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ABSTRACT 
Despite the ready availability of digital recording technology 
and the continually decreasing cost of digital storage, 
browsing audio recordings remains a tedious task. This paper 
presents evidence in support of a system designed to assist 
with information comprehension and retrieval tasks from a 
large collection of recorded speech. Two techniques are 
employed to assist users with these tasks. First, a speech 
recognizer creates necessarily error-laden transcripts of the 
recorded speech. Second, audio playback is time-compressed 
using the SOLAFS technique. When used together, subjects 
are able to perform comprehension tasks with more speed 
and accuracy. 
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Speech recognition, time-compressed audio, information 
retrieval. 

ACM Classification Keywords 
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INTRODUCTION 
Browsing, searching, and retrieving information stored in 
textual format has been a well-studied area for many years 
[12]. As multimedia collections have become more 
widespread, there is an increasing need to browse and search 
non-textual data. This paper focuses on audio. 

Retrieving information from audio collections has 
applicability to several areas. Examples include reviewing 
recorded lecture material, recorded meetings, searching the 
web for audio recordings, and retrieving information from 
one’s personal recordings. Furthermore, projects aiming to 

store one’s life experiences for later analysis and retrieval 
have been gaining momentum [6,7,9,10]. Audio is among the 
proposed data types recorded by such systems and our 
attempt to build an audio-based personal memory aid 
motivates the desire to create improved audio-retrieval 
systems. Despite the current interest in personal data accrual, 
less attention has been paid to what to do with these data 
once collected. This paper examines two technologies in 
support of searching and browsing collections of audio 
recordings: automatic large-vocabulary speech recognition 
and audio time-compression, in regard to their interaction. 

Audio presents unique challenges. The average speech rate of 
an English speaker is 180 words per minute while the reading 
rate is 400 words per minute [14]. This large disparity 
suggests that automatically transcribing audio and then 
accessing it as a written document would be most effective 
for information retrieval tasks. However, in reading a 
transcript, the prosodic cues, which make speech rich in 
meaning and subtlety, are lost. Additionally, automatic 
transcription of natural speech remains extremely difficult. 
Computer speech recognizers attempt to transform speech to 
the corresponding text. When generated, such transcripts 
almost always suffer from poor recognition accuracy, are 
difficult to read, can confound readers, and can waste their 
time [22]. 

Despite these shortcomings, speech recognizers have been 
making incremental improvements to the point where it is no 
longer uncommon to encounter commercial versions in daily 
life. However, only a limited set of applications are currently 
viable due to poor recognition accuracy. Successful systems 
tend to achieve better accuracy when limiting vocabularies, 
speakers, speech style, and acoustic conditions. These 
constraints are slowly loosening as the technology improves. 
Although we are still far from the panacea of high-accuracy, 
speaker-independent, large-vocabulary recognition systems 
that would enable a vast array of speech applications, the 
state of speech recognition is nearing the point in which a 
limited set of new applications would benefit from speech 
recognition even with the limited accuracy found in today’s 
recognition systems. 

An example of both the utility as well as limitations of 
speech-recognizer-generated transcripts can be seen in 
studies of voicemail transcription [22]. Research-lab-quality 
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speech recognition (which typically perform better than 
commercial systems) using the known identity of the caller to 
improve recognition accuracy was required to achieve 
acceptable transcripts of voicemails. Despite this effort for 
recognition accuracy, some recipients of the transcribed 
voicemails tended to commit more errors in summarizing and 
information extraction tasks when relying too heavily on 
these error-laden speech-recognizer-generated transcripts. 

In a related user evaluation, subjects performed question-
answer tasks using error-laden speech-recognizer-generated 
transcripts with simultaneous audio playback. Results 
suggest that higher-quality transcripts lead to a reduction in 
solution time, less recorded-speech played, and less time 
spent reading [17]. However, there was no evidence that 
higher-quality transcripts produced better answers. Finally, 
subjects tended to abandoned lower-quality transcripts more 
quickly. 

Techniques to improve information-retrieval performance for 
recorded-speech collections have been studied in detail as 
part of the TREC Spoken Document Retrieval (SDR) track 
[5]. TREC SDR has ceased since researchers claim success at 
the task of using a large-vocabulary speech recognizer for 
audio broadcast-news information-retrieval tasks. In fact, 
[23] suggests no degradation in information retrieval tasks 
even with 25% word error rate (WER) and a linear 
performance decay as WER increases.  It is important to 
understand that despite examples such as these, high-quality 
transcription (a task different from information retrieval) of 
recorded audio is not possible today, and remains a difficult 
problem. 

Another approach to improving user experience and 
performance when browsing and searching collections of 
audio recordings is to reduce the time needed to listen to the 
audio. Audio time-compression techniques attempt to play 
recorded speech in less time while maintaining intelligibility. 
There are many approaches to this [1] and one such 
technique, SOLAFS, presents audio at higher rates without 
modifying the pitch [8]. High-rate non-pitch-adjusted speech 
is sometimes described as sounding like chipmunks because 
the pitch of the speaker increases as playback rate increases. 
Since SOLAFS time-compression maintains the pitch of the 
original speaker, listeners are able to comprehend speech 
played at higher rates compared to without time-compression 
[4]. Furthermore, once accustomed to time-compressed 
speech, people prefer it over uncompressed speech [3]. 
Another demonstrated success for time-compression includes 
the following example: when presented with audio of 
teaching materials, subjects who listened to a time-
compressed recording twice at twice-normal rate performed 
better than counterparts who listed to the same recording 
once a normal rate [16]. 

Projects employing time-compression to achieve shorter 
audio playback times include SpeechSkimmer [2]. 
SpechSkimmer employed time-compression as well as other 
audio summarization and navigation techniques, but did not 

provide any corresponding visual representation of the audio. 
Audio Notebook [15] offered additional cues by linking the 
recording with marks that a listener made on paper while 
hearing a lecture for the first time (this technique assumes the 
listener was present). Additionally, Audio Notebook 
analyzed acoustical cues in the recorded speech to attempt to 
identify new topics introduced in the recording; these were 
used to assist with skimming the recording by, for example, 
playing introductory snippets rapidly as part of a search 
strategy. 

Experiences with these projects suggest a strategy of using 
both transcript and time-compression together in the listening 
user interface, if a screen is available. Indeed, SCANMail 
[22] provided such a visual interface, in which audio was 
correlated with the text transcript, but users rarely employed 
time-compression of the audio playback [21]. 

In this study, we consider the interaction between audio time-
compression and the error-laden transcripts generated by a 
commercially-available speech recognizer. We wish to 
determine whether and how effectively transcripts displayed 
in synchrony with time-compressed audio playback improves 
the utility of playback at higher and higher speeds, as 
measured by playback rate versus comprehension. The 
remainder of the paper describes experiments conducted in 
which subjects were tested on their ability to understand 
time-compressed speech combined with error-laden speech-
recognizer-generated transcripts.  

DESIGNING THE USER INTERFACE 
The present experiment was designed to test if the 
combination of time-compression and speech-recognition can 
reduce the time it takes to listen to recorded speech without 
sacrificing the listener’s ability to understand what was said. 
To conduct the experiments, a computer program was 
constructed that allowed playback of time-compressed audio 
while visually presenting an error-laden speech-recognizer-
generated transcript of the same recording. 

For the experiment, recordings from a series of conference 
talks were collected. An off-the-shelf version of IBM’s 
ViaVoice speech-recognition software [18] was used to 
convert recorded speech to text. Along with each recognized 
word, ViaVoice reports a “phrase score,” which is 
documented as follows: “[it] is not a confidence… it is an 
average acoustic score per second. The acoustic score 
depends on the quality of the match and the length of the 
speech aligned with the word.” [19] To better understand the 
meaning of phrase score in relation to the speech recordings 
used in the evaluation, the recordings were hand-transcribed. 
These transcripts were then compared with the speech-
recognizer-generated ones. Figure 1 
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illustrates the correlation between phrase score and 
recognition rate (rs=0.9385, p<0.0001). 

The program plays SOLAFS time-compressed audio at 
arbitrary speeds while displaying a transcript of that audio. 
The transcript appears as 18-pt. white text over a black 
background. While the audio plays, the program draws a line 
through words that have been played and highlights the 
current word in green. Similar to  [13], the brightness of each 
word in the speech-recognizer-generated transcripts are 
rendered proportional to its phrase score. Figure 2 shows the 
interface. 

To test hypotheses pertaining to the subjects’ comprehension 
of time-compressed audio with associated transcripts, five 
different transcript presentation styles are used: 

C1: Human-constructed “perfect” transcript with uniform 
word brightness. 

C2: Speech-recognizer-generated transcript with word 
brightness proportional to phrase score.  

C3: Speech-recognizer-generated transcript with uniform 
word brightness. 

 

C4: Completely incorrect transcript with uniform word 
brightness. 

C5: No transcript. Audio only. 

It should be noted that style C4 transcripts are not random 
words. Instead, speech-recognizer-generated transcripts from 
sections of audio not corresponding to the recording are used. 
Next, when style C5 is presented, the program displays a 
string of dots whose length is proportional to the length of the 
audio recording and the program shows progress of audio-
playback with these dots.  

Word error rate (WER) for speech-recognition systems is 
defined as the sum of insertion, deletion, and substitution 
errors divided by the number of words in the perfect 
transcript. For the present recordings, the speech recognizer 
was not trained to the speakers’ voices. The speech-
recognizer-generated transcripts in the present data set have 
WERs ranging between 16% and 67% with a mean of 42% 
and σ = 15%. Despite the wide range and fairly uniform 
distribution of sample WER, it was decided not to “adjust” 
transcripts to a narrower band or fixed WER since it was not 
clear what strategy to employ to either perturb a good 
transcription or to correct a bad one. Furthermore, this 
variability seems to be an intrinsic property of large-
vocabulary speech-recognition systems. 

HYPOTHESES 
The experiment presented in this paper is designed to test the 
effectiveness of combining speech-recognizer-generated 
transcripts in conjunction with pitch-normalized time-
compressed speech. In particular, the following hypotheses 
are examined: 

H1. Variation in comprehension is expected when time-
compressed speech is presented in conjunction with each 
of the different transcript styles (C1–C5). Specifically, 
the transcript styles, in decreasing order of expected 
comprehension are C1, C2, C3, C5, and C4. 

H2. The comprehension of speech played in conjunction 
with speech-recognizer-generated transcripts is expected 
to be inversely proportional to the WER of that 
transcript. 

H3. Comprehension of SOLAFS time-compressed audio is 
expected to be inversely proportional to the overall 
speech rate expressed as words per minute (WPM). 

H4. Native speakers of English are expected to be able to 
comprehend time-compressed audio at higher speech 
rates compared to non-native speakers.  

The comprehension of the speech is chosen as the metric to 
assess these hypotheses. In the study of time-compressed 
audio, “‘comprehension’ refers to the understanding of the 
content of the material.”[1] Both objective and subjective 
measures are used to estimate this. First, a subject’s 

Figure 1: Percent of words recognized correctly at each 
recognizer-assigned “phrase score” (~2,300 words, minimum 

10 words per score). 

Figure 2: User interface showing brightness of individual 
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measured. Second, a more objective question-answering task 
in which subjects are tested on the contents of speech under 
different styles and compression-factors is performed. The 
next section describes this in more detail. 

EXPERIMENTAL SETUP 
The experiment has two phases. In Phase 1, subjects are 
presented with three different audio samples, each taken from 
a single conference talk given by a single speaker. Each 
sample is associated with transcript style C1, C2, or C5. The 
order in which the samples are presented is randomized 
between subjects. The speech rate for all three samples 
averages 148 words per minute. 

Subjects are presented with an interface similar to the one 
shown in Figure 2. When the subject presses the “PLAY” 
button, the transcript appears (or no transcript with style C5) 
and the audio begins playing at normal speed. The speed 
incrementally increases over time by increasing the SOLAFS 
time-compression factor. Subjects were instructed to press a 
“TOO FAST” button whenever they felt the playback speed 
was too fast to “generally understand” what was being said. 
This exact phrase was used so subjects would not stop simply 
because they missed an individual word, but would wait until 
the speech, in general, could not be understood. When the 
“TOO FAST” button is pressed, the time-compression factor 
is immediately reduced by 0.5 and then begins to slowly 
increase again. After the subject presses the button three 
times, playback is stopped. The software records the time-
compression-factor every time the subject presses the “TOO 
FAST” button and averages the results. 

One of the purposes of Phase 1 is to acclimate subjects to 
time-compressed audio in preparation for Phase 2. Previous 
studies suggest naïve listeners can understand pitch-
normalized time-compressed audio up to a compression-
factor of 2.0 and this ability improves with more exposure 
[11]. Subjects typically completed Phase 1 in 10–15 minutes, 
which is far short of the 8–10 hours prescribed by [11].  

For Phase 2, subjects are presented with a series of 38 short 
clips of recorded speech and were tested on their under-
standing of those clips. To quantify subject comprehension, 
fill-in-the-blank style questions are asked. This provided a 
more objective metric compared to the self-reported com-
prehension assessment of the subjects in Phase 1. 

The clips, when played at normal speed, have a mean 
duration of 20.6 seconds with σ = 5.8. Longer clips were 
avoided in order to minimize primacy and recency effects. As 
mentioned earlier, the clips were collected from a series of 
conference talks spanning a wide range of speakers; speakers 
who enunciated clearly and whose recording-quality was 
good were preferred. The content of the talks is mostly 
academic research and computer technology. The specific 
audio samples were selected such that there was little to no 
domain-specific language, jargon, and no prior knowledge 
was needed to understand them. 

The 38 clips were presented in random order and with a 
random transcript style among C1 to C5. Each sample was 
played at a fixed time-compression-factor. Audio playback 
speed is expressed as a time-compression factor. For 
example, audio played at compression 2.0 will complete in 
half the time of the original recording, a factor of 3.0 will 
complete in one-third time, etc. The first three samples were 
presented at factor 1.0 (i.e. original speed), the next three 
samples at 1.5, and in sequentially increasing factors, four 
samples at 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25 and 3.5. Figure 
3 shows an example distribution of the 38 sample/transcript-
style pairs that might be given to a subject. Samples were 
presented in increasing compression-factors in order to 
minimize effects related to the subjects’ limited exposure to 
time-compressed audio. 

 1.0 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5
C1 x x  x x x x  x x 
C2  x x  x x x x  x 
C3  x x x  x x x x  
C4 x  x x x  x x x x 
C5 x  x x x x  x x x 

Phase 2 was limited to 38 samples since pilot studies 
suggested subjects could complete a set of this size within 
our desired subject time-commitment limit. Fewer questions 
were assigned to the 1.0 and 1.5 compression-factors 
primarily due to previous results suggesting naïve listeners 
can understand time-compressed speech up to factor 2.0 [11]. 

The interface seen in Figure 2 was used. When the subject 
presses the “PLAY” button, the transcript appears (or a string 
of dots if transcript style C5) and the audio begins playing. 
When the sample finishes playing, the transcript disappears 
and is replaced by one to three questions about that sample. 
The questions ask simple, unambiguous facts about what the 
speaker said and do not require any interpretation or 
specialized knowledge. Each subject is given two practice 
samples and corresponding questions before the test. 

Speech-rate variation among speakers suggests that time-
compression factors should be normalized by a more 
standard speech-rate metric: words per minute (WPM). 
Specifically, when played at their original speeds, the audio 
samples in the present collection were spoken between 120 to 
230 WPM with a mean of 174 and σ = 29. 

RESULTS 
Two out of 34 subjects who participated stated they had 
previous exposure to time-compressed audio similar to 
SOLAFS. Four others said they had experience with high-
speed audio, but cited examples were limited to the fast-
forward feature of an analog audio-tape player, fast speech in 
television commercials, and some videos airing on the 
“MTV” television channel. Eleven subjects stated they had 

Figure 3: Example of sample distribution for a single subject .
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previous experience with speech-recognition technology, 
seven said they had a little experience, and 15 subjects 
correctly recognized the identity of at least one speaker 
among the recorded speakers. 

Phase 1 examined subjects’ self-reported maximum time-
compression factor for three of the transcript styles. Figure 4 
shows the average maximum time-compression-factor for 
each transcript style. Using a repeated measures, one-way 
ANOVA, the mean time-compression factors for all Phase 1 
transcript styles were found to be different and, more 
precisely, C1 > C2 > C5 (p<0.01 for each relation). This 
suggests that, using the Phase 1 subjective comprehension 
metric, part of Hypothesis H1—which posits differences in 
subject comprehension among transcription styles—is 
confirmed. 

Seven of the 34 subjects were non-native speakers of 
English. Across all Phase 1 transcript styles, non-native 
speakers averaged a maximum compression-factor of 2.47 
while native speakers achieved 2.88. This difference was 
found to be significant (p=0.015) and confirms the subjective 
aspect of native versus non-native comprehension difference 
(Hypothesis H4). 

In the Phase 2 question-answering task, answers were judged 
to be correct if they indicated a subject’s basic understanding 
of the sample’s content, and incorrect otherwise. Table 1 
shows a summary of the aggregate data for all subjects in 
Phase 2. The scores indicate the percentage of questions 
answered correctly. At compression-factors 1.0 and 1.5 each 
cell represents 20 to 21 data points. At all higher 
compression-factors, each cell represents 27 or 28 data 
points. These numbers do not apply to the totals, which 
contain the aggregate data of an entire row, column, or, in the 
case of the lowest-rightmost box, all 1290 data points. For 
samples that had more than one question, only the question 
subjects attempted to answer the most is included in the data. 
The average WPM for each cell in Table 1 was computed 
(after accounting for rate increases due to time-compression) 
and Figure 5 shows subjects’ question-answering accuracy 
for each transcript style when normalized by WPM. 

Adjusting for speech-rate increases due to time-compression, 
the range for all samples actually played to all subjects 
during Phase 2 was 120 to 810 WPM. Figure 6 shows the 
fraction of all questions answered correctly across all 
transcript styles at each WPM decile. Significant correlation 
was found between WPM and subjects’ question-answering 
accuracy (r=-0.429, p<0.0001). Hence, Hypothesis H3, 
which posits degradation of subject comprehension with 
increasing speech rate, is confirmed. 

 C1 C2 C3 C4 C5 Total 

1.0 80 85 75 90 85 83 
1.5 95 90 67 81 90 84 

1.75 89 79 74 81 67 78 
2.0 78 78 78 74 61 73 

2.25 61 81 59 59 59 64 
2.5 67 59 63 46 63 60 

2.75 63 55 54 37 41 50 
3.0 70 54 48 15 18 41 

3.25 48 22 26 11 4 22 
3.5 36 26 37 7 7 23 

Total 68 62 57 48 47 56 
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Figure 4: Phase 1 subject self-reported maximum time-
compression-factors for transcript styles C1, C2, and C5 with 

95% confidence intervals. 

Table 1: Percentage of questions answered correctly at each 
style for each time-compression factor in Phase 2. 

Figure 5: Subjects’ question-answering accuracy at 
varying speech rates. 
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C1 - ns < 0.01 < 0.001 < 0.001
C2  - ns < 0.001 < 0.001
C3   - < 0.05 < 0.05 
C4    - ns 
C5     -  

 

Using the data from the Phase 2, question-answering task, a 
two-way ANOVA was conducted in which transcript style 
and WPM were used as independent variables and 
percentage of questions answered correctly was used as the 
dependent variable. Both transcript style and WPM showed 
significant variation (p<0.0001 for both), while the 
interaction between them did not (p=0.373). A one-way 
ANOVA was conducted using just transcript style as the 
independent variable and percentage of questions answered 
correctly as the dependent variable (p<0.0001). The data for 
this test was paired by subject. Each subject had five 
measures corresponding to the average number of correctly 
answered questions under a given transcript style. The 
questions for each measure were not perfectly distributed by 
speed and some questions were more difficult to answer than 
others. However, normalizing the data for speed and 
difficulty had a negligible effect on the overall results and 
such normalization has been left out of this analysis. Table 2 
shows the p-values obtained by comparing the 
comprehension scores under each transcript style with a 
Student-Newman-Keuls post test. Tukey and Bonferroni tests 
did not find a significant difference between C3/C4 and 
C3/C5, but otherwise yielded similar results. Figure 7 
displays the means and 95% confidence intervals for the 
percentage of questions answered correctly under each of the 
transcripts styles.   

While these results do not confirm every aspect of 
Hypothesis H1, they do confirm several subcomponents. 
Specifically, subject comprehension of audio presented with 
a perfect transcript (C1) was found to be better than C3, C4, 
and C5 and the comprehension of C2 and C3 was found to be 
better than C4 and C5. No significant difference was found 
between completely wrong transcripts (C4) and no transcript 
(C5). C4 scored 0.96% higher than C5, which translates to 
about three questions out of 258. 

In order to evaluate hypothesis H2, correlation tests were 
performed comparing the WER of a given audio sample to 
the percentage of times subjects answered the associated 
question correctly across all speeds. As previously 
mentioned, the WER distribution across all samples was 
fairly uniform. Correlations were found for transcript styles 
C2 (r=–0.44, p=0.01) and C3 (r=–0.34, p=0.04). To ensure 
there were no effects related to the quality of the recordings, 
correlation tests were performed with styles C1 (perfect 
transcript, r=–0.06, p=0.73) and C5 (no transcript, r=–0.04, 
p=0.81). Surprisingly, a correlation was found with the C4 
transcript style (wrong transcript, r=–0.39, p=0.02). 

Finally, with respect to the differences between native and 
non-native English speakers (Hypothesis H4) in the Phase 2 
question-answering task, Figure 8 shows the percentage of 
questions answered correctly by each group under each 
transcript style with p<0.005 for all native versus non-native 
comparisons at each style. These results suggest confirmation 
of Hypothesis H4. 

Figure 6: Percentage of questions answered correctly at each 
decile of words per minute (minimum 10 samples per decile).

Table 2: p-values associated with each pairwise comparison
between transcript styles for Phase 2 question-answering task.
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Figure 7: Percentage of questions answered correctly for each
transcript style averaging across all time-compression factors.
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Figure 8: Comparison of question-answering performance for 
native versus non-native English speakers with 95% confidence 
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 Phase 1: Subjective Phase 2: Objective 
H1 Confirmed for transcript 

styles C1, C2, and C5 
Partially confirmed 

H2 Not tested Confirmed for C2, C3 
and C4 

H3 Not tested Confirmed 
H4 Confirmed Confirmed 

Table 3: Summary of hypothesis testing 

Table 3 summarizes hypothesis testing for both the Phase 1 
subjective tests and Phase 2 question-answering tests. 

DISCUSSION 
The perfect transcript style (C1) is tantamount to reading and, 
not-surprisingly, results from both Phase 1 (self-reported 
maximum) and Phase 2 (question-answering task) suggest 
this style is the best supplement to improving comprehension 
of speech playback. However, generating such transcripts is 
costly, time-consuming, and must be done manually. Using a 
computer speech-recognizer to generate lower-quality 
transcripts, like C2 and C3, can be done cheaply, quickly, 
and in an automated fashion. 

To date, the poor transcript quality of large-vocabulary, 
speaker-independent recognizers has hindered more wide-
scale adoption of this technology. Despite this shortcoming, 
the present experiment provides evidence suggesting 
comprehension improvements when using speech-
recognizer-generated transcripts, even when laden with 
errors, and especially when rendered in the C2 transcript 
style. Specifically, comprehension of transcript style C2 was 
found to be better than both audio alone (C5) and a 
completely wrong transcript (C4). Differences between Style 
C2 and C3 were not confirmed to be significant, so it is not 
yet clear how much Style C2’s confidence-based text-
brightness-rendering contributed to this, if at all. 

In a worst-case scenario, a speech-recognizer may generate a 
completely-incorrect transcript (C4). Part of Hypothesis H1 
posits speech presented in conjunction with a style C4 
transcript is expected to reduce comprehension compared to 
no transcript (C5). The supposition is that a transcript with 
many errors will tend to distract subjects and result in fewer 
correct answers. However, Phase 2 results could not confirm 
any significant difference between styles C4 and C5. 
Consequently, no evidence was found suggesting a 
completely-wrong transcript would worsen comprehension 
compared to audio only. One possible explanation is that 
subjects ignored bad transcripts. Similar to the low-quality 
transcript abandonment results found in [17], some subjects 
in the present experiment stated that they would read a tran-
script for a few seconds, and elect whether or not to continue 
reading it based on its quality. In fact, several subjects looked 
away from the computer display and stated they did so to 
avoid the distraction of a faulty transcript. 

Unexpectedly, the difference between the perfect transcript 
style (C1) and the brightness-coded speech-recognition style 
(C2) was not found to be significant in the Phase 2 objective 
question-answering task (though a significant difference was 
found in the Phase 1 subjective task). In Phase 2, a significant 
difference was found between C1 and the uniform-brightness 
speech-recognition style (C3). While it is premature to 
conclude that style C2 is better than C3, the evidence 
suggests there is some utility to visualizing text in this 
manner, but further investigation is needed to understand the 
role of brightness-coded text. 

Hypothesis H1 posits comprehension variation among all 
transcript styles. While some aspects of this were confirmed 
(as detailed in Table 2), the trend suggests some of the un-
confirmed H1 parts (specifically, C1 vs. C2 and C2 vs. C3) 
may achieve statistically significant variation with additional 
subjects. 

Hypothesis H2 posits that comprehension of audio presented 
with a transcript will increase as the WER of the transcript 
decreases.  This correlation was observed with the two 
transcript styles that had variable WER, C2 and C3.  
Surprisingly, comprehension of audio played with the com-
pletely wrong transcript style (C4) was correlated to the 
WER of the corresponding speech-recognizer-generated 
transcript of that audio. This non-intuitive result cannot be 
explained. The fact that style C1 (perfect transcript) and style 
C5 (no transcript) showed no correlation with WER suggest 
audio quality across samples was even. Results for this 
hypothesis remain inconclusive and more work is needed to 
understand the nature of the relationship between WER and 
comprehension. 

Evidence for Hypothesis H3, which posits that comprehen-
sion decreases with increasing speech rate, was clearer and in 
agreement with [4]. Differences between native and non-
native speakers (Hypothesis H4) were also found. 

Collectively, these results paint an optimistic picture. Despite 
the fact that comprehension of time-compressed speech 
decreases as compression-factors increase [4], speech-
recognizer-generated transcripts used in conjunction with 
such speech improve comprehension. In effect, the results 
suggest people can either save time or improve their 
understanding when reading error-laden speech-recognizer-
generated transcripts in synchrony with time-compressed 
speech. The cost to provide speech-recognizer-generated 
transcripts is low and since very bad transcripts do not seem 
to confuse users, there is no apparent downside.  

Searching large collections of personal audio recordings 
intended as a personal memory aid is of particular interest. 
The authors are cautiously optimistic that, based on the 
results described herein, users of an audio-based memory aid 
will better utilize archives of their recorded past. 

CONCLUSIONS 
Results of an experiment comparing comprehension of time-
compressed speech presented in synchrony with transcripts 
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of varying qualities and presentation styles were presented. 
Motivating this experiment is the desire to construct 
improved audio browsing and searching tools by minimizing 
the time needed to review time-compressed audio and 
improving the comprehension of audio presented in this 
manner. Results suggest a speech-recognizer-generated 
transcript, despite having errors, aids in improving 
comprehension of time-compressed speech. Similarly, 
comprehension can be maintained at slightly higher time-
compression factors (i.e., faster) when accompanied with a 
speech-recognizer-generated transcript. 

No evidence was found suggesting a completely-wrong 
transcript has different comprehension compared to no tran-
script. Consequently, it does not seem harmful to provide a 
poor speech-recognizer-generated transcript. Rendering 
transcripts with word-brightness proportional to the speech-
recognizer-assigned “phrase score” improved comprehension 
compared to no transcript, but it is not clear how important 
the brightness-rendering contributes to this improvement.  

In confirmation of previous studies [4], comprehension 
decreased with speech rate.  This study presents evidence that 
comprehension also decreases with increasing word error rate 
of speech recognizer-generated transcripts, although this 
hypothesis is not yet confirmed. 

The authors are optimistic on the use of these methods to 
improve browsing and searching of personal recordings 
intended as part of an audio-based personal memory aid. 
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