
Mediated Voice Communication via Mobile IP

Chris Schmandt, Jang Kim, Kwan Lee, Gerardo Vallejo, Mark Ackerman
Speech Interface Group
MIT Media Laboratory

20 Ames Street, Room E15-327
Cambridge, MA 02139

+1-617-253-5156
{geek, jangkim, kwan, gvallejo, ack}@media.mit.edu

ABSTRACT
Impromptu is a mobile audio device which uses wireless In-
ternet Protocol (IP) to access novel computer-mediated voice
communication channels. These channels show the richness
of IP-based communication as compared to conventional mo-
bile telephony, adding audio processing and storage in the
network, and flexible, user-centered call control protocols.
These channels may be synchronous, asynchronous, or event-
triggered, or even change modes as a function of other user
activity. The demands of these modes plus the need to navi-
gate with an entirely non-visual user interface are met with a
number of audio-oriented user interaction techniques.

KEYWORDS: Computer-mediated communication, ubiqui-
tous computing, audio user interfaces, speech user interfaces

INTRODUCTION
Computer mediated textual communication provides a rich
mix of delivery mechanisms: email, IRC chat, Zephyr, in-
stant messaging. These vary by attributes such as message
length, whether delivery is synchronous (relatively speaking)
or asynchronous, and whether targeted to an individual or a
group. In at least some countries, the popularity of these
mechanisms is enough to threaten conventional paper-based
postal systems. At the same time, short text message (SMS)
traffic over mobile telephone networks has also soared, along
with pager or PDA-based two-way text messaging in North
America; these methods take text messages mobile. An im-
portant consequence of this variety of messaging protocols
is that users usually have more options and hence can make
more and or better use of the messaging channel.

Despite the efficiency and richness of voice communication,
messaging options in this modality are more limited. Al-
though fixed and mobile telephones provide fair to excellent
quality synchronous conversations, it is usually impossible to
leave a voice message without ringing the recipient’s phone.

Family band radios are the current generation of no-license
walkie-talkies; they are half duplex, push-to-talk, one-to-
many, with a range of up to several miles, and are popular
among outdoor enthusiasts. Nextel provides a push-to-talk
walkie-talkie mode in its Direct Connect service, which is
overlaid on an otherwise conventional cellular telephone net-
work; it is popular in the building trades. Although some
PDAs now include telephones, the phones still act as single
channel voice communication devices.

Impromptu is a mobile IP-based communicator which bridges
these worlds (voice/text, telephone/computer) by providing
the flexibility of multiple modes of voice communication in
a single, multi-function mobile computing environment. It
goes beyond the telephony model by supporting multiple lev-
els of synchrony, presenting a variety of call management
strategies, and allowing multiple applications to run simulta-
neously. Impromptu extends the window management func-
tions of traditional screen-based computers into the mobile
world with an auditory user interface and eyes-free opera-
tion. Further, the addition of audio storage and processing
in the network enhance the user experience of conventional
channels such as telephony.

Impromptu has supported three classes of voice channels:

• synchronous full duplex, like a telephone
• synchronous half duplex, using floor control
• asynchronous, record and send, like text chats
• event-triggered, in which a channel is set up in response

to an external stimulus.

An important contribution of the Impromptu voice channels
is the use of audio processing, in particular at transitions,
both into the application supporting each channel type, as
well as state changes within the channel. Visual user inter-
faces are largely static, idle until the user makes a choice or
initiates an action. Because audio is continually streaming
from Impromptu and the user interface is auditory as well,
particular care must be taken as to how these two forms of
sounds interact. Some of these aspects are subtle and not no-
ticed except in their absence, such as cross-fading at sound
boundaries to minimize abrupt transitions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’02, October 27-30, 2002, Paris, FRANCE.
Copyright 2002 ACM 1-58113-488-6/02/0010…$5.00.

Volume 4, Issue 2 141

Distributed
Applications

Chat

Music

Phone

Control Message
Audio

Text to
Speech

Speech
Recognition

Text

Application
Manager

Figure 1: The Impromptu Architecture.

IMPROMPTU
Impromptu runs on iPaqs running Linux, using 802.11b for
IP-based networking. Motivated by our concern for mobil-
ity, Impromptu does not use the screen for display or input;
speech recognition and synthesis are provided as services in
the network. Applications run simultaneously but the user
generally listens to only one at a time. A number of applica-
tions have been programmed, with concern for those appro-
priate for the packet delivery characteristics of an IP network
(i.e. delay, jitter, and packet loss):

• MP3 music player
• books on tape
• headline news using speech synthesis
• radio
• personal recorder/to-do list
• telephone
• chat
• baby monitor
• burglar alarm

An application manager (Figure 1) registers each applica-
tion as it makes contact through the network, gets anaudio
icon from the application so it can be identified to the user
when going active, accepts a speech recognition vocabulary
for the application, and assigns a port for the application to
connect to for bi-directional audio streaming. Note that we
do not route audio through the application manager as this
would incur additional delays; well behaved clients transmit
only when allowed, while ill-behaved clients are ignored by
Impromptu but waste network bandwidth. The application
manager can also present an auditoryalert on behalf of an
inactive application which wishes to become active based on
some external event, and informs the user via sound when
applications die or reconnect during a session.

A push-to-talk button activates speech recognition. Each
application may be invoked by voice, and whenever an ap-
plication activates its additional vocabulary is loaded into the
recognizer. Speech is sent to the recognizer, and the results

Figure 2: The iPaq Button Mapping.

are routed to the application if the command was application-
specific, or back to the application manager (“where am I?”,
“what are the applications?”).

Impromptu uses a number of other iPaq buttons in addition
to speech recognition (Figure 2); most but not all of these
duplicate speech input functionality. Thewheelat the center
bottom cycles through the applications (pressing left or right)
and is also used in an application-specific manner (pressing
up or down). Up and down usually have the syntax of moving
through a list of entities germane to the application, such as
songs, news items, or entries in the audio to-do list. The
record button is always active and saves to a file whatever is
being heard while the button is pressed. Theactivate button
is reserved for responding to alerts from one of the non-active
applications. It was stated above that the display was not
used for input or output, but in fact it is used for entering
numbers for placing conventional calls to a number not in a
user’s voice controlled address book, and also displays a few
appropriately obtuse Unix error messages.

In shifting user focus between multiple applications without
visual feedback, Impromptu relies on an auditory icon asso-
ciated with each application. This distinctive sound (all au-
dio feedback is user-configurable) identifies each application
and is played when the user activates it. This sound is also
used entirely or in part when an inactive application plays an

142 Volume 4, Issue 2

alert to gain the user’s attention. A more complex interac-
tion results when multiple applications run simultaneously;
the user may be listening to the radio, but audio chat mes-
sages are merged with the radio stream to allow the user to
multi-task.

Because speech recognition is prone to error, voice user in-
terfaces require special care as to feedback, a good example
of some of the factors involved with the Impromptu interface.
Because we expect that systems such as Impromptu will be
used in noisy environments, the recognition is push-to-talk
enabled. When the user pushes the “talk” button, Impromptu
immediately ceases audio output; this both provides feed-
back that the system is listening, but also increases the prob-
ability of successful recognition. If the user lets up the button
or recognition times out with no word recognized, a noisy
“bonk” sound provides negative feedback. A “ching” sound
to indicate that speech was recognized is neededonly if the
invoked action would otherwise not generate its own feed-
back. For example, saying “music” invokes the MP3 player
application, playing its characteristic short guitar riff on en-
try, so no other feedback is necessary. However, if the user
says “Call Jang”, some time may elapse during call setup be-
fore Impromptu will emit any audio, so the positive feedback
sound is required. Excessive audio feedback is annoying pri-
marily because it takes a second or two to play each of the
feedback sounds, slowing down interaction.

CHANNEL CHARACTERISTICS

This paper specifically focuses on the Impromptu applica-
tions supporting person-to-person communication, rather than
the overall architecture and user interface, which is covered
in detail in [6]. We seek to demonstrate the suitability of a
wide range of voice messaging in mobile IP. In particular,
such an environment enhances communication by providing:

• voice channels with different transmission characteristics
for different tasks

• negotiated call setup and flexible alerting to enable fore-
ground and background activities

• storage so a channel can support catch up when it is re-
entered

• audio processing, such as time compression, event detec-
tion, and mixing, to improve usability

A number of distinctions may be made to differentiate var-
ious communication channels. One ismedium; Impromptu
currently supports only voice for communication between
people. Another issynchronous(as in a live telephone call)
vs. asynchronous(as in a message on an answering ma-
chine), but as we will see below, the same channel may be
used in a way which alternates between the two. Another dis-
tinction is whether a channel isone-to-one, one-to-many, or
many-to-many. Channels are often characterized by whether
participants are in thesame placeor different places, but Im-
promptu is designed only for the latter case.

Digital protocols underlying communication channels afford
a new class of distinctions between channels, which has to
do with the difference in channel behavior whenactivevs.
inactive. A conventional telephone is either one or the other,
except for the brief phase when the recipient’s phone is ring-
ing but has not yet been answered.

But computer-mediated channels can be designed to support
either a more gracefulnegotiationbetween parties during
the setup or activation phase, or use variable bandwidth and
implement abackground awareness. For example, a video
space such as Portholes [3] might update the view into a
neighbor’s office only once every few seconds or minutes,
but if both parties notice the other they might switch to a full
frame rate link. Hubbub [5] is an audio-based messaging and
group awareness system which automatically notifies others
when a group member becomes active, by playing a sound
specific to that person. These examples illustrate the blur-
ring between active and idle through transition or awareness
stages. Smith and Hudson [11] use the audio energy of a
person’s current conversation to modulate a stored acoustic
profile of that person to create a minimally disturbing back-
ground audio presence.

An audio channel withstorageallows conversations or events
to be saved for future listening. Especially in a multi-tasking
environment, made worse by use in the distracting real world,
storage allows a user to catch up on a channel when free to
attend to it. Additionally,audio processingtechniques al-
low more rapid catch up through silence removal, time com-
pression, and clustering. Although quite subtle once imple-
mented, mixing and fade in/out techniques reduce intrusive-
ness of interruptions or alerts.

The remainder of this paper will present three sets of voice
communication channels implemented for Impromptu. Not
only do each of them represent different points in the above
described set of channel distinctions, some of these channels
can be used or configured to exhibit different behaviors. We
will show the flexibility and range of user interface options
available by IP.

TELEPHONY – SYNCHRONOUS CONNECTIONS
The first class of Impromptu channel istelephony, as in an
ordinary telephone call, i.e., a synchronous full duplex (bi-
directional) audio connection. In reality delays of 10s of
milliseconds may occur in these connections, but when de-
lays exceed 150 or 200 milliseconds, ordinary conversation
begins to break down due to the inability to interrupt the
other party. There are a number of commercial “voice over
IP” (VoIP) products, ranging from telephone sets which plug
into LANs and run IP to computer-to-computer “free phone”
products, of which NetMeeting is a high end example. If
the audio is to leave the IP network it must go through a
PSTN (Public Switched Telephone Network) gateway, which
speaks protocols and has electrical characteristics of the tele-
phone network.

Volume 4, Issue 2 143

To date, providing telephony functions over IP has simply
replicated the existing binary call setup procedure; the net-
work alerts and the remote party either answers or not. The
caller has no control, cannot choose just to send a voice
message, and does not know how busy the called party is.
Quiet Calls [8] allows some negotiation during which the
called party can hear the caller but transmit only limited pre-
recorded messages, and perhaps transition to a full duplex
audio connection. Impromptu instead uses the audio channel
for negotiation, and gives the caller some control in addition
to the recipient.

Impromptu’s telephone application,Garblephone, calls to
or from the PSTN (i.e., the “address” of the call is a tele-
phone number), or peer-to-peer to other Impromptu clients.
Only peer-to-peer calls have the advantage of a sophisticated
call setup protocol. Garblephone’s audio icon is a single tele-
phone ring.

Conventional telephony is the least interesting Garblephone
channel, as it simply acts like a mobile phone. To place a
call, the user enters a number on the iPaq screen (the only
use of the screen for any Impromptu application), a PC with
a telephone interface peripheral (“computerfone” from Sun-
coast Systems) dials a call, and audio from the phone line is
digitized and streamed to/from the iPaq.

Since the user will most likely be listening to another ap-
plication when an incoming call arrives, Garblephone must
request the application manager to sound an alert, the single
phone ring. Then normal playback resumes, and the user has
ten seconds in which to press theactivate button or the call
goes to voice mail. With the exception that the computer-
fone box detects the end of the call, allowing Garblephone to
play a cue (slamming door) if the other party terminates first,
Garblephone behaves pretty much like any mobile phone.

Garblephone becomes more interesting, revealing the impact
of new call setup protocols on the telephone user interface,
for direct Impromptu-to-Impromptu calls. The caller con-
nects by voice command (“Call Jang”) to the application
process, which runs on the PC with the analog telephone
hardware. Garblephone alerts the called party with an au-
dio cue consisting of a voice recording of the caller stating
his or her name; the goal of alerting is to convey both the
existence of the call and the identity of the caller. We could
use text-to-speech synthesis for this alert, but for such a short
alert, which also usually comes in the midst of whatever au-
dio (music, radio, etc) the user is hearing, there is strong
added value to hearing the natural timbre and intonation of
the caller.1

If the called party ignores the alert, the caller is dropped into

1Note that we could use similar techniques for an incoming conventional
call, based on caller ID. Our home brew voice mail system does exactly this,
doing a reverse directory lookup on the user’s personal address book and
then on a campus-wide online database.

Receiver causes state change

Monitoring Voice
Mail

Calling

Connected

Call
Placed

Caller or Receiver causes
state change

Figure 3: State changes in Garblephone.

voice mail. If the called party responds by pressing theacti-
vate button, call setup proceeds through a series of mutually
negotiated states of connectedness, as shown in Figure 3. At
each state, either party can either move closer to a full du-
plex connection, or abort the call into voice mail. It is this
negotiation which reveals the strengths of flexible protocols.

In the first state after the called party activates Garblephone,
calling, the caller is allowed to eavesdrop (Figure 4). The au-
dio is processed, however, with a goal of allowing the eaves-
dropper to understand the conversational state of the called
party (e.g. alone, on the phone, giving a talk, joking, lis-
tening to music) and possibly the identity of other partici-
pants if they are well known to the caller and even a few
words, but rendering the overall conversation unintelligible.
Although using a quite different algorithm, this is related in
effect to the Smith and Hudson approach, with less concern
about intelligibility of individual words. Additionally, no au-
dio is transmitted without at least minimal action (activating
the phone application) on the part of the called party.

Audio is garbled (at the transmitter) by a block shuffling
scheme with cross-fading at block boundaries (Figure 5).
Blocks consist of 50 to 100 milliseconds of audio. At each
block time, one of the previous six blocks is selected at ran-
dom for transmission, the least recently recorded block is
deleted, and the just recorded block is added to the candi-
dates for future transmission. Cross-fading mixes the audio
from each block at block boundaries, to minimize the acous-
tic effect of the regularly repeated block boundaries (which
sounds like an echo or reverb, depending on block size).2

The block size is chosen to convey about a syllable’s worth of
speech (typically two to four phonemes). Larger block sizes
increase the likelihood of intelligibility, while smaller sizes
make the sound less speech-like and interfere with percep-

2In order to cross-fade, at the time we transmit the Nth block, we actually
select the N+1st block, as some of its data will be required for the fade

144 Volume 4, Issue 2

STATES AUDIO TRANSMITTED

ReceiverCaller

 Garbled Receiver Audio

Caller Alert

Caller Audio

Caller Audio

Receiver Audio

Caller Audio

 Garbled Receiver Audio

Call Placed

Calling

Monitoring

Voice Mail

Connected

Figure 4: Audio transmitted in Garblephone states.

tion of the intonational patterns of the eavesdropped speech.
The goal of this state is to allow the caller to gauge the activ-
ity level of the remote party; if he or she is busy and the call
is not urgent, the caller can just drop into voice mail.

The called party may proceed to the next,monitoring, state
by pressing up on the wheel button (“up” means “move
closer”); the caller hears a tone indicating this transition has
occurred. At this point, audio becomes full duplex, with the
caller still hearing garbled audio but the called party now able
to hear the caller clearly (Figure 4). This creates a first stage
of call screening, a deliberately one-way clear channel, so
the caller might say“Answer, it’s urgent!”

If either party directs the call tovoice mail (by pressing
down, or “away”), the called party can also screen while the
message is being recorded. The caller may only leave a mes-
sage, but the recipient may still retrieve the call and connect.

Alternatively, the call may proceed from the monitoring state
to theconnectedstate if the recipient presses the up button.
At this point a clear full duplex audio channel streams be-
tween the two Impromptu devices.

Impromptu’s telephone channel is enhanced by audio pro-
cessing in the network, the ability to extend existing call con-
trol protocols with new messages, and the ability to smoothly
switch between full and half duplex audio.

CHAT – SEMI-SYNCHRONOUS CONNECTIONS
The second type of Impromptu channel involves some form
of push-to-talk and is therefore not fully synchronous. Since
users of a ubiquitous mobile device might wish to commu-

Garbled Output

Garbled Output

Buffered Audio

Garbled Output

Input Buffer

Buffered Audio

Input Buffer

Buffered Audio

Input Buffer

1 2 4 5

1. Pick a random buffer
and send to output

7

3 6

3

4 5

7

3 6

3 2. Remove the first buffer
stored

1 2

4 5

7

3 6

3 3. Add the new input
buffer to the end

2 7

Figure 5: Garbling algorithm in Garblephone.

nicate by voice while busy, we attempted to build an audio
equivalent to lower bandwidth text-based computer “chat”
systems. After building an initial simple chat application,
we redesigned it with more concern for providing efficient
browsing of stored chat audio as well as a more effective
background activity mode.

Text-based chat systems allow pairs or groups of users to
exchange short text messages. Some systems (such as the
old Unix “talk”) show input letter-by-letter, while more re-
cent software such as IRC chat allows editing in a private
buffer before transmission. The programs just mentioned
run in their own window or pseudo-terminal, while systems
such as Instant Message or Zephyr pop up a window when a
message arrives. Some of these systems also maintain group
awareness, i.e., they indicate when participants enter or leave
the chat program. There is a thin boundary between chat
and email, where threads in a mailing list may generate traf-
fic which is chat-like but generally with longer postings and
somewhat more time between messages, i.e., less expectation
of “same time / different place” of a chat.

Because typing is slow, participating in a text chat may some-
times be in the background, or use only part of one’s atten-
tion. This is helped if the screen can hold multiple messages;
since we read much faster than we type, a glance from time
to time can keep up with a conversation. When activity picks

Volume 4, Issue 2 145

up and there are postings from many participants, more at-
tention is needed. Postings are likely to be even less formal
than email, and hence require less editing, further supporting
short, rapid interchanges interspersed with time spent wait-
ing or attending to something else. An audio chat may pro-
vide similar functionality.

We attempted to design for several styles of voice chat. One
style might be most suitable for a work group, where there
may be bursty traffic which should be heard by all, such as
the groups at NASA Mission Control described in [13]; our
chat applications have not yet supported multiple simultane-
ous groups. Working at a university, however, we experience
bursts of interactions among group members as they come
and go, and occasional messaging spanning most of the 24
hour day. Support for a temporally distributed work group
requires a “catch up” mode so a new comer can get up to
date. Another style of chat is a decidedly background activ-
ity; one might catch up with family and friends while killing
time awaiting a bus, for example. Audio is particularly suit-
able for real life situations when one’s hands and eyes are
otherwise busy.

Our initial audio chat was simple. Each participant could
record messages using a push-to-record button, and after
recording, the message would be sent to all others. New mes-
sages played automatically. When joining a chat, one could
optionally hear in sequence all the audio recorded to date, but
had to press “down” after each recording in order to hear the
next. While in this catch up mode, new messages were not
played, but sounded an alert. If chat was not the active ap-
plication, an iconic alert would sound to indicate that a new
message had arrived; to hear it the user had to return to chat
and go back into catch up mode.

This method may be satisfactory if chatting is infrequent, but
if participants are talking back and forth it is not responsive
enough. After one person finishes recording, he or she must
wait for the other party to hear what was just transmitted and
finish recording a response before hearing anything. Because
nothing is transmitted until recording is finished, maximum
channel utilization is 50%. Channel utilization exceeds real
time, as recorded messages are sent upon completion and re-
quire less time in transit in the network than for recording;
a participant might hear many messages in a row without
pause. Another advantage of this method is that no floor
control was necessary, though messages could arrive out of
sequence, and overlapping chat contributions may be repeti-
tive.

Despite its more efficient use of network capacity, the lack
of responsiveness of the original chat was frustrating and led
to a new chat application,TattleTrail , which more grace-
fully merges catch up and synchronous messaging modes.
The main goal was to switch from completely asynchronous
messaging (record then send) to synchronous multicast me-
diated by greedy floor control (no involuntary interruption).

Alice speaks

ChatUser

Alice speaks
Bob speaks

<Alice leaves>Hears Alice
Cindy speaks<Joins chat>

Hears Alice
Hears Bob

Hears Cindy

User speaksUser speaks
Bob speaksHears Bob

. . .

<Leaves chat>

Bob speaksHears alert
Cindy speaksHears alert

.

. . .

<Bob, Cindy leave>
<Joins chat>
Hears Cindy
Hears Bob

<Becomes synchronous>

<Becomes synchronous>

Figure 6: Sample TattleTrail chat activity displaying
different modes of user attention.

It also facilitates running the chat as a background activity
with more informative alerts. TattleTrail’s audio icon con-
sists of musical tones mixed with a jumble of laughing chil-
dren’s voices.

Modes

TattleTrail has three modes of user attention. When a par-
ticipant first joins an active chat she or he is put into asyn-
chronouscatch up mode, described more fully below. Once
caught up, the application automatically enters synchronous
push-to-talk mode, similar to Nextel’s Direct Connect (a
virtual walkie-talkie with floor control). The user pushes the
talk button, which responds with a short beep if the floor has
been granted. If so, one’s speech is peer-to-peer multicast to
all other chat participants, and also stored as a timestamped
file in the chat server. A chord with a sharp attack and slow
decay indicates that the floor was denied, but if the user holds
the button down, control will be granted when available.

Each user may independently enter and leave TattleTrail.
Upon returning, participants are put into catch up mode to
hear those messages they may have missed while attending to
other applications, and then put back into push-to-talk mode
(Figure 6). A user leaving TattleTrail transits tobackground
mode, in which awareness of the chat is limited to alerts, as
described below.

Browsing

When one first joins a chat, or rejoins it after spending time
in another application or perhaps being off the network, Tat-
tleTrail’s catch up mode provides for rapidly scanning the
recorded chat. Browsing makes heavy use of the SOLA
method of time compressing speech for playback without in-
creasing its pitch [9]. SOLA uses the autocorrelation func-

146 Volume 4, Issue 2

tion to determine the periodicity of a windowed sample of
speech and, assuming it is voiced, removes whole pitch peri-
ods using an “overlap and add” method which is essentially
a cross fade. But drawing in part on the perspective offered
by Arons’ SpeechSkimmer [2], our user interface attempts
to control not just the raw speed of playback, but rather the
rate at which salient information is heard. In this section we
present a browsing method highly tuned to the audio chat
genre.

Beyond approximately twice normal speed, time compressed
speech loses intelligibility rapidly, and other methods must
be employed.3 SpeechSkimmer included a strategy of pause
removal, but more importantly used pauses to delineate the
introduction of “new” or “interesting” portions of a lecture;
at high playback rates it would play some seconds of speech
at the beginning of one portion and then jump to the next
portion. Audio Notebook [12] took this idea further, also us-
ing the lecture genre. Stifelman used both pauses and pitch
to segment recordings based on discourse theoretic models
of speech phrases; listeners could jump to the next segment
associated with a new topic, and the phrase boundaries gave
a better indication of how much speech to play. NewsComm
[10] used speaker changes to segment audio from a differ-
ent genre, radio newscasts, and the user could jump to the
next speaker; a speaker-differentiation algorithm first pro-
cessed the recording to find speaker boundaries. Hindus’
xcapture [4] recorded selected portions of telephone conver-
sations based on turn-taking and use of an extra local micro-
phone at one end to determine which party was speaking.

Different aspects of speech structure can be used to enhance
browsing at high speed, depending in large part on the char-
acteristics of the recorded genre. These lead to different
strategies for mapping user interface controls to audio play-
back strategies, especially for selecting which audio will be
played when some must be discarded. The chat genre can
be characterized by alternating turns of talk between two or
more conversants, relatively short turns of talk, and some-
what bursty interactions. There may be long periods of in-
activity on a channel, but once activity starts, there is likely
to be a series of transmissions which are highly correlated.
Walkie-talkie or emergency band radio conversations mani-
fest similar behavior.

TattleTrail utilizes the staccato nature of the chat channel to
cluster recordings into “bursts”, which are sets of turns with
less than 30 seconds of silence between adjacent turns. In
the simple case, the user needs to browse a small number of
bursts, and simple speed control is used; if the user has been
away for longer, the segmentation into bursts becomes more
apparent with high speed browsing.

When the user enters browse mode, TattleTrail plays the un-
heard turns, in order. Pressing the “up” button increases play-

3This number is very rough, because it depends on the content of the
recorded speech and exposure of the listener to time compressed speech.

t 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

t 1

t 2

t3

time: t
speed: 1

time: t
speed: 1

time: t
speed: 2

time: t
speed: 2

3

2

1

0

Figure 7: Playing backward. The audio is divided into
segments of 4 seconds. Segments are played at each
iteration (the gray boxes), then the pointer is set back
to the previous segment for the next iteration. Note at
times t2 and t3, the playback speed is twice as fast,
so the algorithm jumps back two segments in order to
play 4 seconds of time compressed audio.

back speed; as long as the button is pressed, speed gradu-
ally increases. Audio keeps playing as it is sped up; there
is no “pause” control while browsing. If the user wants to
skip browsing, double clicking “up” jumps to the end and
switches into synchronous mode. When the user presses
“down” the playback speed slows down. Although SOLA
can be used to play back a recording at less than normal
speed, TattleTrail does not; when playing at normal speed
and the user presses “down,” playback switches direction and
starts playing backward. Continuing to press the “down” but-
ton makes backward playback go faster and faster; double
clicking it jumps to the beginning of playback and it starts
playing forward, at normal speed.

“Playing backward” is accomplished using the SpeechSkim-
mer technique shown in Figure 7. If samples were merely
playing in reverse order, the speech would not be intelligible.
Rather, we break the recording into segments of 4 seconds,
play each segment normally (possibly also time compressed),
and then play the previous segment. We repeat this process
until we have played the very first segment in the file; once
back to the beginning, forward play resumes. During reverse
playback, a single click “up” reduces the speed at which re-
verse playing occurs, while a double “up” click picks up for-
ward playback at normal speed from the beginning of the
current segment. This last technique, allowing the user to re-
vert to normal playback as soon as some interesting speech is
heard, was also motivated by SpeechSkimmer user studies.

If the user has been away from the chat for some time, a
number of bursts will have occurred, and a higher level of
skimming is needed (Figure 8). To help convey the tempo-
ral structure of the chat, after each burst of turns is played, a
short “tick tick” watch sound is played, to indicate the pas-
sage of time. As the user speeds up playback, once a speed

Volume 4, Issue 2 147

User
B

. . .

User
A

Clock ticking

Speed: 2x

As recorded

Speed: Normal

Speed: 4x

t

t

t

User
A

User
C

t

Figure 8: Browsing chat messages at different speeds.
Two different bursts are shown above. When browsing,
bursts are separated by a clock ticking sound. Note the
non-linear scaling at speed 4x.

of 2.5 times normal is reached, we take advantage of the turn
structure to present a non-linear time compression technique.
For each burst, the first turn of the burst is played at twice
normal speed, and the remaining turns are played much more
quickly, to obtain an effective compression of 2.5 (or higher,
if the user continues to select for a higher playback rate). The
goal of this presentation technique is to introduce each burst
with some intelligible speech which hopefully sets the topic
for the burst.

Alerting
Alerting includes any audible indication of activity by inac-
tive Impromptu applications. While the user is active in Tat-
tleTrail, he hears only chat audio, either in browse or realtime
mode. Upon exiting, however, he remains in the chat and is
alerted to new chat content even while listening to another
application. This is similar to using two windows at once in
a GUI, and is the only situation in which Impromptu mixes
audio sources.

The initial chat prototype generated alert sounds when some-
one joined or left the chat, but gave no indication of traffic in
the chat. TattleTrail does so, at two different attention lev-
els. In dominant mode, the chat channel has infrequent ac-
tivity but should become the focus of attention when activity
occurs. As a background activity, alerts indicate that some
activity has occurred but do so in a less intrusive manner.
Currently one leaves the application and goes into primary
attention alerting, and after a number of transactions in which
the channel alerts but the user does not respond, it slips into
background alerting.

In dominant mode, each new chat message is played clearly.
Whatever application’s audio is being played at the time is
faded down for the TattleTrail alert, consisting of the first few

Figure 9: Baby cry detection. In response to the mu-
sic, the base threshold is increased. Noise and quiet
periods trigger the detector after the third cry.

notes of the TattleTrail audio icon, followed by the new chat
contribution. At the end, the interrupted application audio
fades back up. At this point for ten seconds the push-to-
talk button becomes active, and the user can respond. While
this button is depressed, the application audio is muted. If
the floor is granted, the user is speaking to the chat group
synchronously.

When in background attention mode, the chat alert is less
obtrusive. Instead of interrupting the active application’s au-
dio, it is mixed in, beginning with the audio icon cue and
followed by the chat audio, all at an attenuated level. This
provides some cues as to activity on the chat channel, but
it may be difficult to understand the actual content. In this
mode immediate push-to-talk is not available (though further
evaluation may indicate this is confusing); to speak one re-
joins TattleTrail and may either catch up or transmit.

EVENT-TRIGGERED CONNECTIONS
The ability to do processing and storage in the network or as-
sociated audio device enables a third style of voice channel
supported by Impromptu: one which the channel goes active
not because someone decides to communicate, but because
some external event occurs. In this case, the client generates
an alert, an iconic sound so as to be consistent and avoid con-
fusion. The user may then activate the application, which sets
up a full duplex streaming audio connection. Alternatively,
the user may activate the application at any time, which then
provides a “telephone” channel.

BabyMon
Conventional baby monitors continuously transmit. They use
radio spectrum all the time, and transmit needless distracting
sounds such as the neighbor’s lawn mower or chain saw (for-
tunately babies seem able to sleep through anything).

BabyMon is an application which runs on an iPaq in lieu of
Impromptu; the user selects the application and leaves the

148 Volume 4, Issue 2

mobile unit wherever the baby is sleeping. BabyMon then
contacts the application manager and the service becomes
available to Impromptu users. BabyMon continuously dig-
itizes audio and analyzes it for patterns characteristic of cry-
ing babies. A cry is characterized as a fairly loud sound fol-
lowed by silence or low energy sound while the infant in-
hales. BabyMon’s detector requires at least three cry cycles,
where a cry is defined as between 400 and 2000 milliseconds
of sound above a threshold, punctuated with 200 to 1000 mil-
liseconds of quiet between cries (Figure 9). The threshold, or
background level, in turn is allowed to be slowly varying; i.e.
the lawn mower won’t trigger the monitor but the baby will
have to cry more loudly to outweigh its noise.

When BabyMon detects a cry, it alerts Impromptu, which
plays its audio icon, a single loud baby cry. If the user then
activates the application, BabyMon switches to a full duplex
audio connection so the user can hear the baby and speak to it
to attempt to calm it down (not very effective with infants, but
sometimes useful with two year olds). If the baby continues
to cry but the application is ignored, it will continue to alert
from time to time.

WatchDog
Like its namesake,WatchDog responds to loud noises. It
also uses a slowly varying background audio level adapta-
tion, and alerts with a bark. Unlike BabyMon, WatchDog
stores the digitized audio which caused it to trigger, as that
might be a short and transient sound like glass shattering.
When the Impromptu user activates, WatchDog first plays
the stored sound, so the user can hear the cause of the alert,
and then switches to a full duplex audio connection.

Although it may seem unlikely that one would try to converse
with thieves in one’s house, this scheme could equally well
be used in a home situation around a family intercom system
such as that described in [7]. In this case the user would be
more likely to ask“Are you all right?” or “What was that?”

Monitoring applications reveal another advantage of IP. Aside
from firewall issues, one can easily monitor events at a re-
mote location, such as listening in to home while at work.

CONNECTIONS AND TRANSITIONS
We have described three classes of computer mediated audio
channels provided by Impromptu: telephone (synchronous),
walkie-talkie (semi-synchronous) , and monitor (event trig-
gered). Part of the contribution of Impromptu is enabling all
three types, and this allows us to make two generalizations.
The first is the value of a variety of channels in a single mo-
bile device. The second is that the most intriguing novelty
in these channels is their internal transitions. The value of
a mobile implementation is assumed, given the worldwide
popularity of mobile telephones.

Connections
We began this paper with an argument that computer- medi-
ated voice communication should exhibit the same breadth

of channel type as computer-mediated text communication.
Because users take advantage of multiple text channels, we
believe the channels must be serving different needs. Is the
same true of voice?

A telephone channel requires significant attention; in a two-
person conversation, silences speak as effectively as words.
The ability to interrupt on a full duplex channel reinforces
the tendency to treat the channel with much the same atten-
tional resources as a face-to-face conversation. Note that we
did not implement an always-on full duplex channel, as was
done in Thunderwire [1], in large part due to privacy con-
cerns around the combination of always-on and mobile, and
in part due to the difficulty of effective microphone place-
ment for an always-on mobile device.

A half-duplex chat-style application lends itself more easily
to background or occasional use, at the price of remembering
to push to talk. Push-to-talk does, however, limit extraneous
environmental audio and keeps foreground activity, such as
conversation with someone in the hallway, out of the channel.
This extraneous sound was sometimes a distraction in Thun-
derwire. Eliminating it lends more value to the chat log, and
makes the channel more amenable to groups distributed in
time as well as space.

A monitoring channel is simply effective use of network and
attentional resources. There is no need to continually trans-
mit uninteresting sound if a decision can be made at the
source as to its value. Similarly there is no need to attend
to the channel, and an iconic sound (instead of streaming the
triggering sound) resolves ambiguities (was that sound local
or remote?) when the trigger occurs. WatchDog’s ability to
replay the sound triggering transmission solves the problem
of missing interesting transients.

Transitions
Transition refers to change of state of audio transmission
within or with respect to an application. The most simple
transition, common to all these applications, is when the user
scrolls through applications with the wheel and hears the au-
ditory icon for each in turn.

Transitions also occur with alerting. The most simple alerts,
e.g. the telephone ring of Garblephone or the barking dog of
WatchDog, simply indicate activity in the application. More
information is conveyed with alerts which vary with applica-
tion content, e.g. the caller’s voice announcing an incoming
call from another Impromptu user, or the actual message sent
to the chat application. The latter can effectively place the
application automatically in the foreground (auto-activate).
Or, the chat alerts can serve as quiet background awareness
of the existence of activity in the channel.

In addition to its two alert modes, the possibly repeated tran-
sitions between catch up mode, listening to prior chat record-
ings with several speech compression techniques, and syn-
chronous audio multicast make TattleTrail a much more ex-

Volume 4, Issue 2 149

citing application for users. And the transitions through a
series of garbled or clear eavesdropping states change call
setup from a binary action (answer or ignore) to a negotiation
between caller and recipient, with several possible outcomes.

CONCLUSION
The flexibility of IP-based networking and a software archi-
tecture which allows rapid development of distributed ap-
plications with ad hoc messaging on top of IP enables the
range of channel types which have been developed to date
under Impromptu. Synchronous, asynchronous, and event-
triggered channels fill different communication needs and
have a variety of transmission, storage, and audio process-
ing requirements. By placing all of these in a single device,
we hopefully change the focus from the device to the task,
communication, and allow users to choose the appropriate
channel.

At the same time, creative management of the channel audio
content and sound effects between multiple channels, and
appropriate transitions and audio cues between modalities
within applications make for a more compelling user expe-
rience. Particularly in a mobile environment, user attentional
resources are often scarce and screens may be out of sight;
the auditory medium must afford communication rather than
hinder it, in a manner appropriate to the application selected.

Although much tuning and convincing group user experi-
ences are still required before a system such as Impromptu
should be made widely available, we currently have a work-
ing prototype which hopefully raises useful challenges while
offering attractive communication possibilities. Significant
iterative design has gone into the interfaces described in this
paper.

ACKNOWLEDGMENTS
Elina Kamenetskaya wrote the telephone gateway and parts
of Garblephone. Mike Jacknis, Stefan Marti, and Nitin Sawh-
ney helped implement and evaluate an early version of the
garbling algorithm. Ivan Chardin assisted with the Baby
Monitor application. Barry Arons developed some of the
browsing techniques reused in reviewing chat history. Eric
Hulteen made some small but powerful suggestions for speech
recognition feedback. This work was supported by the Digi-
tal Life and Information:Organized research consortia.

REFERENCES
1. M. Ackerman, D. Hindus, S. Mainwaring, and B. Starr.

Hanging on the ’Wire: A field study of an audio-only
media space.ACM Transactions on Computer-Human
Interaction, 4(1):39–66, March 1997.

2. B. Arons. SpeechSkimmer: A system for interactively
skimming recorded speech.ACM Transactions on
Computer-Human Interaction, 4(1):3–38, March 1997.

3. P. Dourish and S. Bly. Portholes: Supporting awareness
in a distributed work group. InProceedings of Human

Factors in Computing Systems (CHI’92), pages 541–
547. ACM, 1992.

4. D. Hindus, C. Schmandt, and C. Horner. Capturing,
structuring, and representing ubiquitous audio.ACM
Transactions on Information Systems, 11(4):376–400,
October 1993.

5. E. Isaacs, A. Walendowski, and D. Ranganthan. Hub-
bub: A sound-enhanced mobile instant messenger that
supports awareness and opportunistic interactions. In
Proceedings of Human Factors in Computing Systems
(CHI’02). ACM, 2002.

6. K. Lee. Impromptu: Audio applications for mobile IP.
Master’s thesis, Massachusetts Institute of Technology,
September 2001.

7. K. Nagel, C. Kidd, T. O’Connell, A. Dey, and
G. Abowd. The Family Intercom: Developing
a context-aware audio communication system. In
G. Abowd, B. Brumitt, and S. Shafer, editors,Ubicomp
2001: Ubiquitous Computing, Lecture Notes in Com-
puter Science Series, pages 176–183. Springer-Verlag,
2001.

8. L. Nelson, S. Bly, and T. Sokoler. Quiet calls: Talking
silently on mobile phones. InProceedings of Human
Factors in Computing Systems (CHI’01), pages 174–
181. ACM, 2001.

9. S. Roucos and A. Wilgus. High quality time-scale mod-
ification for speech. InProceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, pages 493–496. IEEE, 1985.

10. D. Roy and C. Schmandt. NewsComm: A hand-held
interface for interactive access to structured audio. In
Proceedings of Human Factors in Computing Systems
(CHI’96), pages 173–180. ACM, 1996.

11. I. Smith and S. Hudson. Low disturbance audio for
awareness and privacy in media space applications. In
Proceedings of the ACM Conference on Multimedia,
pages 91–97. ACM, 1995.

12. L. Stifelman, B. Arons, and C. Schmandt. The Audio
Notebook: Paper and pen interaction with structured
speech. InProceedings of Human Factors in Comput-
ing Systems (CHI’01), pages 182–189. ACM, 2001.

13. J. Watts, D. Woods, J. Corban, E. Patterson, R. Kerr,
and L. Hicks. Voice loops as cooperative aids in
space shuttle mission control. InProceedings of
Computer-Supported Cooperative Work, pages 48–55.
ACM, 1996.

150 Volume 4, Issue 2

