users. If the latter condition is not nec- 

essarily met, i.e. the repetitive behavior demonstrated by different users is the same, a 

knowledge-based approach might prove to yield better results than a learning 

approach. 

In general, these conditions hold for the intended use of Chatter. First, the system is 

designed for a group of regular subscribers, instead of casual users who only occasionally 

use the system. Second, different users will have different usage habits. For example, some 

users may only wane to  scan through their list of messages. Other users may want to read 

all their messages. Still, others may choose to  read messages depending on who sent it. Such 

differences among users apply not only to the actions they take but also to the information 

in which they are interested. 

Knowledge acquisition, or  the process of identifying and formalizing rules, remains an ari. 



Knowledge engineers must collaborate with expert informants in the application domain, 

training them to  think about their decisions and actions in terms that can be turned into 

rules and knowledge bases. This process often takes a long time, and in the end, the perfor- 

mance of such systems has often been disappointing. 

Maes and Kozierok argue that machine learning also offers several advantages over hand- 

crafted rules. First, it requires less work from the end user and application developer. Sei- 

ond, the agent is adaptable over time to changing user preferences by automatically cus- 

tomizing behavior to suit individual user preferences and habits. Third, a particular 

advantage of MBR is that it allows the agent to  provide explanations for its reasoning by 

justifying its recommendations based on past similar situations. The task domain is simple 

enough such that a more sophisticated method such as plan recognition need not be used to 

model the user. Yet, one of the disadvantages of machine learning is that training is 

required. The agent interface cannot recommend any courses of action that may be helpf~! 

unless the user has already executed them before. From a usage standpoint, the interface's 

nai'vetC does not bode well for a user unfamiliar with the capabilities of the program. 1 

7.3 Memory-Based Reasoning 

In this section, we detail the memory-based reasoning approach, hoping to instill readers 

with strengths and weaknesses of this approach. It is hoped the reader will realize that 

MBR is only one of several methods that can be used to construct interface agents. 

7.3.1 Uslng MBR 

MBR, as described by Stanfill and Waltz [Sta86], works by representing situations as vec- 

tors of features. These features are computed and stored in a database of situations over 

time. Part of rhe recorded situations are the actions that the user took in them, so these 

actions are the source for making suggestions to the user. 

For example, in the case of suggestions about e-mail, the foll~wiirg seven features are used 

to represent the situation: the subject string of the message; a boolean indicating whether it 

is reply to a previous message; the sender; all the recipients; a boolean indicating whether 

the mail is directly addressed to the user; the mail domain of the sender; and a quantized 

message length from "very short" to "very long."l The action is represented by sir values 

indicating the users interest in the message. These values range from the user wanting ta 

1.  This problem can be helped by engaging learned preferences from similar comniunities of users and assuming 
that some preferences of  the new user will be the same as more established users. See [Orw93] for an applica- 
tion of  this idea. 
2. Another field may be a boolean indicating whether the message body contains the recipients name. 



delete the message to the user being very interested in reading the message. Details on how 

these features are computed and other recorded situations are described later in "Integrat- 

ing Learning in Chatter" on page 81. 

7.3.2 Csrnpa~lssn with other barnllng approaches 

MBR's key idea is to reason based on similar situations. The goal of this method is to  make 

decisions by looking for patterns in data. Therc are several orher related approaches with 

this flavor. It has been studied extensively in the context of similarity-based learning 

[Mic83], which uses observed patterns to create classification rules. MBR elimiaates the 

rules, solving the problem by direct reference to memory. The two approaches differ in their 

use of the memory store: rule induction operates by inferring rules that reflect regularities in 

the data, while MBR works directly off the database. MBR also degrades gracefully when it 

cannot come up with a definitive answer to  a problem: using a confidence measure, it may 

respond that no answer is possible, give one or  more plausible answers, or ask for more 

information. 

The other area of similarity-based induction is the explianation-based learning paradigm 

[DeJ86]. This is an incremental, knowledge-based approach, in which a system learns by 

explaining unanticipated events. The goal is "one-shot learning," in which learning can 

proceed from a single example. Explanation-based learning presupposes strong domain 

models, which are often implemented through rules or through data structures traversed by 

a global deductive procedure. 

Work on case-based reasoning is also reSevant [Sch82], as it combines memory with exp!a- 

nation-based learning to  allow a program to learn by remembering and analyzing its mis- 

takes. In this approach, when faced with a difficult task, a problem solver will search 

memory for a previous case where an analogous task arose and then try to  adapt that solu- 

tion to  its current needs. Like EBL, it also requires a strong domain model. [Stag61 gives an 

excellent motivations for choosing MBR over more traditional A1 methods and enlightened 

comparisons of MBR with other A1 and cognitive approaches to learning. 

7.3.3 Description of algorithms 

The matching nature of memory-based reasoning can be reduced to the problem of finding 

the distance between two given situations in a situation space. Comparison between situa- 

tions is performed by counting combinations of features, using these counts to produce a 

metric, using the metric to find the dissimilarity between the current problem and every 

item in memory, and retrieving the best matches. If a situation similar to the one at hand 



can be found, it is reasonable to expect that some unknowns of the current one will be the 

same or  similar to  the past situation. If we consider situations to be points in this space, 

then their distance is 0 if they are the szrne. If they are not, then the distance between two 
situations should indicate approximately the similarity of the two according to some intui- 

tive standard. Therefore, we require a distance metric that takes two situations and com- 

putes the distance between them. 

Briefly, a distance metric A for points a, 6, c is defined as: 

The distance between any two points is greater than or equal to zero. The order in which 

the arguments are given do not matter. Every point in the space is zero distance from itself. 

For any three points, the triangle inequality holds. 

The challenge is to arrive a t  a metric which can cope with comparing symbolic information. 

Literally, how similar is an apple and an orange compared with an orange and a tangerine? 

Intuitively, one pair is more similar than another, but the question is how this similarity can 

be expressed and even computed. The algorithms here try to accomplish this goal based on 

their worth in predicting the goal. They are from Stanfill and Waltz [Sta86] and Maes and 

Kozierok [Mae931 [Koz93]. Stanfill and Waltz used the algorithms on the NETtalk pronun- 

ciation problem [Sej86], and Maes and Kozierok have used them for computing electronic 

mail interest and intelligent meeting scheduling. As Stanfill and Waltz note, they can offer 

only little other mathematical motivation for their meuics, other than that it seems to work 

well empirically, so it may be possible to develop even better metrics. 

7.3.4 Stanfill/Waltz distance metrlc 

To introduce the metric, we establish some ternlinology and notation. For a situation vec- 

tor, we make the distinction between predictor and goal fields of the vector-a predictor is 

a field whose value is known and used in the prediction of other fields, and the goal is the 

field whose value is to be predicted. Let D be the database of memorized vectors. Let p be a 

memorized vector and z be the target vector containing goal field(s). We say pf'is field f s f  

record p. If= v] means that feature Jhas value v. Let D [ f =  v] be the database restricted to 

those vectors whose field f has value v, and let lD[f  = v] be the count of the restricted data- 

base. 



Stadill 2nd Waltz use the following distance metric is used to compute the distance between 

target T and a given situation p. Their formulas are implemented for the thesis: 

where Pp is the set of predictors in the situation (excluding the goal field), f is a member of 

the set of fields representing the situation and Vg is the set of encountered goal values in D. 
If situations can have more than one goal field, then the metric will be different for different 

goal fields. 

At the top level, the metric is a simple sum of the distances of the corresponding features in 

the target and the memorized situation. For each feature, the feature distance is the product 

of a distance and weight calculation. The motivation behind these formulas is that they 

attempt to measure how well each field predicts the goal field. The squaring operation and 

square root induce the distance conditions. 

The weight calculation wf is a measure of how well a given feature of the target predicts 

the goal and is a measure across the entire database of situations rather than a particular 

situation. It is computed by first restricting the database to the part for which the feature 

has the same value as the target's field. Clearly, if the database has no recollection of the 

feature's value, then its weight cannot be computed and degenerates to  0. Otherwise, it is 

computed as the root of the squared sum of the fractions sf set sizes of the observed goals 

over the size of the restricted database. The net result is h a t  the weight value is higher if 

there are fewer goal values given the target's feature value, and lower if there are more goal 

values. 

The intuition behind this calculation is that some fields correlate strongly with the goal field 

because their values predict only a handful of goals (or just one goal in the strongest case), 

while other fields correlate less strongly. As a simple example, consider a particular user 

who aiways reads a message if it is addressed specifically to  him, regardless of what the sub- 



ject line says. In this case, the "address" feature strongly influerices whether the user will 

read a message. In such instances, the given field should have a strong say in the distance 

computation because its value biases the goal heavily. For instance, if the encountered goals 

have only one value, then its weight is at  rhe maximum of 'I and the feature weighs heavily 

in the calculation of distance. The subject feature does not influence the user's decision as 

much, so it should be weighted less in the distance measure. More "noisy" fields such as 

these have less predictive power when the field value yields a diverse set of goals, and they 

hence should be considered less strongly. The calculation of the feature weight encodes 

these intuitions. 

The distance calculation df is a measure of how differently the target feature value and the 

memorized feature value predict the goal field. Unlike the weight calculation, this formula 

takes into explicit account the actual differences between the target's feature and the mem- 

orized feature. It is computed by summing squares of the differences of the two features in 

predicting the various goal values. The driving idea is that different feature values are 

eqnivalent if they end up predicting the same goal, so the fact that different values occur in 

the same field should not make the values "distant" if they are in fact "equivalent." It is 

easy to  see this idea in the formula in the case where the feat f = 7.f and f = p.f predict the 

same goal exactly the same number of times. In this case, the difference is 0 and so the dis- 

tance of the two features is 0. This estimation can be analyzed as the combination of three 

steps iterated over all observed goals. First, the calculation pares away the above case 

where the target and memorized feature predict the same goal exactly the same number of 

times. This is the case of complete overlap of the two feature values, and no distance is 

added into the measurement. Second is the partial overlap case where both values predict 

the sanie goal but with slightly different frequencies. In this case, the difference in the fre- 

quencies are squared and added to  the sum. Third, if one of the feature values predicts a 

goal value that the other feature does not predict, then its frequency of predicting that goal 

is also added to  the sum. Clearly, if the frequency of mcurrence of this "one-sided" goal is 

high, it will tend eo add more t o  the distance measurement. This last case is the disjoint 

case. Since the difference is squared, the differences of the target field and memorized field 

are taken into account symmetrically. 

For instance, suppose the user reads mail whether it's from Lisa or  Barry. It can be said that 

if the sender is the only feature upon which to  base a read decision, then the situations of 

mail from Lisa and mail from Barry are not really different (and hence not distant) because 

the user treats both situations in the same way. The distance formula accounts for these 

intuitions. 



7.3.5 Computing a confidence measure 

The above formulas are used to  compute the distance values between the current situation .c 

and all records p in the database. One of the weaknesses in these formulas is that if no evi- 

dence is present for a field, its weight goes to zero and the field is not counted in the dis- 

tance. This means that in the worse case when all fields have new values, the distance will 

be 0. Clearly, one must be able to distinguish between the case when there is an exact match 

and when there are absolutely no matches. A confidence value can help distinguish between 

these cases. 

This value is predicted by first retrieving the m closest situations from memory for some 

predefined m. The algorithm always returns situations which match the target situation 

perfectly, o r  have 0 distance, so if more than m situations have distance 0 from the target, 

then more than m situations are returned. 

The goal field of the situation with the highest "score" will be chosen as the prediction. The 

score for each action which occurs in the closest m memorized situations is computed as: 

where S is the set of memorized situations predicting the given action, and d, is the distance 

between the current situation and the memorized situation s. The algorithm selects the goal 

field with the highest score. 

Kozierok uses the following formula to  compute a confidence measure for the prediction. It 

is implemented as part of the MBR algorithm for the thesis: 

where: 

rn is the number of situations considered in making a prediction. 

dpredicted is the distance to the closest situztion. 

dother is the distance to the closest situation with a different goal than the predicted. 

npredictd is the number of the closest m situations with distances less than a given maxi- 

mum. A maximum is  chose^^ to  exclude any exceedingly distant situation from consid- 

eration. Note that this value may not equal m if more than m situations have distance 0 

to the target. 



nohe is the minimlrm of 1 or the number of the closest m situations with distances 
within the same maximum with different actions other than the predicted one. 

0 n,,l = npredi& + nother is the total number of the closest m situations with distances 
below the maximum. 

Id the computed confidence is less than 0, it is set co 0. This situation happens in the case 

that dpdcted npredjCted < doh, / noher, which is usually the result of several different 

goal values occurring in the top m situations. If every situation in the memory has the same 

goal attached to it, then dother has no value. In this case, the first term of the confidence for- 

mula is assigned a value of 1. However, it is still multiplied by the second term, which 

accounts for the number of experiences the database has collected. When the reasoner has 

very few situations, this second term will lower the overall confidence value. 

Finally, a threshold T can be established so that if the confidence is below it, no recommen- 

dation to the user will be made. Above T, the prediction is suggested to the user, who 

accepts or  rejects the p e d i ~ t i o n . ~  The value of T is domain-dependent. 

o.,l 0 "  I 
Figure 7.1: Threshold for suggestion. 

The memory-based reasoning algorithm is implemented as a generalized class called MRR- 
Store, which accepts and performs reasoning on arbitrarily-sized feature vectors and data 

content based on the dtype data representation. (See "Data representation with cftypes" on 

page 42. A vector her:: is implemented as a dt-list dtype.) An MBRStore instance is initial- 

ized with the vector length of situations to  be stored and a list of indices indicating the goal 

positions in the vector. Note that the vector length is fixed for a given MBRStore, so the 

feature set is also fixed and the corresponding Iucations in any two situation vectors con- 

tain values for the same feature. 

3. Maes and Kozierok actually use two t h r e s h o l d ~ n e  lower and upper threshold. If the confidence is below 
the lower one, the prediction is rejected outright. I f  it is between the two, the agent suggests it as a possible 
course of action. Otherwise, the action is taken on behalf of the user. 

8 0 



The nature of the algorithm exploits the parallelization possible with parallel processors for 

efficiency, but on serial machines it can run quite inefficiently. Besides storing the vectors 

directly, an MBRStore object also computes a cache as a situation is added. The cache is a 

four-level tree giving a breakdown of counts of features and their values, which the algo- 

rithm uses so often. The first level breaks down the possible goal fields; the second separates 

the feature fields; the third breaks down, the encountered values of its parent feature, and 

finally the fourth separates the goal values for the parent feature value. The terminals of the 

tree give the count for p[f = pf ] [g  = v]l, for any given f, p.f, g, and v. 

MBRStore objects has a default storage limit of I00 situations hut can be programmatically 

set to  hold an arbitrary number of situations as system memory permies. When this buffer is 

exceeded, the oldest situations are purged from memory and the cache correctly updated. 

Instances of MBRStore are also persistent, so their memories are saved and restored across 

execution sessions. 

7.4 Integrating Learnlng in Chatter 

The main motivation for developing memory in an interface is to use it as a basis for mak- 

ing suggestions, and these suggestions must be fitted into the context of a discourse. Specif- 

ically, it means deciding what types of information and events are appropriate to make 

suggestions about, and then deciding when to do it. This section addresses these two points. 

MBR is desirable in the context of interface agents because: (1) it can learn the regularities 

of a user's behavior; (2) more significantly, it can learn about the exceptions to those regu- 

larities. In this sense, MBR captures a desirable trait of user preferences not easily encod- 

able using rules. Yet, the use of these terms may be misleading because regularities and 

exceptions are rather different ends of a user preference scale. They are distinguished only 

by number of occurrence out of an example base, and whaz may be an exception now may 

become the rule later. MBR captures these conceptions nicely by recording a set of 

instances. 

However, the main challenge in using MBR is to come up with the correct set of features to 

represent the program's domain. If an inappropriate set of features is chosen, it leads the 

interface into making the wrong set of inferences about user actions, resulting in an annoy- 

ingly suggestive interface. 

Since dialog segments organize the tasks of an application, one way to think about choss- 

ing the correct features to  represent is to consider using learning to support the interaction 

within segments. The last chapter (see "Choosing appropriate segments" on page 59) dis- 



cussed the organization of segments around an object of interest or  a major application 

hnction. In Chatter, such an object of interest may be a message; a function can be sending 

mail. MBR can be used to support these functions on a per segment basis. 

7.4.1 CoDlecting message features 

One approach to making the interface more active is to have it bring up i~iteresting infor- 

mation to the user. Presumably, if the user has nothing to talk about, the interface can 

always strike a conversation with a new topic. In Charter, the objects of interest are e-mail 

and voice mail messages. A list of messages sorted from "most interestingn to "least inter- 

esting" can be constructed by the agent to  make conversation with the user when he is ask- 

ing the interface for new topics of discussion. These rankings can be based on how much of 

past, similar messages the user bas read. This section discusses how the sorted list is com- 

puted. The next section describes how it is presented. Ranking information according to  

interest in the audio domain is more important in the audio and portable domains, where 

time and presentation space is more limited. The user has limited time, so it is important to 

present the most relevant information first. 

MBR can be used to generate a sorted list of messages. The following features are collected 

for deciding the interest level of messages: 

E-mail Subject 
Is it a reply message? 
Sender 
Recipient 
Is the mail is directly address to the user? 
Mail domain of sender 
 bant ti zed length (5 values) 
Interest flag 

Voice mail Sender string 
Does the call have an associated caller id? 
Quantized length (5 values) 
Interest flag 

Figure 7.2: Message features for MBR. 

Some of the features are directly copied from the message's header fields and others are 

derived properties of the The quantized length feature is an integer value reprs- 

4. Note that the message body is not analyzed for interest content. This in general is much more difficult to do. 



senting a description of the length of the message. The actual length, measured in number 

of characters or  number of seconds, is not used because it. is somewhat meaningless in the 

MBR algorithm. Collecting lengths into bins allows the MBR algorithm to  work better at 

producing matches for the length field, so the actual length is reduced to  a value from "very 

short" to "very long". The interest flag feature deserves special mention. This flag is not 

actualiy a feature of the message but of the situation during which it was read. The flag is 

true when the user has attempted to contact the sendel by mail or  phone through the inter- 

face. This event is considered important because presumably, the user is attempting to com- 

municate with the person, and any messages from that person may have to do with 

communicating with him. One of Chatter's aims is to facilitate sommunication between 

users. This flag is reset to false when the user replies to one of the sender's messages or is 

able to call him through Chatter. 

Since the system is designed not to  be programmed by users, the feature set attempts to  

encompass many the factors that any user might implicitly use in deciding whether to read 

or listen to a message. The choice of features also descends from informal observations of 

rules that users in the work group used for filtering their mail with the Procmail program. It 

was found that all Procmail users based their interest level of particular messages on the 

content or  state of one or more of these features. 

Once the features of messages are represented, the interest level the user gives them must 

aiso be represented as part of the situation. This table presents the four possible levels and 

how user actions are translated into one of the actions: 

In(srert h s l  How It gets thb bbel 
.- - 

Very interested User listens to message on first pass or 
interest flag is on. 

Interested User listens to all or part of message on a 
subsequent pass. 

Not interested User does not listen to message body at all. 

Ignol-e Upon hearing sender and subject, user 
deletes message without listening to mes- 
sage. 

Figure 7.3: Interest levels of messages. 

When Chatter presents messages, it does not read message bodies by default on the assump- 

tion that most messages will be either uninteresting or too lengthy. The interface only 

recites the sender and subject of each message. In the table, first pass means that the user 



chooses to  listen t o  a message when it is presented to him the first time. Subsequent puss 

means he reads the message when re-scanning the message list. 

Statistics are collected a t  the end of an interactive session with Chatter, and the sort for new 

messages will occur at  two levels. The list is ordered using the four inrerest levels. When a 

new message arrives, its interest level is predicted using MBR, which places the message 

into an interest category. The confidence level of the message is then used to  rank the mes- 

sage inside the category. This process is used to generate a sorted iist of messages. 

Here, MBR is used mainly for filtering information, a side effect of which is used to drive 

the agent's suggestive behavior. This list can be global across interface media (e.g. on-screen 

o r  over the telephone). The assumption is that user's interests will be mostly consistent no 

matter how he gets the information. The presentation will clearly differ across mediums, 

but the point is that the list is always globally ordered. 

7.4.2 Introducing message suggestions 

Bringing up suggestions when rhe topic is not directly relevant results in a fragmented expe- 

rience for the user. Once suggestions are collected into a buffer, they must wait unril there is 

an appropriate point in the dialog for changing the topic. Mail, as well as other events, can 

arrive asynchronously during an interactive session, but if the computer made an alert riqht 

away, the interruption may be distracting if the user is not already reading mail. Another 

issue to  consider is whether the user or  agent is controlling the interaction. While the user 

may want the agent to  bring up suggestions, he may at other times want t o  initiate his own 

actions, such as to quickly send a message. Some means must be provided for sharing turns 

in taking initiative in the conversation. 

Ignores 
suggestion 

Accepts or 
says next \ 

Start 

Says what's new7 
Reslgn 

InJUatfon 
behavior 

Figure 7.4: State machine for taking and resigning initiative. 



As illustrated in figure 7.4, Chatter maintains a list of interesting topics and implemenes the 

following state machine for taking and resigning the initiative. When the user first begins a 

dialog, Chatter attempts t o  take the initiative by making suggestions about interesting mes- 

sages. This process continues as long as the user is interested. When the user ignores a sug- 

gestion, Chatter goes into a state where it does not suggest new information of interest until 

the user asks (by saying what's new?). 

Suggesting actions for the user to  take is distinguished from suggesting information because 

such suggestions are application-specific. As applications become more feature-ladened, 

users will have an increasingly difficult time remembering all its possible commands. The 

fully user-directed interaction style so common today breaks down. To make applications 

easier to  use, some interfaces take the "guided" approach, in which at the end of every step 

or  command, the interface suggests another step deemed appropriate by the application's 

designer. The intuition is that performing one task night  suggest another task. For exam- 

ple, when someone reads a message, the cext step may be to reply to  it. 

To see the problem with this and other "hard-wired" approaches, one must look at the 

problem more abstract!;:. An application can be viewed as a graph of capabilities and tasks. 

The tasks make up the nodes of a graph and the arcs in the graph represent a logical pro- 

gression of tasks designed into the program: 

Figure 7.5: Abstract task space. 

For example, T 2  may be the task of reading a message, T4 represents the task of replying to 

it and T6 is the task of filing the message away. Clearly, different data can cause different 

node uaversals, so the graph is often labeled with differentcolored arcs. The gray arc from 

T2 to  T6 represents the suggestion of saving the message without replying. In this model, a 

complex task is performed bv stringing together individual tasks in some coherent order, or 

making a partial traversal through the graph. 

One basic approach to  organizing these tasks is to  structure the program's various com- 



mands into a menu tree. Making a suggestion in the course of an interaction then becomes 

easy; the computer only has to  present a menu of choices and the user selects one he wants. 

There is one large drawback to  this approach, namely that navigation t o  other places in the 

tree is tedious. A somewhat better method is to organize a program's capabilities into some 

loosely unordered set as mentioned above, and then invoke an interface designer's expertise 

in choosing the appropriate guided task progression. However, what if there are several 

appropriate task progressions? The choice may depend on user preferences or  even the 

users' skill level. The application designer is now forced to choose the task that most users 

will want to  follow. In the speech domain, it's even more important not to spend time mak- 

ing inappropriate suggestions became any time spent on unwanted choices is wasted time. 

Programs can perform more effectively by knowing user needs. 

MBR provides the mechanism for building an emergent task structure. Initially, the user 

begins with an  application with a somewhat unstructured task set. As the user uses the 

application more and more, the transitions from task to  task are remembered. Connections 

between tasks are established, and the interaction becomes more guided, except that these 

links are customized to  the individual. The interactive expe~ience becornes more efficient 

because the agent can suggest an appropriate course of action to  which the user needs only 

to answer yes, or  give another choice to proceed. If no regularity can be found between two 

tasks, then the MBR algorithms return a low confidence level and no suggestion is made to  

the user. In theory, any "hardcoded" interaction decision can be learned. However, in prac- 

tice, care must be taken in introducing MBR at the appropriate possible transition points in 

the interaction. Much of the time, tasks will assume a natural, logical order, and it can be 

explicitly coded into the program. In other cases, the progressioc may be less clear and user 

preferences will vary. 

These ideas have been used in Chatter most deeply in the segments related to reading mail. 

After a message is read, one or more of the following actions can be taken on the message: 

1 Actlon How It pto thb label 
- - 

Reply User replies to message. 

Forward User forwards message to  another user. (In 
a forward, the recipient is also recorded.) 

Save User saves message into mail folder. 

Delete User deletes mail after reading it. 

None User reads next or  previous message. 
-~ 

Figure 7.6: Suggesting an action. 
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As an action is taken on  an individual message, it, along with features of rhe message, are 

recorded in the database for use in predicting future actions. The actions above are not all 

mutually exclusive, so if more than one action is taken on a message, then the system sim- 

ply assumes that they are all likely candidate actions and asserts records for each action 

taken.' When the agent has a high confidence on a suggestion, it asks whether the user 

would like to  perform the task, and the user only has to  answer with yes or  choose to per- 

form about task. If the agent's suggestion is rejected, the new choice is added to  the mem- 

ory. With a low confidexe, the interface simply wdits for a user command. 

Other segmects have simpler preference modeling, as their functionality is more limited. 

The features uzed in representing situations for other segments are given here: 

ExitSegmen t 

Greetsegment 

Holdsegment 

Personsegment 

Readsegment 

None 

Called party's name 

Recipient's name 
Action after mail is sent 

None 

None 

None 

Information requested (e.g. 
phone number, address) 
Action(s) taken on person 

E-mail and voice mail fea- 
tures above 
Action(s) taken on message 

Most likely invoked segment? 

Call work or  home number? 

Use what delikery means? 
Action after mail is sent? 

None 

None 

None 

Information requested next? 

Next action? 

User interest in message? 

User action on message? 

Figure 7.7: Features of situations. 

Separate M R S t o r e  objects are used to  store features per segment class. For the BaseSeg- 

ment, no  features are used, yet an action is still predicted. This prediction is the segment 

that is most likely to be invoked when the interaction has no topic of conversation at hand. 

Intuitively, the system tries to  bring up a previously interesting topic for discussion. 

One weakness of this learning scheme is that the agent does not have any meta-level knowl- 

edge about a series of tasks constituting a higher-level task which can be more conveniently 

- 
5. This assumption is probably not the best one, since it has some undesirable consequences for prediction. 



labeled as a task. The interface cannot therefore offer to automate an entire string of tasks 

because it has no language for expressing such a suing. 

7.4.4 General scheme for Interaction 

While machine learning makes an interface malleable, it is still no substitute for correctly 

encoded domain knowledge about the user. For example, if a database contains informa- 

tion about the user being able to read voice messages, then whatever preferences the system 

learns about the user should be weighted less importantly. However, this information is also 

no substitute for the preferences the user's bxpresses in a command, which may contain 

information overriding the encoded preferences. Thus, there are distinct qualities of knowl- 

edge. 

In obtaining information, Chatter's dialog segments are generally implemented using the 

following algorithm, in which learning is only one way to make suggestions: 

See if the information is already provided as part of the Instructed command. For 

example, if the user says send a message to Don, then the recipient is already given. 

Whenever possible, look in databases for information. The Chatter domain provides 

some opportunities for retrieving information about users from pre-programmed 

databases. Some argcments for commands may be filled in by information from the 

database based on already provided values. FOP example, a database exists for users 

of voice mail subscribers. If the user says send a message to Barry, and R m y  is voice 

mail subscriber, then suggest sending Barry voice mail. 

Determine whether MBR can guess at some of the unknown features of the situation. 

A partially instantiated situation provides useful context, which can be used to pre- 

dict some of the unknowns of a new situation. If so, then suggest the most-likely fea- 

ture value. The user can a chance to accept or reject the suggestion. 

Engage in a dialog with the user to query for the necessary information. If the inter- 

face cannot find the information anywhere, it can only ask the user to supply it. 

7.4.5 Adapting to changing user preferences 

As the preferences of the user skange, the memory has the ability to adapt by "forgetting" 

the oldest instances. As described above, the memory has a storage upper limit, which when 

reached results in the purge of its oldest situations. Forgetting has the advantage of keeping 

the memory tuned to changing user preferences. Past, unwanted habits are r,o longer kept, 

but desirable habits are reinforced in memory by frequent assertions in the database. Such 

adaptation is useful in a mobile setting facilitated by Chatter, wherc the user may have 



changing information needs. For instance, when the user travels, his information interests 

mily change because he may be more interested in messages from his place of travel. The 

disadvantage is that forgetting can also result in the loss of rare but useful situations. 

One way to fix this problem is to  develop some methods which delete instances from the 

memory based on their usefulness in prediction rather than age. The system may reward 

those situations which have matched new situations more often, and delete the ones which 

don't seem to be relevant any more. [Koz93] suggests a method whereby older situations 

are gradually decayed in importance, which may result in better performance than a simple, 

sharp cut-off. However, this problem does not seem to arise in actual usage of Chatter. 



8. Performing Recognition 

This chapter discusses the issues in designing Chatter's speech recognition subsystem, its 

grammar design and the methods used for subsetting the grammar to  gain better accuracy. 

It discusses the issues involved in using a speaker-independent, connected-speech recog- 

nizer. It also describes the design and implementation of a recognition server based on an 

internal objecr-oriented engine API. 

Chatter uses a speaker-independent, connected-speech, large vocabulary recognizer from 

Texas Instruments [Whe92]. In an ideal setting, speaker-independent recognition worksro- 

bustly and the speaker's ucerances are perfectly translated into text. This ideal setting 

makes the work of discourse management much simpler. Yet, in reality, recognizers are 

unreliable devices, susceptible to background noise and recognition errors. From an inter- 

face design standpoint, these difficulties diminish some ease-of-use advantages associated 

with speech. The user is troubled by not being understood, or worse, the computer blindly 

proceeds to  do something other than what the user says. Errors can be minimized by incor- 

porating higher-level knowledge to limit the possible utterances and therefore recognition 

errors. Below, methods used in Chatter for constraining the speech space are discussed. 

8.1.1 Constraining recognition uslng a grammar 

The recognizer used by Chatter uses a context-free constraint grammar for specifying and 

constraining the space of speech that can be recognized. This is also common practice for 

recognizers with large vocabularies that use Hidden Markov Modeling algorithms. The 

grammar is loaded in by the recognizer at initialization, and recognition is performed on it 

subsequently. The advantage of this approach is that accuracy and speed are greatly 

improved over an unconstrained system, such as IBM's Tangora System We1851. These two 

reasons primarily motivated the use of the approach in Chatter. The disadvantage is that 

the possible speech input is constrained, so the recognizer is predisposed to the possibility 

of misunderstanding speech not defined as part of the grammar. This limitation applies not 

only to sentences not syntactically represented but also to words not among the grammar's 

terminals, h e  vocabulary. The recognizer always returns a correct output according to the 

grammar it is given, albeit with a confidence measure, but it is prone to  severe errors if the 

user's speech is outside of the grammar's space. The implication for conversational systems 

is that error detection and repair become more difficult. 



Specifying a conversational grammar involves a tradeoff between generality and accuracy. 

Clearly, one driving motivation is to write a grammar that is as loose as possible so that the 

same thoughts can be spoken in different ways. However, generality makes the recognizer 

less accurate because the space of possibilities, and hence error, is larger. 

The best grammar to use is one that is as tightly constrained as possible. A grammar, speci- 

fied in a straightforward natural language processing style with standard syntactic catego- 

ries like noun phrases and verb phrases, causes over-generation of sentences. For exampie, 

the utterance play an reply for Don is syntactically correct but does not much sense in the 

context of Chatter. As a result, substitution errors are many and processing speed degrades. 

The recogriizer tends to  return utterances which may be syntactically correct but is in fact 

semantically non-sensisal. One common solution to this problem is to encode semantic and 

even discourse constraints into the grammar, so that implausible sentences cannot be recog- 

nized'. In Chatter, semantic information is encoded into the recognizer's grammar. For 

instance, there are several commands in Chatter's vocabulary having to d o  with mail mes- 

sages and people; one of them is for sending mail. Composing a message requires giving the 

kind of mail (e-mail or  voice mail) and the recipient's name, but this information can be 

given optionally and perhaps in a different order. Simultaneously, some objects cannot be 

mailed, like phone or  company, so they should not be specifiable in a send command. The 

following grammar encodes these semantic constraints: 

ComposeMsg ---> ComposeCmd. 
ComposeMsg ---> ComposeCmd AMailObj. 
ComposeMsg ---> ComposeCmd AMailObj Prep Person. 
ComposeMsg ---> ComposeCmd Person AMailObj. 
ComposeCmd ---> "record". 
ComposeCmd ---> "send". 
ComposeCmd ---> 'mailm. 
AMailObj ---> OptAMODet "email'. 
AMailObj ---> OptAMODet 'ernail' "messagen. 
AMailObj ---  > "mail". 
AMailObj ---> OptAMODet "message". 
AMailObj ---> OptAMODet "voice mail". 
OptAMODet - - -> "an". 
OptAMODet - - -> "a". 
OptAMODet; - - -> " ' .  

Figure 8.1: Tight grammar for sending a message. 

To send a message to Gayle, the user can say mail, record a message, send e-mail to Gayle 

1 .  A better solution is t o  incorporate as much semantic and discourse knowledge as possible into the lowest lev- 
els o f  the recognizer. However, given that the recognizer used oriy allows the specification of a context-free 
grammar, we must implement these mechanisms above the recognizer. Sre IHirSI] for a description of the so- 
called N-best approach, which combines syntax and semantic constraints in guiding recognition. In addition, 
[Sen911 proposes some  idea^ on using discourse knowledge to improve recognition performance. 



or  record voice mail for Gayle buz not anything non-sensical. Other commands optionally 

require either a person or  a mail type, so the arguments for these commands are given spe- 

cifically for them. See page 107 for a complete listing of the grammar. Encoding discourse 

constraints means selectively activating sections of a grammar according to  what can 

appropriately be said at  any point in the discourse. See the next section for discussion of 

this topic. 

Unfortunately, a tightly constrained grammar is not without disadvantages. It tends to be 

much larger in length and more difficult to  extend. Yet, recognizers perform most efficiently 

in accuracy and speed when the grammar given to  them is tightly constrained. 

8.1.2 Using start hypotheses 

Recognizers can be dynamically programmed to selectively enable grammars on which to 

perform recognition, and this facility can be used to further constrain the grammar based 

on discourse- constraints. Subsetting the grammar increases efficiency and accuracy. In 

Chatter, the entire grammar does not need to be active at all times; only the sub-grammar 

for the currently active dialog segment and the sub-grammars necessary t o  introduce or  

reintroduce inactive segments are activated. Grammars art: individually enabled by the use 

of start hypotheses in Chatter's recognizer. They roughly correspond to the top-level non- 

terminals of grammars. At any time, one o r  more start hypotheses may be active. In Chat- 

ter, a hypothesis called 3efault is always active. This hypothesis contains all the commands 

that are active a t  any time, including calling a person, sending a message, reading messages 

or  logging off. 

However, some commands only make sense in certain contexts. They should be deactivated 

whenever possible until they can be used. To continue to  above example, ' (warding a 

received message t o  another user without a possible message reference is not appropriate, 

so the forward command is activated until this situation holds true. A Read hypothesis is 

defined containing the forward command, along with others. It is activated along with 

Default when the user is reading messages. 

Chatter's grammar has seven start hypotheses: Default, Read, PersonInfo, CornposePerson, 

ComposeType, ComposeFormat, Ack. They are selectively enabled based on the state of the 

discourse. The decisions for activating and deactivating hypotheses are application-depen- 

dent, and they are implemented by the application programmer. 



Default 

Read 

PersonInfo 

ComposeType 

ComposeFormat 

Top-level grammar. Users can initiate any 
Chatter task with this grammar. 

Allows the user to manage his messages 
once he begins reading mail, such as reply- 
ing, saving, deleting and so on. 

Once the user has activated a PersonSeg- 
ment, this grammar allows the user to ask 
questions about the user, such as what's his 
phone number? 

Activated in the ComgoseSegment to 
accept a fragment as a response to a ques- 
tion such as send it to who? It accepts 
responses like to Barry or simply Barry. 

Activated in the Compose§egment to  
accept a fragment answer to  the question 
send kina e -mi l  or voice mail? 

Activated in the ComposeSegment to  
accpet a fragment answer t o  the question 
send it in what mail format? The answer is 
any one of the supported multimedia mail 
formats. 

Lets the user answer yes or no questions 
posed by Chatter. 

Figure 8.2: Recognizer start hypotheses. 

8.1.3 Enabling start hypotheses and trading accuracy 

One important design issue to  consider is the tradeoff between enabling multiple start 

hypotheses and losing recognition accuracy. As more and more start hypotheses are 

enabled, performance is decreased. This problem is even more significant in the context of 

nested and interruptable discourse, for a nested discourse must have the vocabulary for its 

active segments activated. An interrupted segment needs to be capable of being reintro- 

duced a t  any time, so its vocabulary subset must also be enabled. 16 many segments have 

been interrupted, then many vocabulary subsets may also be ellabled, and the recognizer 

loses th: gains from subsetting. One solution is to  create a minimal subset for each seg- 

ment's vocabulary so that when a segment is active but suspended, the vocabulary for rein- 

troducing the segment is active. When the suspended segment is reactivated, it can be 



activate a larger vocabulary. In actual use, segments may not be interrupted very often, so 

this method may not be required. 

Chatter uses the simple method of enabling the vocabulary for the currently active segment 

and all segments which have been interrupted so that they can be reintroduced at any time. 

8.1.4 Segregating sexes 

Chatter's recognizer generates separate male and female phoneme models from the lexicon 

for recognition, so an additional method for sonstraining grammars is to segregate users 

into sexes. Performance gains can be obtained by knowing whether the user is male or 

female and by using this information to constrain the grammar. Often, speaker-independent 

recognizers, such as the one being used for Chatter, will automatically employ both male 

and female phoneme models to more closely match the speaker's speech. Applications hav- 

ing user accounts can also recora the sex of individual users, as it may be entered as part of 

configuring the system for a new user. The advantages gained by this method is that it elim- 

inates half the hypotheses necessary for testing, which increases both recognition accuracy 

and speed. As soon as the identity of the user can be established, the recognizer can be told 

to use only phoneme models for one sex. (See [Hir73] for an interesting discussion of 

female-male differences in conversational interaction.) 

8.1.5 Interrupting speech output 

Besides being able to recognize speech reliably, a recognizer also performs the role of know- 

ing when to stop talking. In conversation, speakers often interrupt each other when the 

point of the other speaker's utterance can be guessed. When speakers cannot be interrupted, 

interaction seems slow and tedious. It is essential to allow interruptions in conversational 

systems to  make them responsive. For instance, while being read a long message, the user 

may want to interrupt to perform another task. The recognition subsystem should have 

some mechanism for detecting the beginning of the user's speech, so that it knows when to 

stop speaking and listen to the user's command. 

Detecting speech in an audio stream can be done, but the problem is exacerbated using an 

analog telephone interface such as the one being used for Chatter, where the audio of both 

speakers are combined into one channel. Performing the user's speaking is more difficult 

because the DECtalk's voice must be separated from the rest of the audio. To overcome this 

problem, Chatter can be currently interrupted by the user pressing a TouchTone. Touch- 

Tones can be reliably detected and Chatter will stop speaking and wait for the user's com- 

mand. 



This problem can be solved by using an ISDN telephone interface at the computer, as ISDN 

provides separate data channels for both speakers. Detecting speech can then be performed 

on the incoming channel only. 

8.2 Reesgnltlon Server 

Recognition for Chatter is handled by a recognition server, the design and inlplementarion 

of which is discussed in this section. The key motivation for having a server are its abstrac- 

tion advantages. Recognizers of today differ in capabilities and programmatic interfaces, 

and developing applications with recognition functionality means writing to  non-portable 

protocols. As new, improved recognizers become available, such applications will need to 

be rewritten for these new protocols. A recognition server can abstract such differences 

from client applications such as Chatter, while also supporting the use of different classes of 

recognizers available today. Like window system servers, recognition servers provides a 

suite of functionality based on an application's needs, while allowing a device-independent 

means of accessing such functionality. Such a server can also offer multiple client applica- 

tions the simultaneous ability to  perform speech recognition functions from the audio 

stream. A server can also offer a range of functionality depending on a given application's 

needs. Besides the speaker-independent, connected-speech recognition functionality used 

for Chatter; the server also supports speaker-dependent, isolated-word recognizers. 

The current design of the server already incorporates three recognition engines-from TI, 
Agog, and Command Corp. The TI recognizer offers speaker-independent, connected- 

word, large vocabulary recognition; the Agog offers speaker-dependent, isolated word and 

small vocabulary recognition, and the Command Corp recognizer, called offers 

speaker-dependent, keyword recognition. 

8.2.1 Design issues 

For the server to be general enough to accommodate most kinds of recognizers, it must deal 

with both similarities and differences of recognition technologies available today. The main 

differences among recognition technologies can be represented along the three axes of 

speaker-dependence, connectedness of the recognition, and the vocabulary size. 

Each point in this space can be considered to  represent a particular class of recognizer. For 

example, it may be possible to have a large-vocabulary, continuous, speaker-dependent rec- 

ognizer. Each point is also distinguished by its own operational requirements; some recog- 

nizers, such as the one used for Chatter, require language grammars while others require 

the training of word templates. The server must therefore provide provisions for clients to 



select the kind of server they want, and furthermore to relay any additional data between 

the engine and client necessary for successful operation in a device-independent manner. 

Figure 8.3: Recognizer functionality space. 

Although each point is a possible class of recognizer, current recognizers fall into roughly 

three categories: 

Speakerdependent, isolated-word, small-vocabulary. Recognizers in this class are per- 

haps the simplest in implementation. Users of such recognizers supply training samples 

by saying each word2 of the vocabulary several times, and these samples are used as 

templates in matching speech at the recognition stage. A special kind of recogiiizer in 

this class includes the word-spotting recognizer, which attempts to pick up all or any 

keywords in a specified vocabulary from a continuous speech stream. Such recognizers 

may be more useful in certain domains where commands may be given as complete sen- 

tences, in which case they can be used to  pick out the essential information without 

much regard to analysis of syntactic structure. 

Speaker-independent, isolated-word, small-vocabulary, These recognizers are good for 

simple recognition tasks where accuracy and widespread speaker applicability is essen- 

tial. Perhaps the most prevalent use of these recognizers are with over-the-phone con- 

sumer services, where particular items from a menu, a binary choice, or even a digi .re 

to be spoken by the caller. Implementation of these recognizers borrows from the previ- 

ous class of recognizers and the class of connected-word, large-vocabulary recognizers, 

to be discussed next. 

Speaker-independent, connected-word, large-vocabulary. This class of recognizers rep- 

-- 

2. The term "word" is used fairly loosely here, when in fact, almost any kind of repeatable sound, including a 
series of words, can be accepted on recognizers of this type. 



resents the state-of-the-an in current recognition research. Word and/or speech samples 

are collected from a large set of speakers and statistics of word frequencies and pho- 

neme characteristics are distilled. Such recognizers typically use some form of Hidden 

Markov Models on  a constraint grammar as the basic recognition algorithm. 

It is useful for the server to  provide roughly three sets of functionality for clients. To accom- 

plish these ends, the architecture of the server is constructed in an object-oriented and 

inheritance-based manner. The motivation for organizing the server architecture in this way 

is the observation that first, it must provide a common set of functionality across all specific 

instances of recognizers, which implies that its implementation must make up for deficien- 

cies of particular engines and also defer to  those which provide their own (or better) means 

of performing part of the recognition task. Secondly, while all engines of a particular class 

are different in how they are accessed, they are in many ways structurally the same except 

for minor differences. Thirdly, different classes of recognizers may have significantly differ- 

ent methods of usage. For example, a recognition result from a connected-word recognizer 

may be an  entire string of words, but an isolated-word recognizer may consist of only one 

word. 

8.3 Server Impiementation 

These observations lead to  the use of an object-oriented paradigm, in which the core fu~lc- 

tionality can be embedded into an abstract Recognkzer root class, and real recognizers are 

implemented as subclasses of this root class. Subclasses can inherit functionality from the 

root that they can't provide, and it can override functionality if its own is better. Mare often 

however, subclasses will want to  inherit the core functionality but will also provide their 

own t o  perform additional initialization or  processing. For different classes of recognizers, 

abstract subclasses of the root class can be specified to  provide a separate set of core func- 

tionality assciated with that particular ciass of recognizers. All of these concepts can be 

represented naturally in an objected-oriented, inheritance hierarchy. 

To enable the use of different brands of recognizers in the server, an internal engine API is 

also defined ro ease the process of incorporating new recognition engines into the server. 

Future providers of recognizers can also give programmatic interfaces that make their 

incorporatior! possible more straightforward. As recognition engines with better perfor- 

mance become available, they can be added to  the server, via thls standardized engine API, 

and automatically become available to all applications which use the server without modifi- 

cation. 

An abstract Recognizer class forms the root class. It implements functionality common to 



all recognizers, regardless of their type, such as the mechanisms for handling co~inection 

control with the client, device-independent means of receiving audio data, converting 

between the necessary audio formats, loading and saving of data files, and the maintenance 

of state of the recognition process. Then, abstract subclasses of Recognizer are defined for 

each of the three common types of recognizer: 

Figure 8.4: Internal recognizer hierarchy. 

Above, the WordRecognizer class implements the speaker-dependent, isolated-word, small- 

vocabulary recognizer; the IndependentRecognizrr implements the speaker-independent, 

isolated-word, small-vocabulary recognizer, and the ComctedRecognizer a speaker-inde- 

pendenr, connected-word, large-vocabulary recognizer. A subclass of WordRecognizer or 

ComectedRecognizer serves as "glue" for the recognizer and server. The implementations 

of the actual recognizers are also shown. Currently, the IndependentRecognizer class is not 

implemented. 

The various subclasses implement the protocol necessary for the operation of that recog- 

niser class. For example, the WordRecognizer class specifies that training is t o  begin a mes- 

sage to  startl'raining, a train message t o  train individual words and finally a stoyl'raining 

message to  end training. The AgogWecognizcr simply overrides these calls to  prepare its 

own internal voice models for training. To receive audio data, the TiRecognizer overrides a 

receivehudio method inherited from Recognizer. receiveAudio is automatically invoked 

with audio data when the audio stream is turned on  for recognition or training. More spe- 

cifics are detailed in Appendix A. 

Each connection to  the server is represented as an object instance of a particular recognizer 

class, and calls to  the server are simply translated to messages to  the appropriate objects. 

The engine API is therefore specified as a set of member functioi~s of the abstract Recog- 

nizer superclass. 



The server is written to  cooperate with an  audio server [Aro92], which allows several appli- 

cations to use the audio device as a shared resource. The sewer therefore serves as just 

another client of the audio server, although its processing is also useful to  other applica- 

tions. This diagram illustrates how the recognition server fits into the general audio server 

framework: 

Audio Server API Audio & m r  API * + 
Audio Server 

Figure 8.5: Audio application architecture. 

An application wanting recognition funstionality can communicate with the server to  

receive recognition "events" found in the incoming audio stream. It can also initiate the 

training of word templates to  be used for larer recognition. While the server serves as inter- 

mediary benven the client m d  the audio server; a client application can still receive and 

s m d  data directiy t o  the audio1 server directly. This framework allows applications to  per- 

form mixed-mode audio tasks, where training, recognition, record and playback can be 

arbitrariiy intermixed during their execution. 

When designing programmatic interfaces for a specific recognizer, the designer should real- 

ize that his recognizer will be working in a shared-resource, asynchronous sexing. This sec- 

tion outlines the key issues to  be considered ir. designing such an interface and how the 

internal server architecture facilitates the integration of new recognizers. To avoid ambigu- 



ity, the term recognizer refers to a recognition engine, while the term sewer will refer to  the 

infrastructure of the recognition server. The client-server architecture is very similar to the 

one shown in Figure 4.4 on page 45. 

A recognizer must work in an environment where the audio stream is a shared resource, so 

it must be designed to  not require unique access to the audio input but be able to  accept 

audio from an arbitrary source. Several methods exist for transferring audio to recognizers 

in the recognition server. We discuss the two ways in which the server supports the delivery 

of audio. 

One way is for the r z c o g ~ z e r  to  receive audio from a named pipe. The recognizer and rec- 

ognition server can establish a shared pipe, and when audio begins to  arrive at the server, it 

can be written to the pipe and received by the recognizer for prxessing. This method was 

used to deliver audio to  the  IN^ recognizer. It is most straightforward if the recognizer is 

already designed to read from the real audio device, in which case it is easy to  change the 

device's name. The drawback of this method is that it is not very efficient because of the 

additional overhead involved in context-switch time to transfer data using pipes to the rec- 

ognizer. 

A more efficient means is to pass audio ro the recognizer with a predefined function call in 

the recognizer's BPI. The recognizer's API defines a function for receiving audio with argu- 

ments to specify the location and length of data, and when the server receives an audio 

buffec, it can deliver this buffer using the function. This method was used to provide audio 

to the Agog and TI recognizers. Note that it is the responsibility of the recognizer to man- 

age the received audio thereafter, since the server passes only one copy of the stream 2s the 

recognizer. The recognizer can either process the new buffer as soon as it is received or save 

it in private buffers until the end of a speech segment is recognized. In the server's current 

design, audio will be lost if the function takes too long to return, so recognizer's API design 

should take into account the time it takes to process a frame of audio. However, providing 

a call to receive audio is the most efficient means of delivery. 

Since delivery of audio can be suspended and restarted as dictated by the external function- 

ality of the server, the recognizer should also provide a reset function which initializes its 

internal state for a new session of recognition. The problem is that the server sends audio to 

the rccognizer only when either recognition or training is active, and the recognizer may 

receive a buffer of audio that is time-discontinuous from the previous buffer it received. If 

the recognizer performs recognition of these buffers as if the audio in them were contiguous 



in time, it may incorrectly report spurious recognition results. A reset function provides the 

means t o  restart the recognizer in a clean state. 

As a recognizes receives audio, it must somehow post recognition results to the server so 

that client processes may be notified of recognized speech. Since the server operates asyn- 

chronously, reporting results from recognizer to server must also occur asynchronousHy. 

Here, there are three methods for recognizers to post results: the server polls for a result; 

the recognizer reports results directly from the function used to pass the recognizer audio; 

or the recognizer invokes a callback to report the result. 

In the first method, the server periodically polls the recognizer to check for any recognized 

events. The server may call a function or  check a variable's value horn time to time to derer- 

mine whether any results can be obtained. This method is used to find recognition results 

for the  IN^ recognizer. The testing interval may be controlled by a timer or  some other peri- 

odic event. Since delivery of audio data is a periodic event, the server currently checks for 

recognition results after several buffers have been delivered if this recognizer is being used. 

The drawback of this approach is twofold: processor time is wasted on polling, and there 

may be a lag time between when the recognition result is known and when it is discovered, 

which may affect the interactivity of the system. However, this method may be used far rec- 

ognizers that weren't originally designed to be operated asynchronously. 

A more efficient method is to return recognition results as the result of the function used to 

pass in audio. This method also assumes the particular style of audio delivery described 

above, and it is in fact used to determine recognition results for the TI recognizer. In this 

case, the function result can easily be checked to determine whether something was recog- 

nized. No result may be signaled by a null result. While this method removes the ineffi- 

ciency of busy waiting, it may still result in lag response time if the audio buffer size is 

large. 

The best method is to use a callback mechanism. The server registers a callback using a 

function in the recognizer's API. When the recognizer computes a recognition result, it 

immediately notifies the server, which also sends the client a recognition event. This method 

is used to obtain recognition results from the Agog recognizer, and it avoids the disadvan- 

tages of the first two approaches. 



This thesis has described a conversaticnal agent called Chatter that assumes a more active: 

role by making suggestions for appropriate courses of action. The two main areas this the- 

sis addressed are: (1) discourse modeling and (2) learning to  make suggestions through user 

observation. 

9.2 DMlngulsking Chatter from Other Speech Systems 

Chatter is distinguished from other speech systems by its two main features: 

a Discourse modeling. Speech systems are still mostly command-driven, yet natural con- 

versation is more subtle and complex because it takes context into account. Chatter 

models conversation more closely, allowing users to  make references to past objects of 

discourse and interrupt tasks to perform others. 

Making suggestions. Chatter's interaction style is guided or agent-oriented rather than 

directly manipulated. It brings to the user's attention interesting messages and offers to 

automate some of his actions. It asks questions when it needs information to perform a 

task. As applications become more conversational and complex, there is an increased 

need for an interface eo become active in suggesting appropriate capabilities to the user. 

User preferences are different, so to  make good suggestions, the interface must learn 

what individual users like and use its memory as a basis for making suggestions. Chat- 

ter relies on a machine learning approach to collect relevant features a bout situations 

for each individual user and, in future situations, makes suggestions based on the 

assumption that the user will make similar choices. 

9.2 Lessons and Issues 

This thesis has concentrated on the study of the following issues. Lessons learned from this 

research also raise issues for future study. 

Portable information base. When information is shared among several input and outp~it 

channels, its presentation must be coordinated so that it can be consistent. The consis- 

tency applies not only to the information itself hut the filtering that is done on it. This 

thesis implements the necessary infrastructure in the form of an event server to permit 

information to be presented to the user no matter how he connects to his data. 



Multiple ways to say the same things. Natural language is easy to use because one 

thought can be expressed several ways. 'When designing conversational systems, one 

must also try t o  accommodate this multiplicity. The trade-off is between time and accu- 

racy, but such sacrifices need to be made so the interface can work more effectively. 

0 Accepting fragments. Conversational speech is often disjointed or incomplete. The 

implication for the design of conversational systems is that they be able to account for 

fragmented unerances. Chatter's grammar is designed so that fragmented utterances are 

accepted for questions that require only one- or two-word answers. In other contexts, 

because of the way Chatter's recognizer works, partially complete sentences cannot be 

detected, so this information can sometimes be lost. Assuming this fragmented informa- 

tion can be recovered using other recognition systems, how can a conversational learn- 

ing system learn deal with them? For example, if the recognizer only recognizes the 

word Barry, is it possible for the system to make a suggestion based on this scant infor- 

mation? Learning methods may be used to determine what the user wants to  do at the 

mention of a name. 

Taking turns. As interfaces become more active in making suggestions, it must develop 

sensibilities for knowing when to speak up and initiate conversation and when to lister, 

and let the user control the course of the interaction. This thesis has presented a state 

machine for turn taking, but it is only applicable to  the topic level. How can methods 

be developed for detecting changes in the interaction where the user wants to  be active 

or reactive? 

e Resolving pronouns. In general, pronoun and anaphoric resolution is difficult to 

accomplish without a great amount of domain knowledge, yet it is one of the most use- 

ful devices of conversation. Chatter offers some simple mechanisms for using pronouns 

in discourse. What happens when the discourse domain becomes more complex, and 

several objects can be "juggled" at once, as in put this in that? How can domain knowl- 

edge be easily encoded so that users can make such references? 

Error repair. Chatter provides simple commands for repairing misrecognized utter- 

ances. The system echoes feedback on all information that a user gives so that the user 

knows whether he's being heard correctly. How can the condition be detected the other 

way around? What if the computer suspects that the user has been misled by the way he 

is answering questions? Furthermore, how can interaction methods be developed for 

unraveling preconceptions generated a few steps ago? 

Supporting discourse through learning. One of the main themes of this thesis is that 

human-computer discourse can be supported through the use of learning, for it pro- 

vides the computational power for driving the computer's discourse. Chatter integrates 



I~arn ing  at two levels of discourse: suggesting topics-in this case messages, to be 

heard-and suggesting actions. -Much work has already been done on explicitly encod- 

ing expert knowledge about domains into discourse system, so the issue is, what are the 

best machine learning methods for supporting discourse? 

0 Natural learning. This thesis has also emphasized that machine learning must be inte- 

grated seamlessly into the user interaction. Many learning systems today are just begin- 

ning t o  deal with how learning can take place naturally through the interface. Like any 

other system component, machine learning must be integrated so that the user does not 

feel that the whole purpose of the exercise is to  train the machine bur to  get something 

done. Chatter is an attempt to  integrate learning seamlessly into the user experience. 

What other kinds of learning methods can be fit into the interface in a natural way to  

the user? 

e Fast recognizer response times. Chatter reinforces the need for large vocabulary recog- 

nizers to  operate in real time so that user-computer interaction can be fluid and 

dynamic. Without good response times, the rhythm of natural conversation cannot be 

exploited. (This rule applies not only t o  the recognition subsystems but also to  the rest 

of the feedback loop, including reasoning systems.) In this thesis, as much context as 

possible was used t o  pare down the active vocabulary so that recognition can be per- 

formed quickly and accurately. 

9.3 PssslbOe Future Directions 

9.3.1 Other ways of learning 

So far, Chatter's learning approach is best described as one by observation; it learns by 

watching what the user does and attempts to  mimic what he may do  in the future. While 

this technique appears seamless to  the user, learning may progress more quickly if the agent 

actively seeks knowledge. As Maes and Kozierok [Mae931 have implemented, some more 

explicit interactive methods can be incorporated to  make the agent learn more effectively: 

9 Providing more explicit feedback. If the interface informs the user of an interesting 

object, the user can vote on it positively or  negatively, perhaps telling the agent what 

factors most influence the decision. The agent can learn about the importance of such 

factors more quickly rather than relying on more examples. 

Being told. The user can explicitly tell the agent to  keep him informed of the state of 

affairs. For example, the user may have recently sent a message to  someone from whom 

a reply is very important. The user can explicitly "program" through the interface by 

telling it to  remind him of messages from that person. He might also want t o  telP the 



interface when Re is no longer so interested in messages from someone. 

The challenge zgain is to integrate the mechanisms searnlessly into the interaction. 

9.3.2 Integrating other applications 

Chatter supports only access to information from, to and about people, yet supporting a 

work group involves many other types of data. An interesting application ro cast inro a 

conversational framework is the personal calendar. A conversational interface scales up 

well because the additional commands for the calendar and those pertaining to its integra- 

tion with applications can be added transp-dreiltly. The calendar has several major entities, 

including days, weeks and months, so the dialog becomes richer because the types of 

objects that can be disciissed are greater. 

From the discourse perspective, one of the most interesting challenges in this domain is to 

figure out how to  manipulate and move objects occupying a space using speech. For exam- 

ple, imagine being able to  say move these appointments to that month, move it up to seven 

or move it 2 p  to the seventh. It would be interesting to see how knowledge about the 

Qomaig can be encoded and how anaphoric resolution can be implemented. From an agent 

perspective, calendars provide another abundant database of information. The agent can 

use the calendar as another basis for making suggestions. For instance, the agent may make 

inferences about the user's interests based on what he is doing. For example, if the calendar 

says that the user has an appointment with someone and there is a message from that yer- 

son around the scheduled time, then the message may be more interesting than it would be 

otherwise. Alternatively, if the calendar records information about the user being away on a 

trip, then information about people at that locale or the locale itself (such as weather) may 

be considered more interesting than information from the user's home. Suck decisions can 

be made on the basis of information in the calendar. 

933 Representing negotiation 

En Chatter, the specific casks that users can ask their agent to perform are relatively simple 

and short-term-they are relatively simple to execute and they are begun and compieted 

during the same session. Yet, what if the nature of our tasks require working with the com- 

puter to accomplish more complex tasks? For example, the user may negotiate with the 

agent on how best to  deliver a message which was unsuccessfully delivered initially. In this 

case, the agent may have some ideas on how to  accon~plish the task but the user may have 

means more relevant to the current situation. The point is that the two may want to engage 

in a dialog to work out a plan which is acceptable to both. This type of discourse seems to 



arise when the desired tasks occur over a longer time range and span multiple interaction 

sessions. 

In [Sid92], Sidner proposes some ideas on how to represent collaborative conversations 

using a repertoire of proposals, acceptances, counter-proposals, rejections and so on. These 

actions have specific effects on the agent's representation of the user's beliefs and the state 

of the negotiation. ?hey seem crucially useful when the domain of tasks become more com- 

plicated and the plans for execution are multi-faceted. 



A. Grammar and Recognition Server 

This appendix gives the grammar for the Chatter application as well as the AH for the rec- 
ognition server developed as part of this thesis. 

This section gives the grammar used in the Chatter application. The grammar is specified as 

a context-free grammar, and terminals are given in quotes. The grammar's format is given 

in a form readable for the recognizer supplied by Ta. See [Wea92] for a more details about 
the format: 

start (Default). 
Default ---> Callperson. 
Default ---> ComposeMsg. 
Defaalt ---> ReadMsg. 
Default ---> 'good-bye'. 
Default ---> 'pay' 'attention'. 
Default ---> 'stop" 'listening' 

Callperson ---> CallCmd. 
Callperson -.--> CallCmd Person. 
CallCmd ---> 'call'. 
CallCmd ---> 'dial'. 

CmposeHsg ---> ComposeCmd. 
ComposeMsg ---> ComposeCmd AMailObj. 
ComposeHsg ---> ComposeCmd AMailObj Prep 
Person. 
ComposeMsg ---> ComposeCmd Person AMailObj. 
ComposeCmd ---> 'record' . 
ComposeCmd ---s 'send'. 
ComposeCmd ---> 'mail*. 
AMailObj ---> OptAMODet 'email*. 
AMailObj ---> OptAMODet 'email' 'message'. 
AMailObj ---> 'dai19. 
AMailObj ---> OptAMODet 'message'. 
AMailObj ---> OptAMODet 'voice mail'. 
OptMOWt ---> .anm. 
~ p t m o ~ e t  ---> 'am. 
OptmDet ---r ". 
ReadMsg ---> ReadQad OptRMAdj 'messages'. 
ReadMsg ---> OptWQHeading OptRMMod 'mes- 
sages' OptRMSendex. 
ReadCmd ---> 'readg. 
ReadCmd ---> 'play'. 
OptmfAdj ---> 'my' .  
OptRHAdj ---> ' *  . 
OptRMQHeading ---> 'are' 'there'. 
OpcRMQHeading ---> *dom 'I' 'have'. 
Optmod ---> 'any'. 
OptRMMod ---> ". 
OptRMSender ---> 'from' Person. 
OptMSender ---:. ". 
start (Read:. 
Read ---> Delete. 
Read ---> Save. 

Read ---> Reply. 
Read ---> Forward. 
Read ---> Scan. 
Read ---> 'what's' ReadInfo. 
ReadInfo ---> 'it' "aboutm. 
ReadInfo ---> 'them 'subject' 

Delete ---> 'deletem. 
Delete ---> 'delete' DMailObj. 
Delete ---s 'delete' PronRef. 
DKailCbj ---> OptDMODet 'message'. 
uMail0bj ---> OptDMODet 'email' 'message'. 
DMailObj ---> OptDMODet 'voice' 'mail'. 
PronRef ---> 'it*. 
PronRef ---> 'this'. 
PronRef ---> 'that*. 
OptDMODet ---> 'this'. 
OptDMODet ---> *thatn. 
OptDHODet ---> 'them. 
OptDMODet ---> ". 
Save ---> 'save*. 
Save ---> 'save' DMailObj. 
Save ---> 'save' PronRef. 

Reply ---> 'replyn. 
Xeply ---> 'reply' DMailObj . 
Reply ---> 'replyg 'to' Person. 
Reply ---> 'reply' 'to' PronRef. 

Forward ---> 'forwardw. 
Fornarc! ---> 'fornard' DMailObj "to' Per- 
son. 
Forward ---> 'forwardo 'to' Person. 

Scan ---> SLocation. 
Scan ---:. SLocation 'message'. 
Scan ---> ScanCmd SMailObj. 
SLocation ---> 'next'. 
SLocation ---> 'previous". 
SLocation ---> 'the' 'last'. 
ScanCmd ---> 'read'. 
ScanCmd - --> 'what Is'. 
SMailObj ---> 'theg SLocation 'message'. 

8tart(PersonInfo). 
PersonInfo ---> PIQHeading OptPIMod Info. 



PersonInfo ---> 'spell' irptPIklod Info. 
PIQHeading ---> 'is' 'there.. 
PIQHeading ---> 'what's'. 
OptPIKod ---> 'a'. 
OptPIKod ---> 'an'. 
OptPIMod ---> 'the'. 
OptPIMod ---> 'his'. 
OptPIKod ---> 'her'. 
OptPIMod ---> ". 
Info ---> 'address'. 
Info ---> 'company'. 
Info ---> 'email' "address'. 
Info ---> 'email'. 
Info --..> 'fax' 'phone'. 
Info ---> 'home' 'address'. 
Info ---> 'home' *phonem. 
Info ---> 'name'. 
Info - - -> 'phonem. 
Info ---> 'remarksm. 
Info ---> 'work' 'address'. 
Info ---> 'work' 'phone'. 

start(ComposePerson). 
ComposePerson ---> Person. 
ComposePerson ---> Prep Person. 

start (ComposeTypel . 
Compose?Lpe ---> 'email'. 
ComposeType ---> 'voice' 'mail'. 

start(CcmposeFormat). 
ComposeFormat - - -> Format. 
ComposeForrnat ---> Format 'format'. 

Format ---> 'mac'. 
Fomat ---> 'macintosh'. 
Format ---> 'mime*. 
Fomat ---> 'nextm. 
Format ---> 'sun'. 
Format ---> 'uuencode'. 

start(?erson). 
Person ---> 'Atty' . 
Person ---> 'Barry'. 
Person ---> 'Chris'. 
Person ---> 'Don". 
Person ---> 'Eric'. 
Person ---> 'Gayle'. 
Person ---> 'Jordan'. 
Person ----> 'Lisa'. 
Person ---> 'Lorin'. 
Person - - - z  'her'. 
Person ---> 'him'. 
Person ---> 'me.. 

start(Prep). 
Prep ---> 'for'. 
Prep ---> 'from'. 
Prep ---> 'of'. 
Prep ---> 'to'. 

start(Ack). 
Ack ---> 'no'. 
Ack ---> 'OKm. 
Ack ---> 'yesm. 

A.2 Recognition Server 

This section outlines the current API of the recognition server, called r-server. Similar to  the 

group's audio server, the recognition server cooperates with a client through a set of asyn- 

chronous function calls and callback routines. These functions are RPC stubs which com- 

municate with the server. A client uses function calls to  make requests to the server, such as 

starting recognition o r  uainillg sessions. Acknowledgment of such requests are often 

returned as return values of the called functions. A client may also receive notification by 

the callback mechanism, which allows a client to be asynchronously notified of relevant 

events. The server protocol is implemented using the speech group's Socket Manager and 

Byte Stream Manager tools, which manage remote host connections and client-server RPC. 
See [Aro92] for more details on these utilities. 

For connected-speech recognizers, no training needs to be done, so clients may simply begin 

recognition. However, most recognizers will want some kind of configuration file that gives 

the location of grammars, phonemes, and so on. For isolated-word recognizers, each con- 

nection to  the server specifies a vocabulary of words t o  be recognized by the recognizer. 

Words are represented as nonnegative integers in the server, so the client is responsible for 

maintaining correspondences t o  the meaning of suck indices. Vocabulary templates can be 

saved and loaded, and the server automatically provides this functionality t o  the client. 



Calls to  the recognition server are declared in <r-server .h>. 

A connection to the server is established or closed with these calls: 

int ropen(conot c h a  *hostname, int recognkrType, const char *data) 

Opens a connection to the recognition server and returns an associated file descriptor. 

hostnume is the name of host on which to run the server; NULL, may be specified for the 

current host. recognizerType is one of R-AGOG, R- IN^ or R-TISR data is a recognizer- 

dependent argument. Pass in NULL by default. When using the TI recognizer, pass in :he 

path to the configuration file. 

iat r-close(int fd) 

Clcses a connection with the s2rver. 

A.2.2 Requests 

Once a connection has been opened, requests to the server can be made through the follow- 

ing set of calls: 

void r-set-Alename(int fci, char *vocabFile) 

Sends the name of the vocab;~lary file (a file containing templates) or configuration file 

to the server. 

void r-start-recognition(int fd) 

Puts the recognizer in recognition mode. This function should be called just before a 

sessioa of recognition. 

void r-quit-recognition(int fd) 

Takes the recognizer out s f  recognition mode. 

void r-set-sex(int fd, int sex) 

Sets the sex of the speaker. Specify either R-MALE or R-FEMALE. If this information can 

be provided by the client program, then recognition can be performed faster with con- 

nected-speech recognizers, This function only currently makes sense when using the TI 



recognizer. 

void r-subsetiint fd, char *symbols) 

Selectively enables the vocabulary for used in the recognizer. FOP isolated-word recog- 

nizers, symbols should be a colon-separated list of index numbers that are to be active. 

For connected-speech recognizers, symbols should be a colon-separated list of the start 

hypotheses. 

The following functions applies to speaker-dependent recognizers only. 

void r-disk-to-recognizer(int fd) 

Loads the voice template file of the given user and vocabulary name from server disk to 

the recognizer's active memory. If the named vocabulary does not exist, -1 is returned. 

void r-recognizer-to-disk(int fd) 

Saves the current template file to  server disk under the current name specified by r-set-.- 

filename. l l i s  command must be called to save any exchanges or updates that have 

been made. 

void r-start-training(int fd) 

Cali this just before salling r-train to  initiate a training session. 

void r-train(int fd, int wordNum) 

Begin a training session on word wordNum. If a template at wordNurn does not 

already exist, then one will be created. Othe.wise, the existing template is refined. This 

call will generate R-BEGIN-TRAIN-EV and R-END-TRAIN-EW events. One or more 

R-BEGIN-TRAIN-EY events will be generated to  begin training and refine the template, 

and R-END-TRAIN-EV will be sent upon completion of training the word. Before calling 

r-train, you must call r-start-training first. 

void r-quit-training(int fd) 

Called to finish a training session. A call to r-start-training must eventually end with 

r-quit-training. 



int rmain-loop() 

Invokes socket manager's SmMainLoop to run asynchronously and poll for events. 

To receive events generated by the server; a client must implement a set of callback func- 

tions and register them with the server. Recognition results may be a string indicating the 

utterance most likely spoken or  an index into a vocabulary list, or it may even be a set of 

these ranked in order from most confident prediction to least. Associated with these results 

may be some confidence measures, so the results to be returned may be quite structured. 

void r-recognizeem(int fd, wid *clienSda~a, char *string) 

void r-recognize-eu(it0f fd, void *clientdata, int firstword) 

When a sentence or  word is recognized in recognition mode, one of these callbacks will 

be invoked with the recognition result. The first version is used to  return results from 

connected-speech recognizers, while the second is used for isolated-word recognizers. 

void r-recognize~lusICSev(int fd, void *clientdata, char *firstStn'ng, int fitstscore, 
char *secondStn'ng, int secondscore) 

void r-recognize&sLCSeu(int fd, void *clientdata, int firstword, itst firstScore9 
int seconmord, inf secondscore) 

This callback differs only slightly from r-recognize-ev in that it provides more statistics 

about the word recognized. Whenever r-recognize-ev is called, so is r-recog- 

nize-plus-ev, and vice versa, if so registered. Again, there are two versions, similar to 

the r-recognize-ev callback. 

void r-begin-trait~_w(ittt fd, int data, int wordlVum) 

When training is initiated, a training "begin" event will be generated each time a train- 

ing templare is expected from the user. This callback allows the client to perform appro- 

priate output to prompt the user to speak. Note that this event may be generated 

several times f a  one word, since many recognizer require multiple training sessions to  

generate a reliable template. Only recognizers that require training will generate these 

events. 



void r-md-traits-ev(int fd, ittt data, int  wodNum) 

When training for a word has completed, this callback will be called. UnIike begin-- 

train-ev, this callback will only be called once for each word. If a sequence of words is 

to be trained during the training session, this callback can begin another training ses- 

sion using r-train. 

Callbacks can be registered and unregistered by the calls: 

int rregister-callback(char "event, (void *cb)(), void *clientData) 

event is one of: R-BEGIN-TRAIN-EV, R-END-TRAIN-EV, R-RECW-NIZE-EV, or R-RECOG- 

NI ZE-PLUS-EV. 

int r-urnregister-callback(char "event, (void *cb)()) 

Give the associated callback function for which you gave when you registered the call- 
. h  - back. 



B. Event Server 

Appendix 93 describes the APT for the Zeus event server. §ee Chapter 4 on page 37 for a 

more general description of Zeus. This server serves as a repository for information about 

people. It is intended to be quite simple in design; the "smarts" for interpreting and using 

the event information will reside in client peripheral processes. We make the distinction 

between client and daemon processes. Roughly, clients are processes which use the informa- 

tion in the server, while daemons are processes which help maintain information in the 

server. The distinction is not actually critical because both access the server in the same way. 

The structure of the information in Zeus is hierarchical, rather like the UNlX file system. 

There are two types of nodes in the hierarchy-folders and records. Folders have as their 

contents sets of other folders and records. Records have as their contents some user-defined 

content, which will initially be plain text. Places in the hierarchy will be accessed using the 

same convention for UNIX files, for example /bar/ f oo to  get to f oo in folder bar. 

Notification is implemented as follows. Processes can register a daemon for a given folder, 

and whenever information in the folder changes, they informed of the change. Note that 

such notified daemons might cause W e r  changes in the event server, so there may be sev- 

eral iterations of notification. 

Although Zeus implements the client-server connection using Socket Manager and Byte 

Stream Manager libraries, it is more convenient to representation the connection on both 

thc client and server sides as C++ objects. These classes also provide abstractions so that 

dtype objecrs can be easily shipped between the server and client through lower-level trans- 

port mechanism; they automaticaliy convert dtyges to and from binary representations. 

In the next section, we describe the API for communicating with the event server and for 

writing clients. 

B.1 Event Server Classes 

The API for communicating with Zeus is organized around a C++ class called ZConnec- 

tion. To establish a connection to the server, one creates a new instance of ZConnection. 

Messages to a ZConnection object then change the state of the event server. 



ZComeaion is a subclass of §Connection, an abstract superclass for implementing client 

connections to  servers. An SConnection maintains the connection as implemented by the 

Socket Manager arid Byte Stream Manager, including built-in facilities for handling errors 

or failures. An §Connection object is persistent in that if the server goes down, the object 

will attempt to re-establish connection to the server periodically. This period degrades 

exponentially. Here is the class description: 

class SComection 
{ 
pnblic : 
int connf d; 
SComection(const char *server, const char *hostname); 
virtual -SConnectionO; 
virtual int mainloop ( 1 ; 
virtual int close(); 

virtual BOOL 
virtual void 
virtual void 
virtual void 
virtual void 

isUp ( ; 
connectionDown0; 
connectionup ( ; 
registerCB(int type, SConnectionCB cb, void *data); 
unregisterCB(int type, SConnectionCB cb); 

protected : 
SmTimer *timer; 
int timeout-ms; 
llist *downCBs; 
llist *upCBs; 
char *serviceName; 
char *host; 

I ;  

int connfd 

Gives the file descriptor of the current connection to the event server. If this variable is 
less than 0, then it indicates that the event server is down. 

SConnection(const char *server, const char + hostname) 

Constructor for the class. server specifies the service name and hostname gives the host 

of the service. 

virtual -SConnection() 

Closes the connection to the server and destroys memory for the object. 



Executes the Socket Manager's SmMainLoop function. This method does not return 

until a close has been executed. 

virtual int close() 

Closes down the connection to the server. 

Returns YES if the server is up and there is a connection to the event server. 

virtual void connectionDown() 

This method is invoked in the case that the event server goes down. By default, this 

method does nothing, but it can be overridden by a subclass to  do whatever operations 

are appropriate to keep the state of the client from going awry when the server goes 

down. 

virtual void connectioneTg() 

This method is invoked as soon as the server comes up after it has been down. By 

default, this method also does nothing. 

virtual void registerCB(int type, SConnectionCB cb, void *data) 

Registers a callback with the object to be notified when the server connection goes 

down and/or up or  some error condition with the connection. Currently, type can be 

either SC-DOWN or SC-UP, and cb is the callback that will be invoked when the specified 

event occurs. Bata is a pointer to  client data that will bc passed in as an argument of the 

callback. An arbitrary number of callbacks can be given for these two event types. 

The callback function should be in the form specified by the SConnectionCB type: 

typedef void ( *SConnectionCB)(SConnection *, void * ) 

When invoked, the function wiii receive the associated SConnection object where the 

event occurred and client data given using this function. 

virtual void unregisterCB(int type, SConnectionCB cb) 

Unregisters a callback previously registered with registerCB. 



B.1.2 f Connection 

The ZConnection class is a client's representation of a connection to the event server. Creat- 

ing an instance of ZConnection forms a new connection to the event server, and messages 

sent to  the object result in changes in the contents of the server. This class is declared in 

class  connection : pablic ~~onnection 
{ 
pub1 ic : 
~~onnection(const char *hostname = "zeus"); 
virtual -ZConnectionO; 

virtual int close0 ; 
virtual void connectionUp0; 

virtual 
virtual 
vir'tual 
virtual 
virtual 
virtual 
virtual 
virtual 
virtual 

BOOL exists(const char *path); 
dtype *getFolder(const char *path); 
dtype *getFolderCoutents(const char *path); 
void new~older(const char *newpath); 
void deleteFolder(const char *path); 
dtype *getRecord(const char *path); 
void newRecord(const char *newpath, dtype *newContents); 
void changeRecord(const char *path, dtype *newContents); 
void deleteRecord(const char *path); 

virtual void beginUpdate(c0nst char *path); 
virtual void endUpdate(const char *path); 

virtual void registerDaemon(const char *path, void (*cb) 0 ,  
void *data); 

virtual void unregisterDaemon(c0nst char *path); 

virtual dtype *callbacksO; 

protected: 
dtype *cbs; 

1 ; 

ZConnection(const char "hostname = "zeusn ) 

Constructor for ZConnection class. Note that the hosmame argument need not be spec- 

ified and defaults to the host zeus. 

virtual -ZConnection() 

Closes the connection to the event server and deallocates the memory associated with 

the connection. 



virtual int close() 

Overrides the superclass's implementarion of close to unregister any daemons that were 

not explicitly unregistered before this method is invoked. 

virtual void connectionUp() 

Overrides the superclass's implementation to re-register the client's previously registered 

daemons with the senTer after the server comes back online. 

virtual B80L exists(const char *path) 

Returns YES if the named path exists. 

virtual dtype *geGolder(const char 'path) 

Returns a dt-list of the sub-folder and record names of the named folder. The list con- 

sists of d t s t h g s  giving the complete paths of the information in the folder. For 

instance, invoking the method with /user /mul l ins ,  will return ( /user/rnulLins/e- 

m a i l  " /user / rnul l ins /vmai l  / u s e r / m u l l i n s / a c t i v i  tym 1. The result should 

be deleted after use by the caller. If the folder does not exist or  the server connection is 

down, NULL is returned. 

virtual dtype *getFolderContents(const char *path) 

Returns a dt-list containing the complete contents of all records and folders in the 

named folder. If there are folders embedded in the given path name, then their complete 

contents are returned as well. Note that the names of the records and folders in the 

folder are not returned, so this method is only of limited use. This method is useful 

when the structure of a folder's contents is simple and the contents need to be retrieved 

for processing. h e  way to get good use out of this method is to  represent records in 

such a way that the names of the records can be easily derived from their contents, per- 

haps as some field in the record. 

The result should be freed after use. If the folder does not exist, NULL is returned. 

virtual void newFolder(const char *newpath) 

Creates a new folder a t  the named path. The path must be given absoiutely, and all 

folder names leading to  the last one in the path must already exist. If the path already 

exists in the server, no  changes are made. 



virtual void deleteFolder(const char *path) 

Removes the folder at the named path including any contents in the folder. No changes 

are made if the path does not exist. 

virtual d q p e  +getRecord(const char *path) 

Returns the contents of the record at the named path. The contents were placed as a 

result of newRecord or changeRecord methods. The path should refer to a record. The 

result should be deleted after use. NULL is returned if the record does not exist. 

virtual void newRecord(const char 'newhth, dtype "newContents) 

Adds a new record with the given named path and contents to the server. newContents 

may be any valid dtype. If any daemons are registered with the immediately enclosing 

folder, a Z-NEW event is generated for all such daemons for the enclosing folder. All 

folder names leading up to the last name must already exist. The caller is responsible 

for deleting newcontents afsexwards. 

virtual void changeRecord(const char +path, dtype OnewContents) 

Changes the contents of the record at the named path with the newly-given contents. If 
any daemons are registered with the immediately enclosing folder, a Z-CHANGED 
event is generated for such daemons for the enclosing folder. If the named record does 

not exist, then no changes are made. The caller is responsible for de1e:ing newcontents 

afterwards. 

virtual void deleteRecord(const char *path) 

Deletes the record at  the named path. A 2-DELETED event is generated if any dae- 

mons are registered for the enclosing folder. 

virtual void beginUpdate(const char *path) 

Informs the server that the caller will be making several changes to the named folder 

given by the path. The server will buffer all changes and suspend notification to dae- 

mons registered for this folder until a matching endupdate is encountered. Since multi- 

ple clients may be making chznges to  the server; beginupdates may be nested and 

daemon notification won't occur until the last nested endupdate is invoked. 

Normally, any change to the contents of a folder will result in notification events, and 

multiple changes resulting in multiple notifications may be inefficient, so clients expect- 



ing to make several changes to a folder should invoke this method before performing 

updates. 

virtual void endUpdate(mnst char *pa&) 

Telis the server that the client has finished updating the named folder. The server will 

notify any daemons ~f all the changes since the first beginupdate. 

virtual void r@terDaernon(const char *path, void (*cb)(), void *data) 

Registers a callback for the named fojdea so that when any changes are made to the 

records of the folder, the callback is invoked. The caller may supply client data that will 

be passed as an argument to the callback. See above for details on the format of the 
callback. Note that there is a restriction of one callback per folder per client. 

void report(2Connection 'server, void "clientdata, dtype "howchanged, dtype 'con- 

tents) 

virtual void unre~sterDaemon(const char *path) 

Unregisters a previously registered callback for the named folder. 

B.l.3 A slrngle example 

This section gives a simple example of how these classes can be used to  communicate with 

the event server. This program gets records of all new messages for the user lisa. 

int main ( 1 

ZConnection *server; 
dtype *msgs; 
char pathtMAXPATHLEN1; 

server = new ZConnection; 
Z-MAKE-USER-PATH (path, 'lisa' , Z - m I L )  ; 
msgs = server->getPolderContentstpath); 
cout << "Records of Lisa's new messages are:\n\nn << msgs; 
delete msgs; 
server->close ( ) ; 
delete server; 

return 0; 
1 

A new ZComscsism is created, and a path to the folder /user/lisa/email is created. Its 



contents are retrieved and printed out to the terminal. Finally, the server connection is 

closed and the server object is freed. 

The specification for the server makes no mention of what are stored as events. This is 

intended so that the information in the server can augmented or changed in the future with 

little trouble. Currently, this information is being kepe in the server: users' activity and loca- 

tion, new e-mail and new voice mail. The following constants are declared in <zinfcs .hh>. 

B.2.1 Activity infQemat9an 

A call to Z-MAKE-USER-PATH ( p a t h ,  uses ,  Z-ACTIVITY) calculates the path to  user's 

activity record. Similarly, a call to Z-MAKE-USER-PATH ( p a t h ,  user ,  Z-ALERT) obtains a 

folder of names who have placed alerts on the given user. An activity record has the follow- 

ing field. See the activity server header files for more information about the meaning of 

these fields. 

Login name of the person 

Person's location 

Suing version of time last updated 

User's state 

Number of the user's nearest phone 

Workstation where the user is logged on 

User's real name 

State of the person's workstation 

Last time the information was updated 

A call to Z-MAKE-USER-PATH ( p a t h ,  user, Z-EXAIL) obtains the folder of records repre- 

senting new mail messages. The following fields in those records are always present: 

Z-EMAIL-DATE l ime  the message was received 

Z-EMAIL-FROM E-mail address of the sender 

z-EMAIL-TO - - - Who - - . - the - - mail - . - - is - addressed - to - 

z-EMAIL-SUBJECT Subject of the message 

z-EMAIL-HEADER-OFFSET Offset to the message's header in the spool file 

Z-EMAIL-BODY-OFFSET Offset to the message's body in the spool file 



z-ENAIL-BODY-LENGTH The number of characters in the message body 

These fields are optional in a record: 

z-EMAIL-cc Contents of the Cc: header if one was available 

z-m~ I L-NAME Real name of the message's sender 

Z-EMAIL-FOKMAT Multimedia mail format if the message was such 

Z-EMAIL-PRONOUNCE procrnail filter category 

B.2.3 Voice mall Infomation 

Similarly, a call to Z-MAKE-USER-PATH (path, user, Z-VMAIL) obtains the folder of 

records representing new voice mail messages. A voice mail record always has these fields: 

T h e  the message was received 

Suing giving sender of the message 

Path to the message's audio file 

Length in seconds of the audio file 

These are optional fields of a voice mail record: 

Z--VMAIL-PHONE Phone number of caller if available 

B.2.4 Other constants and macros 

Two other constants are defined: 

Gives the path to the folder holding all of the users' 
information. For example, the message get- 
Polder ( z - U S ~ P A T H )  gives the names of all users 
registered with the server. 

Gives the path to  the folder holding all of a given 
user's information. For instance, a Z-MAKE-USER-- 
PATH (path, user, Z-USER) followed by a get - 
Folder (path) will return a listing of the 
information stored for the user. 

In addition, these macros can be used to create strings of the appropriate paths leading to 

information about a user in the server. 

- - void-Z~A;iftKE-USER-PiiTH[(shar *path, const char *user, const char *pTemplate) 

Used to construct a path leading to  some given user's information. pTemplate is one of 

the templates given above. The result in placed in path. 



void Z-MAKE-USER-RECORD(c)lar +path, conso char 'user, const char *pTemplate, 
const char *recordName) 

Used to construct a path leading to  some given user's record when the information is 

stored as a folder of records. Here, recordName specifies the actual name of the record 

to be access. For example, Z-MAKE-USER-RECORD (2a th ,  *caesar , Z-ALERT, 

=lisa9 obtains a path for the record /user/caesar/alerts/lisa. 

void Z-GET-USER-FROM-PATHichar *username, const char *path) 

Given any valid path, this macro returns the user associated with the path in usemame. 

B.3 A Class for Ilmg~emeatlng Zeus Clients 

If clients are implemented as classes, then it is often desirable to have several clients operat- 

ing in the same process sharing the same connection to the event server. A ZeusClient is 

designed to be subclassed for the implementation of such clients. A ZeusClient allows sev- 

eral clients operating in the same process to share a common connection to the event server. 

class ZeusClient 
{ 
public : 

ZeusClient(c0nst char *user = NULL, ZCo~ection *connection = NULL); 
virtual -ZeusClientO ; 

virtual ZConnection *comectionO; 
virtual void connectionDown0; 
virtual void connectionUp0; 

protected: 
BOOL freeZConnection; 
char *login; 
ZConnection *zserver; 

I ; 

ZeusClient(const char *user = NULL, ZConnection *connection = NULL) 

Constructor for the clzss. Both arguments to  this method are optional. user gives the 

login name of the current process. If it is not supplied or NULL, the owner of the cur- 

rent process is used. If connection is empty, then a new ZConnection is automatically 

created. If one is passed in to the constructor, then it is assumed that the connection 

object is shared, and it will not be freed when ZeusClient is freed. 

virtual -%usclient() 

Destructor for the class. Frees the object's ZComection object if it was created by the 



object's consuuctoL 

virtual ZConnection *connectioni) 

Returns the ZConnecdon being used by this ZerasClient. 

virtual void connectionDown() 

This method is invoked when the object's connection to the server goes down. By 

defaulr, this method does nothing but is meant to be subclassed so that necessary 

actions can be taken when the connection goes down. 

virtual void comectionUp() 

Similar to connectionDown, this method is invoked when the server comes back up. By 

default, it does nothing. 

In Chatter, all clients that communicate with Zeus are implemented as subclasses of Zeus- 

Client. 



C. Class Hierarchies 

Appendix C outlines the organization and implementation of Chatter and its supporting 

environment. Shown are the C++ class inheritance hierarchies that are implemented. The 
first hierarchy shows internal recognition server architecture detailed in Chapter 8 on 

gage 90. 

Figure C.l: Recognizer class hierarchy. 

The tree below represents the discourse system architecture. See "Choosing appropriate 

segments" on page 59 for details on the functionality of the segments. 

Figure C.2: Chatter discourse management class hierarchy. 



 the?,^ hierarchies show the organization of the Zms event server and its clients, which is 
described in Chapter 4 on gage 41. 

Figure C.3: Zeus server and client hierarchies. 

Event server clients for Chatter are shown below. See Chapters 4 (on page 41) and 7 (on 

page 73) for a description of these clients. 

Figure C.4: Zeus clients hierarchy. 

Finally, the MBRStore class is shown. Its description begins on page 74. 

Figure C.5: MBRStore class. 
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