
Reliable spelling despite poor spoken letter
recognition

Matt Marx and Chris Schmandt

MOTIVATION

Speech is a powerful, flexible, and familiar interaction modality -- after all, conversation is
the medium of choice in human relations. Although speech recognizers promise to bring
this rich, expressive channel to human-computer interaction, spoken language systems will
never succeed commercially unless they compensate for imperfect recognition. Given the
choice between a difficult-to-learn interface that works and one that is intuitive but
unreliable, users will opt for the former.

The canonical approach to improving recognition performance is to reduce perplexity, the
number of utterances the recognizer is asked to listen for. Restricting the vocabulary may
prove useful where the options can be represented by a few key words. If the number of
choices is large, however, restricting the vocabulary is not an option. If for example, the
user is allowed to ask the price of any stock on the New York Stock Exchange, the
perplexity is necessarily in the thousands. Poor recognizer performance is inevitable.

Many long lists will consist of names. Names present a special challenge for speech
recognizers (as will be discussed below). Whether choosing between companies on the
stock market, cities in a travel guide, friends in a rolodex, or artists in a jukebox, users
must have alternative methods of specifying names when the speech recognizer fails.

WHY NAME RECOGNITION IS HARD

Recognizers can generally be divided into two groups: speaker-dependent and speaker-
independent. The former is intended for a single user, whereas the latter is designed to be
used by anyone.

A speaker-dependent recognizer may outperform a speaker-independent one on lists of high
perplexity since its speech templates are tuned for a particular speaker through training.
Precisely this training, however, renders speaker-dependent recognizers intractable for
large lists: who wants to train the entire list of NYSE stocks? The setup for such a large list
may prove too great a barrier for first-time users. Long-term users may be frustrated, as
well, since the constant training of new names in a rolodex may be annoying.

Speaker-independent recognizers do not require user-specific training. Instead, they operate
by pattern-matching against phonetic models. Words to be recognized are specified in a
lexicon as a sequence of phonemes. Each phoneme has a number of possible spectral
representations based on training data collected from a number of speakers. The recognizer,
given a stream of audio, computes how closely the user’s utterance matches the
concatenated spectral characteristics of a phoneme strings which make up various words
and then returns the word with the best score. Since the process is essentially one of
finding the best match from the vocabulary, the difficulty of the task increases with
vocabulary size.

Since the models are trained before the fact, neither setup nor maintenance costs are of
concern. Shorter, simpler ramp-up may make personal speech systems more appealing.

And any system with an unknown or dynamic user population, such as a 1-800 weather
service or a jukebox at a bar, must use a speaker-independent system: casual users will not
want to invest more time training a system than using it!

Grammar for Name Recognition
Start(name).
name ---> Aaron
name ---> Barbara
name ---> David
name ---> Eric
name ---> Franklin
name ---> Kim
name ---> Jim
name ---> Philip
name ---> Smith
name ---> Smithson
name ---> Tim

Lexicon of Proper Names
namelex:
Aaron: ER AX N
Barbara: B AR B R AX
David: D EY V AX D
Eric: ER IH K
Franklin: F R EY N K L IH N
Kim: K IH M
Jim: JH IH M
Philip: F IH L AX P
Smith: S M IH TH
Smithson: S M IH TH S AX N
Tim: T IH M

Proper names present a particular problem since many of them do not appear in the lexicons
of speaker-independent recognizers. Spiegel estimates that there are over 1.5 million
surnames in the United States alone. [SPIEGEL] Now, one may hand-code the series of
phonemes which represent a particular name, but this requires knowledge of not only
phonetics but also the notational conventions of the system’s speech recognizer. Although
administrators of large-scale systems may find sufficient payoff in doing so, it is doubtful
that individual users will find the price worth paying.

Pronunciations may be generated automatically using text-to-phoneme rules, but since
many proper names are of foreign origin, using English rules alone may lead to false
pronunciations. One might attempt to divine the roots of a foreign name and then apply
language-specific rules, but this is nontrivial. [VITALE] A lexicon full of faulty phonetic
representations can only result in poorer recognition. For instance, applying text-to-
phoneme rules for the name “Sidner” (SIDE-ner) results in /sihdner/. If the user then says
“Sidner” when the recognizer thinks the name is pronounced /sihdner/, the recognizer’s
chances are even worse.

SPELLING: A FALLBACK METHOD

Faced with almost certain misrecognition of proper names, the designer must devise
fallback methods for specifying one in a large list of choices. An obvious suggestion is to
spell out the desired word. Spelling can either be done continuously, with no breaks
between the letters, or discretely, where each letter is prompted and processed individually.

Continuous-letter spelling

With a speech recognizer, recognizing the spelling of a name is not much different from
recognizing the name itself. Each letter in the alphabet is in fact made up a phonemes: ‘s’,
for example, contains two phonemes: /eh/ and /s/. Thus the phoneme string which makes
up the word is replaced by the phoneme string which makes up the list of letters that spell
out the word. Chances are that the phoneme string for the letters will be longer than that for
the name, and so the recognizer has more data to work from in distinguishing the various
names, improving recognition. The diagram below compares the phonemes which make up
the pronunciation of the name “Tommy” with its spelling. The spoken word has four
phonemes whereas the spelling has nine, over twice as many.

Tommy: T-AA-M-IY

T-o-m-m-y: T-IY-OU-EH-M-EH-M-W-AY

This approach is far from foolproof, however. Certain liabilities of speech recognizers are
exacerbated by continuous spelling. A major difficulty in speaker-independent recognition
is the variation in speakers’ pronunciations. This may be even more true in the case of
spelling; in addition to varying their pronunciation, people spell at different words at
different rates. I’ll spell my own last name “M-A-R-X” very quickly, whereas someone
else’s name may require more concentration. In fact, I may alter the rate of spelling within
a word. I may spell partway, stop to think, and then continue on, as seems to always be the
case with “Y-A-N-<pause>-K-E-L-O-<quickly>-VICH”. While I paused, the recognizer
may have sensed the silence, assumed I was finished, and gone off to process the
incomplete utterance.

Continuous spelling lacks the constraint of length. Since the user does not pause between
letters, and since names are spelled at different rates, confusion can arise with respect to
how many letters were spoken. For instance, “MARX” and “MARKS” could be mistaken
for each other.

In summary, several factors may conspire to produce an incorrect recognition of a name
spelled out continuously. Although careful user attention to meter and speed may improve
the chances of correct recognition, there is no guarantee that the system will make the right
guess. (Shifting the burden to the user is the wrong interface approach anyway.) In short,
continuous spelling is not reliable.

Discrete-letter spelling

Discrete-letter spelling offers a reliable system for spelling names. Spelling a name one
letter at a time, prompting for each letter individually, overcomes some pitfalls of
continuous spelling. Since the letters are separated, there is an added constraint of length.
The recognizer knows exactly how many letters have been spoken. Additionally, since each
letter is prompted for individually, there is no variation in the rate of spelling or danger of
coarticulated letters being interpreted as a single letter. “MARX” will never be mistaken for
“MARKS”.

A further advantage is gained by processing each letter separately. If a name can be
uniquely specified with fewer than all of its letters, then time is save. For instance, if the
user wants to specify “Franklin” and that is the only name in the list beginning with ‘F’, the
user need only say ‘F’; the system will figure out that “Franklin” is intended .

One obstacle not overcome by discrete spelling – exacerbated, in fact – is the high
confusability of individual letters: although the perplexity of the letters is only 26, many
letters are so similar as to be indistinguishable. The most obvious groupings are those
consonant letters sharing a vowel in their individual pronunciation, such as the “e-set”: ‘b’,
‘c’, ‘d’, ‘e’, ‘g’, ‘p’, ‘t’, ‘v’, ‘z’. The vowel sound dominates the pronunciation with only
minimal influence from the consonants; thus the letters in the e-set are difficult to
distinguish. (An “a-set” and “eh-set” exist as well.) There also exists a set of fricatives

easily confused: ‘s’ and ‘x’ share a voiceless fricative /s/. Consonants which differ only in
voicing, such as ‘p’ and ‘b’, are easy to confuse, as well.

Anyone who has spelled their name and address over the phone is well-acquainted with
these problems. Inevitably, operators question “is that ‘b’ as in boy or ‘p’ as in Paul?”. If
only one or two letters is confusable, this may be an option, but as the confusability matrix
below shows, multiple are often mistaken for each other. Asking, “is that ‘b’ as in boy, ‘c’
as in cat, ‘d’ as in dog, ‘g’ as in garden, ‘p’ as in pumpkin, ‘t’ as in Tom, ‘v’ as in
vacation, or ‘z’ as in zeppelin?” is overwhelming.

One method of scaling down the technique for use by recognizers is to specify a one-to-one
mapping from each letter onto a word beginning with that letter -- words which themselves
are not confusable. One such set is the “alpha bravo charlie” convention used by the
military. Although the perplexity is still 26, the confusability is much lower since the words
are not easily mistaken for each other. This system is purportedly robust and may have
advantages for those willing to master the convention, yet the learning curve is too high for
first-time or casual users of public systems.

Wishing to avoid a steep learning curve, we reject the “alpha bravo charlie” method of
disambiguation -- indeed, we disdain the notion of forcing the user to learn foreign
conventions in order to compensate for the recognizer’s poor performance. Instead, we
offer an algorithm for implicitly (i.e., without user input) disambiguating spoken letters.

Given that individual letters are often confused by the recognizer, we build a confusability
matrix which describes the space of possible letter misrecognitions. This matrix consists of
the confusable sets described above and the idiosyncratic misrecognitions of the individual
recognizer. The confusability matrix for Dagger, a speaker-independent continuous-speech
recognizer from Texas Instruments, is shown below. It was constructed by saying each
letter in the alphabet 100 times (using multiple speakers) and recording which letters the
recognizer thougt it heard. (Ideally, the same speakers would be used to construct this
matrix as were used to collect the training data.)

A certain letter returned by the recognizer could have been spoken by the user as...
a --> ah h --> ah n --> anrs t --> dept
b --> abdepvz i --> iy o --> lo u --> qu
c --> ctz j --> adgjktz p --> cdepvz v --> bdepvz
d --> cdvz k --> adjkq q --> qu w --> fmnw
e --> e l --> l r --> iry x --> sx
f --> fx m --> mn s --> fs y --> y
g --> gt z --> defnstvxz

The table is read as such: either a ‘d’, ‘e’, ‘f’, ‘n’, ‘s’, ‘t’, ‘v’, ‘x’, or ‘z’ returned by the
recognizer could mean that the user said ‘z’. By contrast, if the recognizer returns ‘l’, we
can be completely sure that the user said ‘l’. The letter ‘z’ is perhaps the hardest to identify,
since any of nine letters could be confused for it.

The confusability matrix above is constructed on the assumption that the recognizer is
listening for all 26 letters. In normal use, however, this is not necessary. In many lists, for
instance, no name will begin with ‘q’ or ‘z’. Thus to listen for either is wasted effort and
may lead to the consideration of irrelevant names whose letters match those in the
confusability set for ‘z’. As the list shrinks, fewer and fewer letters are relevant. To take
advantage of these added constraints, we listen for only the relevant letters. Note that we

could, but do not construct a separate confusability matrix for each of the 26! subsets of the
alphabet since the irrelevant alternatives are automatically screened out.

The algorithm whittles down a large list of names gradually until either a unique name can
be converged upon, or until the user has specified all the letters in the name (signified by
saying “that’s all” instead of a letter). If the system converges upon a single name with
fewer than N letters, where N is the length of the desired name, the system will tell the
present the user with the name. If the user has finished and only one of the possible
matches meets the constraint of length, the system will return the appropriate match. If the
user has finished and several names match, the system goes through the remaining names
one by one and asks for confirmation.

Implicit disambiguation of spoken letters works primarily because the vowels a,e,i,o,u are
robustly distinguished by the recognizer. An ‘a’ returned by the recognizer was either a
spoken ‘a’ or ‘h’, an ‘e’ was most certainly an ‘e’, an ‘i’ was either an ‘i’ or a ‘y’, an ‘o’
was an ‘o’, and a ‘u’ was a ‘q’ or a ‘u’. Since each vowel is confusable with at most one
other letter, the chances of converging are heightened.

Examples of discretely spelling names

In the following examples, we assume that the user spells the name correctly. In some
cases the recognizer will get the letters right; in others, it will make mistakes. For these
examples we will assume the following list of names:

{Aaron, Barbara, Charles, David, Danny, Dazzle, Dennis, Eric, Franklin, Kim, Jim, Philip, Smith,
Smithson, Tim, Van}

1. Assume the user wants to specify the name David, and that the recognizer gets each letter
right. The system will converge without needing to hear all the letters in the name.

The user says the letter D.
The recognizer listens for A,B,C,D,E,F,K,J,P,S,T,V (the first letter in each name)
and hears D.
Consulting the confusability matrix, D is replaced by {C,D,V,Z}.
Charles, David, Danny, Dazzle, Dennis, and Van have a C,D,V or Z in the initial
position.
We reduce the list to {Charles, David, Daniel, Dazzle, Dennis, and Van}.

The user says the letter A.
The recognizer listens for A,E,H (the second letter in each name) and hears A.
Consulting the confusability matrix, A is replaced by {A,H}.
Charles, David, Danny, Dazzle and Van (but not Dennis!) have an A or H in the
second position
We reduce the list to {Charles, David, Daniel, Dazzle, Van}.

The user says the letter V.
The recognizer listens for A,V,N and hears V.
Consulting the confusability matrix, V is replaced by {B,D,E,P,V,Z}.
Both David and Dazzle have a B, D, E, P, V or Z in the third position.
We reduce the list to {David, Dazzle}.

The user says the letter I.
The recognizer listens for I,Z and hears I.
Consulting the confusability matrix, I is replaced by {I}.
Only David has an I in the third position.
We reduce the list to {David}.

The system returns the name “David”, having only needed the four letters DAVI to
uniquely specify the name.

2. Assume again that the user wants to specify the name David, but this time that the
recognizer performs dreadfully. The system will still converge to one name.

The user says the letter D.
The recognizer listens for A,B,C,D,E,F,K,J,P,S,T,V and hears V.
Consulting the confusability matrix, V is replaced by {B,D,E,P,V,Z}.
Barbara, Danny, David, Dazzle, Dennis, Eric, Philip, and Van have a B, D, E,
P, V or Z in the initial position.
We reduce the list to {Barbara, Daniel, David, Dazzle, Dennis, Eric, Philip, Van}.

The user says the letter A.
The recognizer listens for A,E,R,H and hears H.
Consulting the confusability matrix, H is replaced by {A,H}.
Barbara, Danny, David, Dazzle, Philip, and Van have an A or H in the second
position
We reduce the list to {Barbara, Daniel, David, Dazzle, Philip, Van}

The user says the letter V.
The recognizer listens for I,N,V,Z and hears Z.
Consulting the confusability, Z is replaced by {D,E,F,N,S,T,V,X,Z}.
Danny, David, Dazzle, and Van have a D, E, F, N, S, T, V, X, or Z in the third
position.
We reduce the list to {Danny, David, Dazzle, Van}.

The user says the letter I.
The recognizer listens for N,I,Z and hears I.
Consulting the confusability matrix, I is replaced by {I}.
Only David has an I in the third position.
We reduce the list to {David}.

The system returns the name “David”, having only needed the four letters DAVI to
uniquely specify the name, even though the recognizer misrecognized them as VHZR.

3. Assume that the user wants to specify the name Smith. Assume that the recognizer heard
the letters SMITH correctly and was able to reduce the list to {Smith, Smithson}. This
time, two names match though the intended name has been spelled out.

The user says the phrase “that’s all”.
The system incorporates the constraint of length to converge on one name. Since
five letters have been spoken, and “Smith” has five letters whereas “Smithson” has
seven, only “Smith” could have been meant.
The list is reduced to {Smith}.

The system returns the name “Smith”, having needed five letters plus the delimiter
“that’s all” to infer which name was meant.

4. Assume that the user wants to specify the name Jim. Assume that the recognizer
recognizes the letters correctly, which reduces the list to {Kim, Jim, Tim}. Again, three
names match though the intended name has been fully spelled out.

The user says the phrase “that’s all”.
The system incorporates the constraint of length, looking only for names of length
three. But this includes {Kim, Jim, Tim}, so the length constraint has not helped.
The system falls into interactive disambiguation mode.

The system asks “Was it Kim?”
The user says no, and the list is reduced to {Jim, Tim}.

The system asks “Was it Jim?
The user says yes, and the name Jim is returned.

The system needed all three letters plus “that’s all” plus interaction with the user to
specify the name.

EVALUATION

Algorithm performance

Assuming that the spoken letters are recognized within the confusability matrix, the system
will either converge to one name or come up with several names which could match the
letters; the latter case is known as a collision. Since collisions require further effort on the
part of the user in disambiguating among the possibilities, we take as the measure of the
algorithm’s performance how often it can avoid collisions.

Several sample sets were input to the algorithm to test its performance. Misrecognition of
individual letteres was simulated by “mutating” the words -- switching each letter with one
randomly selected from its corresponding set in the confusability matrix. For instance,
“Marx” might be given to the algorithm as “Njrs”, “Mkrx”, or “Marx”. Then, using as few
letters as possible, the algorithm attempts to decipher which name the user was spelling.

The table below describes the results of this testing. For each sample set, six measurements
are presented: (1) the average number of letters per word (calculated independent of the
algorithm); (2) the number of words in the set which could be converged upon given a
random mutant of the original word; (3) the average number of letters per word required to
converge; (4) the number of collisions or words which couldn’t be converged upon -- that
is, a word whose mutant leads to more than one name; (5) the same statistic represented as
a percentage; (6) the average number of names involved in a collision -- how many names
the user must then choose between.

desccription of word
set

avg. letters
per word

uniquely
specified

of letters
required

of
collisions

% of words
colliding

avg. # words
per collision

108 rolodex names 6.67 108 3.4 0 0 0

361 first names 5.19 284 4.3 77 21.40 2.4

1620 technical words 10.00 1505 5.8 115 7.10 2.6

5306 NYSE stocks 14.79 5266 7.4 40 0.08 2.3

6070 last names 6.74 5272 6.4 798 13.20 2.3

30312 words (Oxford) 8.08 23418 7.6 6894 22.10 not available

The data show that it is feasible to use spelling as a fallback method of spelling even in
large lists. Even in the list of over 6000 names, a unique name could be converged upon
nearly 9 times out of 10. And where the name could not be completely resolved, the user
had to choose between only two or three options.

Two main factors affect performance: the number of words and their average length.
Although the set of technical words is larger than the set of first names, performance is
better since the average length is greater. In fact, the algorithm performed almost as well on
the Oxford English Dictionary, which is almost 100 times the size with an average length
barely 1 1/2 times that of the list of first names.

The most impressive performance is on the set of NYSE stocks. Nearly as large as the set
of last names, its company names can be spelled almost without collision due to their long
length. Clearly a stock system using this algorithm to compensate for poor recognizer
performance would be relieable. By the same token, names in a rolodex like the one tested
could be specified with confidence.

These results are comparable to those obtained for disambiguation of names entered via a
TouchTone keypad. Davis found a 5.9 percent collision for the same 6000+ name database
when using Touchtones as compared to 13.2 percent as we found for speech recognition
[DAVIS]. The results for the dictionary test were similar: Davis used a dictionary of 48,000
words but with the same average letters per word; he found that 11% of the words collided
-- again, half the rate of this algorithm.

It is no surprise that the TouchTone error rate is smaller, for each letter is confusable with
two others on a standard keypad, whereas a letter like ‘b’ is confusable with six others.
Though the number of collisions for speech is double that of TouchTones, the number of
words-per-collision is comparable; for both speech and TouchTones, most collisions
involve two or three words.

Usability

Performance has the easy metric of convergence; usability is not so easily determined. The
motivation for this paper was to make speech recognition systems more usable by
providing a reliable method of specifying names when recognition fails. Indeed, few things
are as exasperating as repeating a command to a speech system that just isn’t getting it.
Being able to overcome errors in recognition of proper names by spelling is a boon to
users.

How long it takes to spell words out, however, is another question entirely. Clearly,
spelling a word takes longer than saying it, particularly when each letter is prompted
individually. Spelling “Marx” discretely can take ten seconds instead of one second to say
it. Still, if spelling is the only way to get the system to recognize the name, the extra time
may be worth it. A study would be worthwhile to determine if this is so.

Another aspect of spelling names is dealing with collisions. Though collisions occur with
varying frequency, they take extra time to deal with and drop the user into yet another
modality, that of answering ‘yes’ or ‘no’ to the question “Is it <name>?” If the user has
already said the name, spelled it continuously, and spelled it discretely, a fourth step may
prove to be too much.

The need to explicitly or interactively disambiguate names is not unique, however. Many
lists may contain duplicate entries which require disambiguation: in my rolodex, for
example, I have several entries with the last name of “Marx”. Regardless of whether I
speak the name, spell it out, or type it on a keyboard, I will have to explicitly disambiguate
by saying which of the several Marxes I meant. Hence, although spelling names with a
speech recognizer may require some explicit disambiguation on the part of the user, this
may only increase the amount of disambiguation already required in the system. It is not an
additional task.

CONCLUSION

As many speech systems will be used to let users select an item from a potentially large
menu, it is essential that reliable methods of specifying an item are available. Present
recognizers do not provide robust recognition where perplexity is high, and even as
recognizers improve, they will be situated in noisy environments such as airports and used
over noisy channels such as cellular phones which will limit their performance. Hence
spelling names may be a fallback technique, but it is not a temporary one.

Spellings usually converge to a single name, and where they do not, the user’s task is
usually as simple as choosing between two or maybe three alternatives. As many lists will
contain duplicate entries requiring explicit disambiguation anyway, the additional effort
required by the user to disambiguate collisions is unlikely to present an unreasonable
burden.

Robust name specification by spelling opens up many possibilities for real-world
deployment of speech recognition systems. Dialup services which require the user to
specify a name, be it a city, state, stock, musical artist, or family member can perform
reliably, even when recognition fails. Dictation systems can offer spelling as a means for
specifying words which fail to be recognized. Speech recognition systems, supported by
the fallback method of spelling misrecognized names, can match TouchTone systems for
reliability while eclipsing them in usability.

ACKNOWLEDGMENTS

Thanks to Charles Hemphill at Texas Instruments for his countless hours of help with
recognizer issues, and to Raja Rajasekaran for making it possible for us to use Dagger.

This work was sponsored by Sun Microsystems.

REFERENCES

[DAVIS] Davis, Jim. “Let Your Fingers do the Spelling: Implicit Disambiguation of
Words Spelled With the Telephone Keypad.” Journal of the American Voice
I/O Society, 9:57-66, March 1991.

[SPIEGEL] Spiegel, M.F. “Pronouncing Surnames Automatically.” In Proceedings of
the 1985 Conference. San Jose, CA: American Voice I/O Society, September
1985.

[VITALE] Vitale, T. “An Algorithm for High Accuracy Name Pronunciation by a
Parametric Speech Synthesizer.” Journal of computational Linguistics,
17(1):257-276, 1991.

