
Designing SpeechActs:
Issues in Speech User Interfaces

Nicole Yankelovich, Gina-Anne Levow†, Matt Marx‡

Sun Microsystems Laboratories
Two Elizabeth Drive

Chelmsford, MA, USA 01824
508-442-0441

nicole.yankelovich@east.sun.com

ABSTRACT
SpeechActs is an experimental conversational speech sys-
tem. Experience with redesigning the system based on user
feedback indicates the importance of adhering to conversa-
tional conventions when designing speech interfaces, par-
ticularly in the face of speech recognition errors. Study
results also suggest that speech-only interfaces should be
designed from scratch rather than directly translated from
their graphical counterparts. This paper examines a set of
challenging issues facing speech interface designers and
describes approaches to address some of these challenges.

KEYWORDS: Speech interface design, speech recognition,
auditory I/O, discourse, conversational interaction.

INTRODUCTION
Mobile access to on-line information is crucial for traveling
professionals who often feel out of touch when separated
from their computer. Missed messages can cause serious
inconvenience or even spell disaster when decisions are
delayed or plans change.

A portable computer can empower the nomad to some
degree, yet connecting to the network (by modem, for
example) can often range from impractical to impossible.
The ubiquitous telephone, on the other hand, is necessarily
networked. Telephone access to on-line data using touch-
tone interfaces is already common. These interfaces, how-
ever, are often characterized by a labyrinth of invisible and
tedious hierarchies which result when menu options out-
number telephone keys or when choices overload users’
short-term memory.

Conversational speech offers an attractive alternative to
keypad input for telephone-based interaction. It is familiar,

requires minimal physical effort for the user, and leaves
hands and eyes free. And since physical space presents no
constraint for a speech system, the number of commands is
virtually unlimited.

Implementing a usable conversational interface, however,
involves overcoming substantial obstacles. Error-prone
speech recognizers require the system to emphasize feed-
back and verification, yet the time it takes to identify and
repair errors can be tiring. Further, conversational inter-
faces are young, and transferring design principles from
other media such as graphics can lead to unusable systems.
Despite these problems, we, along with others [6, 9, 10, 11],
believe the technology good enough and the promise excit-
ing enough to make experimentation worthwhile.

In the SpeechActs project, we seek to identify principles
and challenges of conversational interface design and to
pinpoint limitations of current technology. In so doing, we
hope to define useful avenues for research and suggest
strategies for addressing the difficult problems facing
speech user interface designers.

In this paper, we first describe the functionality of the
SpeechActs system. We then explain our methodology,
including usability testing and iterative redesign. We con-
clude with speech user interface design challenges and
strategies for meeting those challenges in a speech-only
environment.

THE SpeechActs SYSTEM
SpeechActs is a research prototype that integrates third-
party speech recognition and synthesis with telephony, nat-
ural language processing capabilities, and other tools for
creating speech applications. For an overview of the
SpeechActs architecture, see [13]. To date, the system
includes speech-only interfaces to a number of applications
including electronic mail, calendar, weather, and stock
quotes.

With the mail application, which uses Sun’s Mail Tool
backend, users can hear their messages, skip forward or
backward from one header to the next, fax a message, reply
to a message, or initiate a new message to a person on their
short list of names known to the speech recognizer. To fax
messages, users can say the name of a predefined location

CHI ‘95 Conference on Human Factors in Computing Sys-
tems, Denver, CO, May 7-11, 1995.

† Normally resides at the MIT AI Laboratory.

‡ Normally resides at the MIT Media Laboratory.



2

(i.e., work, home) or can specify a fax number by using
telephone keypad input. When sending a message, the user
has the option of including the current message and/or
including a recorded audio attachment. Following is an
example of a typical interaction with the mail application:

SpeechActs: You have 14 new messages and 47 old
messages. The first new message is from
Eric Baatz regarding “report completed.”

User: Let me hear it.

SpeechActs: “The first draft is ready for your com-
ments. Eric.”

User: Reply and include the current message.

SpeechActs: Preparing message to Eric Baatz. Begin
recording after the tone. When finished,
pause for several seconds.

User: Eric, I’ll get those to you this afternoon.

SpeechActs: Say cancel, send, or review.

User: Send.

SpeechActs: Message sent. What now?

User: Next message.

SpeechActs: New message two from Stuart Adams,
subject “Can we meet at 3:00 today?”

User: Switch to calendar...

The SpeechActscalendar interface, based on Sun’s Calen-
dar Manager application, allows users to browse their own
calendar as well as the calendars of other users on their
short list. When the user requests information, the applica-
tion reads them all the events on a selected day. Typical cal-
endar queries include:

What do I have tomorrow?

What about Bob?

What did he have last Wednesday?

And next Thursday?

What was Paul doing three days after Labor Day?

Theweather application provides an interface to the Uni-
versity of Michigan’s on-line Weather Underground fore-
casts. Users can call up and ask for weather for states and
for major cities around the country. For example, the user
can say:

What’s the weather in Seattle?

How about Texas?

I’d like the extended forecast for Boston.

Like the weather application, thestock quotes application
provides a speech interface to a dynamic data feed. The
user is able to ask for the prices of selected stocks, ask
about their highs, lows, and volume, or ask for the prices of
stocks in their portfolio (a stored list of stocks). Sample
queries include:

What’s the price of Sun?

What was the volume?

Tell me about IBM.

How’s my portfolio doing?

As with multiple graphical applications running in the same
environment, SpeechActs supports a standard set of func-
tions that are always available in any application. For
example, the user may always switch to a different applica-
tion, ask for help, or end a session by saying “good bye.”

USER STUDY / ITERATIVE DESIGN
Before the SpeechActs software was written, we conducted
a survey and a field study [12] which served as the basis for
the preliminary speech user interface (SUI) design. Once
we had a working prototype, we conducted a usability study
in which we adhered to Jakob Nielsen’s formative evalua-
tion philosophy of changing and retesting the interface as
soon as usability problems are uncovered [8]. As a result,
the formative evaluation study involved small groups of
users and a substantial amount of iterative redesign.

Formative Evaluation Study Design
Fourteen users participated in the study. The first two par-
ticipants were pilot subjects. After the first pilot, we rede-
signed the study, solved major usability problems, and fixed
software bugs. After the pilots, nine users, all from our tar-
get population of traveling professionals, were divided into
three groups of three. Each group had two males and one
female. An additional three participants were, unconven-
tionally, members of the software development team. They
served as a control group. As expert SpeechActs users, the
developers provided a means of factoringout the interface
in order to evaluate the performance of the speech recog-
nizer.

After testing each group of target users, we altered the
interface and used the next group to validate our changes.
Some major design changes were postponed until the end
of the study. These will be tested in the next phase of the
project when we plan to conduct a longer-term field study
to measure the usefulness of SpeechActs as users adapt to it
over time.

Tasks
During the study, each participant was led into a room fash-
ioned like a hotel room and seated at a table with a tele-
phone. They were asked to complete a set of 22 tasks,
taking approximately 20 minutes, and then participate in a
follow-up interview.

The tasks were designed to help evaluate each of the four
SpeechActs applications, as well as their interoperation, in
a real-life situation. To complete the tasks, participants had
to read and reply to electronic mail, check calendar entries
for themselves and others, look up a stock quote, and
retrieve a weather forecast.



3

Instead of giving explicit directions, we embedded the tasks
in the mail messages. Thus the single, simple directive
“answer all new messages that require a response” led to
the participants executing most of the tasks desired. For
example, one of the messages read as follows: “I under-
stand you have access to weather information around the
country. If it's not too much trouble, could you tell me how
warm it is going to be in Pittsburgh tomorrow?” The partic-
ipant had to switch from the mail application to the weather
application, retrieve the forecast, return to the mail applica-
tion, and prepare a reply.

Although the instructions for completing the task were
brief, participants were provided with a “quick reference
card” with sample commands. For example, under the
heading “Mail” were phrases such as “read me the first
message,” “let me hear it,” “next message,” “skip that one,”
“scan the headers,” and “go to message seven.” In addition,
keypad commands were listed for stopping speech synthe-
sizer output and turning the recognizer on and off.

Summary of Results
After testing the first group of users, we were able to iden-
tify the main problems in the interface. Each of our users
bemoaned the slow pace of the interaction, most of them
thought the computer gave too much feedback, and almost
everyone insisted that they be able to interrupt the speech
output with their voice. Most egregious was our inappropri-
ate translation of the Sun Mail Tool message organization
into speech. A technique that worked well in the graphical
interface turned out to be confusing and disorienting in the
speech interface. Details about this problem with message
organization along with other design-related study results
are woven into the discussion on design challenges in the
following section.

In the study, our main aim was not to collect quantitative
data; however, the data we gathered did suggest several
trends. As hoped, we noticed a marked, consistent decrease
in both the number of utterances and the amount of time
required to complete the tasks from one design cycle to the
next, suggesting that the redesigns had some effect. On
average, the first group of users took 74 utterances and 18.5
minutes to complete the tasks compared to the third group
which took only 62 utterances and 15 minutes (Table 1).

Table 1. Average number of utterances and time to complete tasks.

At the start of the SpeechActs project, we were aware that
the state of the art in speech recognition technology was not
adequate for the conversational applications we were build-
ing. One of our research questions was to determine if cer-

Participants Utterances Time (minutes)

Group 1 74 18.67
Group 2 63 16.33
Group 3 62 15.00
Developers 43 12.33

tain types of interface design strategies might increase
users’ success with the recognizer. Unfortunately, none of
our redesigns seemed to have an impact on recognition
rates—the number of utterances that resulted in the system
performing the correct action. They remained consistent
among the groups, with the developers showing about a
10% better rate than the first-time users. More significant
than the design was the individual; for instance, female par-
ticipants, on average, had only 52% of their utterances
interpreted correctly compared to 68.5% for males. Even
with these low recognition rates, the participants were able
to complete most of the 22 tasks. Males averaged 20 com-
pleted tasks compared to 17 for females (Table 2).

Table 2. Average recognition rates and number of tasks com-
pleted..

Paradoxically, we found that recognition rates were a poor
indicator of satisfaction. Some of the participants with the
highest error rates gave the most glowing reviews during
the follow-up interview. It is our conclusion that error rates
correlate only loosely with satisfaction. Users bring many
and varying expectations to a conversation, and their satis-
faction will depend on how well the system fulfills those
expectations.

Moreover, expectations other than recognition performance
colored users’ opinions. Some participants were expert at
using Sun’s voice mail system with its touch-tone
sequences that can be rapidly issued. These users were
quick to point out the slow pace of SpeechActs; almost
without exception they pointed out that a short sequence of
key presses could execute a command that took several sec-
onds or longer with SpeechActs.

Overall, participants liked the concept behind SpeechActs
and eagerly awaited improvements. Barriers still remain,
however, before a system like SpeechActs can be made
widely available. The next section provides a more in-depth
discussion of the challenges inherent in speech interfaces as
well as solutions to some of these suggested by our users’
experience with SpeechActs.

DESIGN CHALLENGES
In analyzing the data from our user studies, we have identi-
fied four substantial user interface design challenges for
speech-only applications. Below is a description of each
challenge along with our approach to addressing the chal-
lenge.

Challenge: Simulating Conversation
Herb Clark says that “speaking and listening are two parts
of a collective activity” [1]. A major design challenge in

Participants Recog. Rates Tasks Completed

Female 52% 17
Male 68.5% 20
Developers 75.3% 22



4

creating speech applications, therefore, is to simulate the
role of speaker/listener convincingly enough to produce
successful communication with the human collaborator. In
designing our dialogs, we attempt to establish and maintain
what Clark calls acommon ground or shared context.

To make the interaction feel conversational, we avoid
explicitly prompting the user for input whenever possible.
This means that there are numerous junctures in the conver-
sational flow where the user must take the initiative. For
example, after a mail header is read, users hear a prompt
tone. Almost all users comfortably take the lead and say
something appropriate such as “read the message,” or “skip
it.” In these cases, we adequately establish a common
ground and therefore are rewarded with a conversation that
flows naturally without the use of explicit prompts.

When we engaged users in a subdialog, however, study par-
ticipants had trouble knowing what to say, or even if it was
their turn to speak, when the subdialog concluded. The
completion of a subdialog corresponds to adiscourse seg-
ment pop in the discourse structure terminology described
by Grosz & Sidner [3]. When the subdialog is closed, the
context returns to that preceding the subdialog. For exam-
ple, the user might read a string of messages and then come
across one that requires a response. In the reply subdialog,
the user has to decide whether or not to include the current
message, has to record the new message, and, perhaps, has
to review the recording. When finished, the user is back to a
point where he or she can continue reading messages. In the
Mail Tool graphical user interface (GUI), the reply
sequence takes place in a pop-up window which disappears
when the user sends the message, and their previous context
is revealed. We found that we needed an analogous signal.

Our first attempt to provide a discourse pop cue—a prompt
tone at the end of the subdialog—failed. We considered the
use of an intonational cue, which is one technique used by
human speakers. Since our synthesizer could not produce a
clear enough intonational cue, we included an explicitcue
phrase—“What now?”—to signal the discourse pop. Sur-
prisingly, this small prompt did, in fact, act to signal the
subdialog’s completion and return the user to the main
interactional context.

Prosody. Prosody, or intonation, is an important element in
conversations, yet many of the synthesizers available today
do a poor job reproducing human-sounding intonational
contours. This means that many types of utterances used by
humans cannot be employed in the speech interface design.
For example, as an alternative to the phrase “What did you
say?”, we tried to use “hmm?” and “huh?”, but could not
reproduce the sounds convincingly.

Despite the lack of good prosodics, most of our study par-
ticipants said the speech output was understandable. On the
other hand, many complained that the voice sounded
“tinny,” “electronic,” or “choppy.”

Pacing. Another important aspect of conversation involves
pacing. Due to a variety of reasons, the pacing in
SpeechActs applications does not match normal conversa-
tional pacing. The pauses in the conversation resulting from
recognition delays, while not excessively long by graphical
interaction standards, are just long enough to be perceived
as unnatural. One user commented: “I had to get adjusted to
it in the beginning...I had to slow down my reactions.”

In addition, the synthesizer is difficult to interrupt due to
cross-talk in the telephone lines which prevents the speech
recognizer from listening while the synthesizer is speaking.
In the implementation used by study participants, users had
to use keypad input to stop the synthesizer from speaking.
Unfortunately, as Stifelman also found [11], users had a
strong preference for using their voice to interrupt the syn-
thesizer. A user said: “I kept finding myself talking before
the computer was finished. The pacing was off.”

We have identified several strategies to improve pacing.
First, we are experimenting with abarge-in technique that
will allow users to interrupt the speech synthesizer using
their voice. Second, we would like users to be able to speed
up and slow down the synthesized speech. This way they
could listen to familiar prompts and unimportant messages
quickly, but slow the speaking down for important informa-
tion. We are also considering adding keypad short-cuts for
functions common to all applications (e.g., next, previous,
skip, delete, help, etc.). This will allow advanced users to
move more quickly through the information, skipping
prompts when appropriate. Another potential aid for
advanced users, which Stifelman recommends [11], is
replacing some of the spoken prompts with auditory icons
or sounds that evoke the meaning of the prompt.

Challenge: Transforming GUIs into SUIs
Since one of the goals of the SpeechActs project is to
enable speech access to existing desktop applications, our
initial SUI designs were influenced by the existing graphi-
cal interfaces. Our user studies, however, made it apparent
that GUI conventions would not transfer successfully to a
speech-only environment. The evolution of our SUI design
shows a clear trend towards interpersonal conversational
style and away from graphical techniques.

Vocabulary. An important aspect of conversation is vocabu-
lary. We discovered early on that the vocabulary used in the
GUI does not transfer well to the SUI. As much as they may
use a piece of software, users are not in the habit of using
the vocabulary from the graphical interface in their work-
related conversations. Here is one of many examples from
our pre-design field study where we analyzed human-
human conversations relating to calendars: On the tele-
phone, a manager who is a heavy user of Sun’s calendar
GUI, asked his assistant to look up information on a col-
league’s calendar:



5

Manager: Next Monday—Can you get into John's
calendar?

To access another user’s calendar in the GUI, the assistant
had to select an item (johnb@lab2) from the Browse menu.
In his request, the manager never mentioned the word
“browse,” and certainly did not specify the colleague’s user
ID and machine name. Also note his use of a relative date
specification. The graphical calendar has no concept of
“next Monday” or other relative dates such as “a week from
tomorrow” or “the day after Labor Day.” These are not nec-
essary with a graphical view, yet they are almost essential
when a physical calendar is not present.

It turned out that the assistant could not, in fact, access
John’s calendar. She received the error message: “Unable to
access johnb@lab2” Her spoken reply was:

Assistant: Gosh, I don't think I can get into his cal-
endar.

In designing each of the SpeechActs applications, we tried
to support vocabulary and sentence structures in keeping
with users’ conversational conventions rather than with the
words and phrases used in the corresponding graphical
interface. The field study as well as the formative study
both indicate that it is unlikely users will have success
interacting with a system that uses graphical items as
speech buttons or spoken commands.

Information Organization. In addition to vocabulary, the
organization and presentation of information often does not
transfer well from the graphical to the conversational
domain. The difficulties we encountered with the number-
ing of electronic mail messages illustrates the translation
problem. In Sun’s Mail Tool GUI, messages are numbered
sequentially, and new messages are marked with the letter
“N.” Thus, if you have 10 messages and three are new, the
first new message is number 8. The advantage of this
scheme is that messages retain the same number even when
their status changes from new to old. The “N” is simply
removed after a message is read.

We initially used the same numbering scheme in the SUI,
but with poor results. Even though the start-up message told
the user how many new and old messages they had, users
were uniformly confused about the first new message hav-
ing a number greater than one. When asked about their con-
cept of message numbering, users generally responded that
they expected the messages to be organized like Sun’s inter-
nal voice mail where new messages start with number 1. No
one alluded to the Mail Tool organization of messages.

We improved the situation by numbering new messages 1
to n and old messages 1 ton. Of course, this introduced a
new problem. Once a message was read, did it immediately
become old and receive a different number? Since we
wanted users to be able to reference messages by number
(e.g., “Skip back to message four.”), renumbering the mes-
sages seemed unwise. Instead, we added the concept of

“read messages,” so if users revisited a message, they were
reminded that they had already read it, but the message
numbers stayed constant until the end of the session. Fol-
lowing the changes, users consistently stated that they knew
where they were in the system, and specifically mentioned
the helpfulness of the reminder messages.

Information Flow. Just as one way of organizing information
can be clear on the screen and confusing when spoken, so it
is with information flow. A frequently used flow-of-control
convention in GUI design is the pop-up dialog box. These
are often used to elicit confirmation from the user. A typical
example is a Yes/No or OK/Cancel dialog box that acts as a
barrier to further action until the user makes a selection.
The pop-up is visually salient, and thus captures the user’s
attention. The closing of the dialog box also serves as
important feedback to the user.

We attempted to create speech dialog boxes. For example,
we wanted a confirmation from the user before sending a
new message (e.g., “Your message is being sent to Matt
Marx. Okay?”). The only acceptable answers to this ques-
tion were “yes,” “okay,” “no” and some synonyms. Users
were highly non-compliant! Some seemed confused by the
question; others simply ignored it. Some of the confusion
was understandable. Occasionally, users had said some-
thing other than “send.” If this happened, users often
repeated or rephrased their command (e.g., “review”)
instead of answering the question with a “no.” Even with-
out recognition problems, only a few users answered the
yes/no question directly. Instead, many simply proceeded
with their planned task (e.g., “Read the next message.”).
Sometimes they added “yes” or “no” to the beginning of
their phrase to acknowledge the prompt. This phenomenon
was also observed by researchers at NTT [5].

When considered in the context of spoken dialog, this
behavior is actually quite natural. As the classic example
“Do you have the time?” illustrates, yes/no questions rarely
require yes/no answers. The listener frequently has to infer
yes or no, or pick it out from the context of a larger utter-
ance.

Not being able to count on reliable answers to yes/no ques-
tions can be problematic from a design standpoint since
designing for errors is a necessity in the speech arena. We
handled this problem in a number of different ways. First,
we removed as many of these spoken dialog boxes as possi-
ble. Where we felt confirmation was necessary, we allowed
users to preface commands with yes or no. If they did not,
we treated a valid command as an implicit request to “do
the right thing.” For example, in the case of the exit dialog,
“Did you say to hang up?”, we treated any valid input as an
implicit “no.” In the few rare cases where we wanted to be
absolutely sure we were able to understand the user’s input,
we used what Candace Kamm callsdirective prompts [4]
instead of using a more conversational style. For instance,
after the user has recorded a new mail message, we prompt



6

them to “Say cancel, send, or review.”

Challenge: Recognition errors
Ironically, the bane of speech-driven interfaces is the very
tool which makes them possible: the speech recognizer.
One can never be completely sure that the recognizer has
understood correctly. Interacting with a recognizer over the
telephone is not unlike conversing with a beginning student
of your native language: since it is easy for your conversa-
tional counterpart to misunderstand, you must continually
check and verify, often repeating or rephrasing until you are
understood.

Not only are the recognition errors frustrating, but so are
the recognizer’s inconsistent responses. It is common for
the user to say something once and have it recognized, then
say it again and have it misrecognized. This lack of predict-
ability is insidious. It not only makes the recognizer seem
less cooperative than a non-native speaker, but, more
importantly, the unpredictability makes it difficult for the
user to construct and maintain a usefulconceptual model of
the applications’ behaviors. When the user says something
and the computer performs the correct action, the user
makes many assumptions about cause and effect. When the
user says the same thing again and some random action
occurs due to a misrecognition, all the valuable assump-
tions are now called into question. Not only are users frus-
trated by the recognition errors, but they are frustrated by
their inability to figure out how the applications work.

A variety of phenomena result in recognition errors. If the
user speaks before the system is ready to listen, only part of
the speech is captured and thus almost surely misunder-
stood. An accent, a cold, or an exaggerated tone can result
in speech which does not match the voice model of the rec-
ognizer. Background noise, especially words spoken by
passersby, can be mistaken for the user’s voice. Finally, out-
of-vocabulary utterances—i.e., the user says something not
covered by the grammar or the dictionary—necessarily
result in errors.

Recognition errors can be divided into three categories:
rejection, substitution, and insertion [10]. Arejection error
is said to occur when the recognizer has no hypothesis
about what the user said. Asubstitution error involves the
recognizer mistaking the user’s utterance for a different
legal utterance, as when “send a message” is interpreted as
“seventh message.” With aninsertion error, the recognizer
interprets noise as a legal utterance—perhaps others in the
room were talking, or the user inadvertently tapped the tele-
phone.

Rejection Errors. In handling rejection errors, we want to
avoid the “brick wall” effect—that every rejection is met
with the same “I didn’t understand” response. Based on
user complaints as well as our observation of how quickly
frustration levels increased when faced with repetitive
errors, we eliminated the repetition. In its place, we give

progressive assistance: we give a short error message the
first couple of times, and if errors persist, we offer more
assistance. For example, here is one progression of error
messages that a user might encounter:

What did you say?

Sorry?

Sorry. Please rephrase.

I didn’t understand. Speak clearly, but don’t overempha-
size.

Still no luck. Wait for the prompt tone before speaking.

As background noise and early starts are common causes of
misrecognition, simply repeating the command often solves
the problem. Persistent errors are often a sign of out-of-
vocabulary utterances, so we escalate to asking the user to
try rephrasing the request. Another common problem is that
users respond to repeated rejection errors by exaggerating;
thus they must be reminded to speak normally and clearly.

Progressive assistance does more than bring the error to the
user’s attention; the user is guided towards speaking a legal
utterance by successively more informative error messages
which consider the probable context of the misunderstand-
ing. Repetitiveness and frustration are reduced. One study
participant praised our progressive assistance strategy:
“When you’ve made your request three times, it’s actually
nice that you don’t have the exact same response. It gave
me the perception that it’s trying to understand what I’m
saying.”

Substitution Errors. Where rejection errors are frustrating,
substitution errors can be damaging. If the user asks the
weather application for “Kuai” but the recognizer hears
“Good-bye” and then hangs up, the interaction could be
completely terminated. Hence, in some situations, one
wants to explicitly verify that the user’s utterance was cor-
rectly understood.

Verifying every utterance, however, is much too tedious.
Where commands consist of short queries, as in asking
about calendar entries, verification can take longer than pre-
sentation. For example, if a user asks “What do I have
today?”, responding with “Did you say ‘what do I have
today’?”, adds too much to the interaction. We verify the
utterance implicitly by echoing back part of the command
in the answer: “Today, at 10:00, you have a meeting with...”

As Kamm suggests [4], we want verification commensurate
with the cost of the action which would be effected by the
recognized utterance. Reading the wrong stock quote or
calendar entry will make the user wait a few seconds, but
sending a confidential message to the wrong person by mis-
take could have serious consequences.

The following split describes our verification scheme: com-
mands which involve the presentation of data to the user are
verified implicitly, and commands which will destroy data



7

or set in motion future events are verified explicitly. If a
user asks about the weather in Duluth, the system will indi-
cate that it is the report for Duluth before reading the con-
tents. The user is then free to regain control of the
interaction by interrupting the synthesizer (unfortunately
using a touch-tone command in our current implementa-
tion). If, on the other hand, the user wants to fax a 500 page
mail message, the system will check to make sure that’s
what was really meant.

Although not its primary purpose, the SpeechActs natural
language component, called Swiftus, helps to compensate
for minor substitution errors [7]. It does so by allowing the
application developer to convert phrases meaning the same
thing into a canonical form. For example, the following cal-
endar queries will all be interpreted the same way:

What does Nicole have May sixth?

What do Nicole have on May six?

What is on Nicole’s schedule May sixth?

This means that some substitution errors (e.g., “Switch to
weather,” misrecognized as “Please weather”) will still
result in the correct action.

Insertion Errors. Spurious recognition typically occurs due
to background noise. The illusory utterance will either be
rejected or mistaken for an actual command; in either case,
the previous methods can be applied. The real challenge is
to prevent insertion errors. Users can press a keypad com-
mand to turn off the speech recognizer in order to talk to
someone, sneeze, or simply gather their thoughts. Another
keypad command restarts the recognizer and prompts the
user with “What now?” to indicate that it is listening again.

Challenge: The Nature of Speech
Current speech technologies certainly pose substantial
design challenges, but the very nature of speech itself is
also problematic. For users to succeed with a SUI, they
must rely on a different set of mental abilities than is neces-
sary for successful GUI interactions. For example, short-
term memory, the ability to maintain a mental model of the
system’s state, and the capacity for visualizing the organi-
zation of information are all more important cognitive skills
for SUI interactions than for GUI interactions.

Lack of Visual Feedback. The inherent lack of visual feed-
back in a speech-only interface can lead users to feel less in
control. In a graphical interface, a new user can explore the
interface at leisure, taking time to think, ponder, and
explore. With a speech interface, the user must either
answer questions, initiate a dialog, or be faced with silence.
Long pauses in conversations are often perceived as embar-
rassing or uncomfortable, so users feel a need to respond
quickly. This lack of think time, coupled with nothing to
look at, can cause users to add false starts or “ums” and
“ahs” to the beginning of their sentences, increasing the
likelihood of recognition errors.

Lack of visuals also means much less information can be
transmitted to the user at one time. Given a large set of new
mail messages or a month’s worth of calendar appoint-
ments, there is no quick way to glance at the information.
One user said: “Not being able to view it—I was surprised
at the level of frustration it caused.”

To partially compensate for the lack of visual cues, we plan
to use both scanning and filtering techniques. For example,
during the iterative redesign we added the ability to scan
mail headers. We also plan to add functionality so that users
can have their mail filtered by topic or by user, and their
calendar entries summarized by week and by month. This
way, important messages and appointments will be called
out to the user first, eliminating some of the need to glance
at the information.

Speed and Persistence. Although speech is easy for
humans to produce, it is much harder for us to consume
[10]. The slowness of the speech output, whether it be syn-
thesized or recorded, is one contributing factor. Almost
everyone can absorb written information more quickly than
verbal information. Lack of persistence is another factor.
This makes speech both easy to miss and easy to forget.

To compensate for these various problems, we attempted to
follow some of the maxims H.P. Grice states as part of his
cooperative principle of conversation [2]. Grice counsels
that contributions should be informative, but no more so
than is required. They should also be relevant, brief, and
orderly.

Because speech is an inherently slow output medium, much
of our dialog redesign effort focused on being brief. We
eliminated entire prompts whenever possible and inter-
leaved feedback with the next conversational move so as
not to waste time.

We also eliminated extraneous words whenever possible.
By using a technique which we calltapered presentation,
we were able to shorten output considerably in cases where
we had a list of similar items. This technique basically
involves not repeating words that can be implied. In the
stock quotes application, for example, when a user asks for
his or her portfolio status, the response is something like:

Currently, Sun is trading at 32, up 1/2 since yesterday.

SGI is at 23, down 1/4.

IBM is at 69, up 1/8.

With the first stock, we establish the pattern of how the data
is going to be presented. With successive stocks, we
streamline the presentation by eliminating repetitive words.

Also in the pursuit of brevity and in an attempt not to stress
user’s short-term memory, we avoid the use of lists or
menus. Instead, we use conversational conventions to give
users an idea of what to say next. In the calendar applica-
tion, for example, we always start with “Today, you have...”
By initiating the conversation and providing some common



8

ground, it seems natural for users to respond by saying,
“What do I have tomorrow?” or “What does Paul have
today?”

Ambiguous Silence. Another speech-related problem, also
observed by Stifelman [11], is the difficulty users have in
interpreting silence. Sometimes silence means that the
speech recognizer is working on what they said, but other
times, it means that the recognizer simply did not hear the
user’s input.

This last problem is perhaps the easiest to overcome.
Clearly, the user needs immediate feedback even if the rec-
ognizer is a bit slow. We plan to add an audio cue that will
serve the same purpose as a graphical watch cursor. This
will let users know if the computer is working on their
request, leaving silence to mean that the system is waiting
for input.

CONCLUSIONS
Based on our experience designing SpeechActs, we have
concluded that adhering to the principles of conversation
does, in fact, make for a more usable speech-only interface.
Just as in human-human dialog, grounding the conversa-
tion, avoiding repetition, and handling interruptions are all
factors that lead to successful communication.

Due to the nature of speech itself, the computer’s portion of
the dialog must be both as brief and as informative as possi-
ble. This can be achieved by streamlining the design, using
tapered presentation techniques, providing short-cuts that
make use of another medium (such as touch-tones), and
making verification commensurate with the cost of the
action.

As with all other interface design efforts, immediate and
informative feedback is essential. In the speech domain,
users must know when the system has heard them speak,
and then know that their speech was recognized correctly.

Finally, we have strong evidence to suggest that translating
a graphical interface into speech is not likely to produce an
effective interface. The design of the SUI must be a sepa-
rate effort that involves studying human-human conversa-
tions in the application domain. If users are expected to
alternate between modalities, care must be taken to ensure
that the SUI design is consistent with the corresponding
graphical interface. This involves consistency of concepts
and not a direct translation of graphical elements, language,
and interaction techniques.

While interface challenges abound, we hope that working
with speech technology at this stage in its development will
provide speech vendors with the impetus to make the
improvements necessary for the creation of truly fluent
speech interfaces.

ACKNOWLEDGEMENTS
The SpeechActs project is a collaborative effort. Eric Baatz
and Stuart Adams have implemented major portions of the

framework while Paul Martin and Andy Kehler are respon-
sible for the natural language components. Special thanks
to Bob Sproull for his contributions to the architectural
design of the system.

REFERENCES

1. Clark, Herbert H.Arenas of Language Use. University
of Chicago Press, Chicago, IL, 1992.

2. Grice, H. P. “Logic and Conversation,”Syntax and
Semantics: Speech Acts, Cole & Morgan, editors, Vol-
ume 3, Academic Press, 1975.

3. Grosz, Barbara, and Candy Sidner. “Attention, Inten-
tions, and the Structure of Discourse,”Computational
Linguistics, Volume 12, No. 3, 1986.

4. Kamm, Candace. “User Interfaces for Voice Applica-
tions,” Voice Communication Between Humans and
Machines, National Academy Press, Washington, DC,
1994.

5. Kitai, Mikia, A. Imamura, and Y. Suzuki. “Voice Acti-
vated Interaction System Based on HMM-based
Speaker-Independent Word Spotting,”Proceedings of
the Voice I/O Systems Applications Conference,
Atlanta, GA, September 1991.

6. Ly, Eric, and Chris Schmandt. “Chatter: A Conversa-
tional Learning Speech Interface,”AAAI Spring Sym-
posium on Intelligent Multi-Media Multi-Modal
Systems, Stanford, CA, March 1994.

7. Martin, Paul and Andrew Kehler. “SpeechActs: A
Testbed for Continuous Speech Applications,” AAAI-
94 Workshop on the Integration of Natural Language
and Speech Processing, 12th National Conference on
AI, Seattle, WA, July 31-August 1, 1994.

8. Nielsen, Jakob. “The Usability Engineering Life
Cycle,” IEEEComputer, March 1992.

9. Roe, David, and Jay Wilpon, editors.Voice Communi-
cation Between Humans and Machines, National
Academy Press, Washington, DC, 1994.

10. Schmandt, Chris.Voice Communication with Comput-
ers: Conversational Systems, Van Nostrand Reinhold,
New York, 1994.

11. Stifelman, Lisa, Barry Arons, Chris Schmandt, and
Eric Hulteen, “VoiceNotes: A Speech Interface for a
Hand-Held Voice Notetaker, ACMINTERCHI ‘93
Conference Proceedings,Amsterdam, The Nether-
lands, April 24-29, 1993.

12. Yankelovich, Nicole. “Talking vs. Taking: Speech
Access to Remote Computers,” ACMCHI ‘94 Confer-
ence Companion,Boston, MA, April 24-28, 1994.

13. Yankelovich, Nicole and Eric Baatz. “SpeechActs: A
Framework for Building Speech Applications,”AVIOS
‘94 Conference Proceedings, San Jose, CA, September
20-23, 1994.


