
AreWeThereYet? - A Temporally Aware Media Player

Matt Adcock, Jaewoo Chung, Chris Schmandt

MIT Media Lab

20 Ames St, Cambridge, MA 02142, USA

{matta, jaewoo, geek}@media.mit.edu

Abstract

In this paper we describe the design and implementation

of the AreWeThereYet? (AWTY) Player - a (digital)

audio player that composes a program of audio media that

is extremely likely to fit within the user’s available

listening time. AWTY uses time compression and track

selection techniques to help the listener make more

efficient use of their time. More importantly, it possesses

an awareness of the listener’s temporal context. It forms

an estimate of the available listening time and uses this

prediction to compose a playlist of a suitable length. We

hope that this research prototype will inspire others to

further investigate the ways in which temporally aware

computing might be employed.

Keywords: Temporal Awareness, Time Compression,

Location Based Computing, Audio, Context Awareness.
.

1 Introduction

We often have ‘idle’ time in which we consume various

types of audio media such as radio, audio books, mp3s,

CDs, podcasts… However, in order to ‘commit’ time to

listening, we may well prefer to know that there will be a

natural conclusion or break when we need to stop

listening.

In this paper we present the AreWeThereYet? (AWTY)

Player - a (digital) audio player that can compose a

program of audio media that is extremely likely to fit

within the user’s available listening time. This differs

from many previous approaches to personalized media

scheduling and play list composition in that it is not

trying to guess personal preferences or play content

snippets based on location. Instead, the audio player’s

‘intelligence’ comes from its ability to use a listener’s

current location and their predicted destination to

calculate an estimate of the available listening time.

Additionally, for spoken word audio, the AWTY Player

uses time compression in order to maximize listening

efficiency. Pitch invariant time compressed speech is

comprehensible to the listener at rates of 1.5x and

sometimes 2x the normal play rate (Foulke and Sticht

1969). Additionally, after some exposure to this type of

Copyright © 2008, Australian Computer Society, Inc. This

paper appeared at the 9th Australian User Interface Conference

(AUIC2008), Wollongong, NSW, Australia, January 2008.

Conferences in Research and Practice in Information

Technology, Vol. 76. B. Plimmer, G. Weber, Eds. Reproduction

for academic, not-for profit purposes permitted provided this

text is included.

time-compressed speech, people actually prefer it to

uncompressed speech (Beasley and Maki 1976).

1.1 Example Usage Scenario

Katlyn works at a travel agency, and usually walks to

work each morning. She’s a little behind in listening to

her podcasts, so she flicks on her AWTY Player. The

AWTY player connects wirelessly with her phone which

is tracking her location and providing estimates of her

remaining trip time. The AWTY Player subsequently

assembles a program of some of her latest podcasts that it

thinks will play for a similar duration to her journey.

Then, while she walks, it monitors her progress and

automatically adjusts the play list and play speed based

on her phone’s successive estimations of her arrival time.

The podcasts finish playing just a couple of meters from

the door to her shop, and her AWTY Player goes to sleep.

It’s just like clockwork.

2 Time Matching Techniques

There are two main ways that a system like this could

provide media to fit within a specific time window. It is

important to note that the two techniques described below

are not mutually exclusive.

The first method is to use time compression. Time

compression works pretty well for most spoken word

audio, but has artistic hurdles where music is concerned.

There are a number of methods that permit speech to be

played at speeds in excess of 1.5×, while maintaining the

original pitch. Speech playing at around 1.4× normal

speed usually maintains a high level of comprehensibility.

The second method is to employ track selection or, in

other words, simply choose tracks with play lengths that

add to the required time. This relies on a large source of

audio material and can be used for music as well as

speech. The experience for the user is quite similar to

hitting ‘shuffle’ or ‘random’ on today’s commercially

available media players.

The initial implementation of the AWTY system focuses

on the playing of audio books. In this case the chapter

order is predetermined, so the track selection method is

not possible. Instead, it relies solely on time compression.

In doing so, we also demonstrate the technique that many

people would be least familiar with.

We assume that the listening preferences are already

defined by the user in their previously created playlist(s).

We also assume that, given enough idle time, the user is

happy to listen to all of the content.

2.1 Speech Audio: Track Selection with Time

Compression

The primary algorithm for selecting how many speech

tracks to play, and at what rate to play them, is as follows:

1. Determine the maximum number of tracks

(including any partial current track) that can be

played within the estimated listening time. This

is done by simply adding track lengths and

dividing by the user’s preset maximum time

compression threshold.

2. Divide the estimated amount of listening time by

the total (normal speed) play times of the

selected tracks. This will give the play rate

needed for the tracks to play until the estimated

end of the journey.

3. This resulting play rate (or time compression

factor) is then used until either the estimated

remaining listening time diverges from the

remaining play time or there is user interaction,

such as rewinding. If either of these occurs, we

return to step 1.

A graphical example of this algorithm, using chapters

from LoudLit.org’s reading of "Adventures of

Huckleberry Finn", and a maximum time compression

threshold of 1.5 can be seen in Figure 1. In this example,

an ETA (Estimated time to Arrival) of 500 seconds would

result in (only) chapter 1 of the audio book being played

at a rate of about 1.2 times normal speed. If, however, the

ETA was 1000 seconds, there would be enough time to

play chapters 1 and 2, provided we played them at a rate

of about 1.35 times normal speed. As a further example,

an ETA of 2000 seconds would permit chapters 1-5 to be

played at around 1.4 times the normal rate.

0 1000 2000 3000 4000 5000
0.4

0.6

0.8

1

1.2

1.4

1.6

P
la

y
 s

p
e

e
d

 r
a

ti
o

.

Estimated listening time to arrival (in seconds).

Figure 1: For a given set of track lengths, this graph shows a

snapshot of the relationship between the estimated available

listening time and the resulting audio play rate. If the

estimated listening time stays constant for the entire

journey, the play rate will also remain constant.

As can be seen in the Figure, the longer the estimated

remaining listening time, the more likely the compression

factor will be close to the user’s maximum compression

threshold (assuming the tracks are of somewhat similar

length).

The graph in Figure 1 is only a snapshot. As time

progresses, the ETA should decrease, and the remaining

duration of the currently playing audio track will also

decrease. It is therefore important to realize that if the

ETA never diverges from its initial value (i.e. it was

correct from the beginning), the play rate will remain

exactly constant throughout the entire journey.

If the estimated time to arrival is small compared to the

lengths of the given tracks, it is possible that there is not

enough time to play even the first track at maximum play

rate. It is also possible that a play rate of less than normal

speed is needed to exactly match the estimated listening

time. In both cases, our solution is to first warn the user

that the system performance will be sub-optimal, but also

to begin playing the track at maximum rate or normal rate

respectively.

The system is robust to user intervention during the

journey (e.g. a rewind and replay the last two minutes of

the current chapter). It simply performs the same track

selection and audio calculation and issues warnings if

required.

2.2 Track Selection from a Music Library

When playing music tracks, we are likely to want to

preserve the play rate and therefore time compression is

not used. To calculate a playlist that is as close to the

estimated listening time as possible, one option is to

exhaustively solve the knapsack problem (Cormen et al.

1990) (named after a hypothetical thief trying to choose a

set of objects that will best fill his knapsack).

However, if we assume the user has a suitably large set of

tracks from which to draw, and also assume that the given

journey is an order of magnitude larger than the average

length of tracks in the library, we can employ a cheaper

(approximate) algorithm, as follows:

0. Create an index of all tracks in the collection ordered

by track length, and determine the average track

length (this only needs to be done once).

1. Randomly select individual tracks and add them to a

list until the list is close to the total estimated listening

time (e.g. within half the average track length).

2. Rank the selected tracks by their difference from the

average track length (such that the longest and

shortest tracks will play first). We do this to increase

the chance of ‘manoeuvrability’ (which is described

below).

3. Swap some small number of tracks near the end of the

list (the ones closest to the average length) for tracks

that will result in the total playtime. For example, if

the list generated in step 1 is 90 seconds longer than

the estimated listening time, replace the last three

songs with tracks that are about 30 seconds shorter.

If the resulting playlist not within some threshold (e.g.

2%) of the estimated remaining listening time, we have

the option of falling back on an exhaustive solution to the

knapsack algorithm.

As the user’s journey progresses, we will obtain further

refinement of the ETA. If ∆ETA is small (with respect to

the ETA used to create the current play list), we can swap

the last song(s) in the list accordingly. Alternatively, and

especially if ∆ETA is large, we recalculate the whole list

(this is possible as we do not disclose the list to the user).

Note that if the user is currently listening to a track, we

do not interfere with that track.

The simplified algorithm above is based on the

assumption that the music library provides sufficient

choice. Figure 2 shows the distribution of track lengths

in a typical mainstream music library (of 3196 tracks).

The average track length is 245s and the closer songs are

to that, the greater the chance of having alternative tracks

to ‘switch to’ when ETA refinements are obtained.

Additionally, there is a high degree of contiguity in the

track lengths. More than 92% of the (non-duplicate) track

lengths in the library have another track within 3 seconds

of their length.

0 200 400 600 800 1000 1200
0

50

100

150

Track Length (in Seconds)

N
u
m

b
e
r

o
f
T

ra
c
k
s
 i
n
 L

ib
ra

ry

Figure 2: A histogram showing the track lengths of a typical

music collection (containing 3196 album-version songs

totaling about 18GB). Tracks are bucketed at intervals of 5

seconds.

3 Implementation Details

The initial ‘proof of concept’ demo was implemented as a

windows application, written in Java (see Figure 3). It

uses the Winamp Media Player to manage audio playing

and the PaceMaker Winamp Plugin to stretch or shrink

audio without affecting the pitch. The main body of Java

code communicates with Winamp and PaceMaker via the

Java Native Interface and a custom Dynamic Link

Library (DLL). This DLL sends commands and requests

to Winamp and PaceMaker through the Windows

Messaging interface.

The system is largely based on a Model-View-Controller

design. Additional Java components of the system include

an Application Controller, GUI, Map Display, and a Fake

Trip Generator. This last component, which is

implemented in its own separate thread, is used as a

surrogate for real trip time estimations.

When running in demonstration mode the system uses

‘fake’ trip data. In this mode, the Map Display indicates

the ‘location along the route’ and ‘estimated time until

arrival’. It also provides for user control of a proxy

traveller so as to demonstrate the dynamics of the system

at various points along the route.

Figure 4 shows an example of similar stages along the

same journey, and in each case the person is travelling at

two slightly different speeds.

4 The Working Mobile System

We have implemented a mobile version of the AWTY

Player on an OQO pocket computer, a WindowsXP

device that is about the same size as today’s lager

portable MP3 jukeboxes.

4.1 Route Prediction and Wireless Connection

To calculate the user’s available listening time, we used

the estimated time to arrival (ETA) for an established

travel route. This ETA is calculated by Contella (Chung

2006), a route prediction application which runs on a

Motorola i870 mobile phone. In order for the application

to detect a given route, the user is first required to train

the system by travelling along that route. This is ideally

done as part of the user’s daily routine. Then, when the

user revisits a given route, the application is able to

predict the user’s ultimate destinations as well as the

associated ETA.

(a) (b)

The Contella application uses Motorola's JAVA API to

retrieve GPS fixes every five seconds (in both the training

and general use situations). The GPS fixes are used to

collect information about intermediate locations every 50

metres, and the series of intermediate points (iPoints) is

used to generate a route template (as shown in Figure 5).

Figure 4: (a) The map and status indicators from the

AreWeThereYet? GUI. The red and blue lines show the

sections of the journey where it is anticipated that each

respective track will play. (b) After a slight increase in

speed, one track has been dropped from the play list and

the audio compression level has, in turn, decreased.

Figure 3: The AWTY System Architecture.

Java

JNI

C++ DLL

AreWeThereYet? Media Player

Controller

Map View GUI

Track Manager Fake Trip

Generator

Trip Data

Receiver

Windows
Messaging

PaceMaker

Winamp

GPS/Bluetooth
Phone

Route
Learning

and
Estimation

The template for any given route also contains

information about the time of day when the user was on

the route.

Sometimes these route templates are generated under

non-ideal conditions. Poor GPS reception can result in

some inaccuracies in the GPS coordinates recorded and

some gaps (of greater than 100 meters) may exist

between iPoints. However, Contella re-samples GPS

coordinates every time a route is traversed. It will attempt

to replace the GPS coordinates of iPoints’ that had

initially been recorded with poor accuracy, and plug gaps

in which iPoints were missing.

Contella generates a prediction of the ultimate destination

based on the user’s current direction, the route that the

user has travelled so far and the time of day that the user

is travelling. In addition, the ETA is calculated not only

based on speed, but also the average speed of the user

during previous traversals of the respective route.

Figure 5: A set of iPoints along a typical route.

Each route template is divided into regions of similar

speeds (roughly corresponding to different modes of

transport). For each section, the route template maintains

a weighted average of the speeds collected during

previous journeys along the respective route (giving the

most weight to the most recent journey). Whenever a

user’s current travel speed is within range (+15%/-30%)
1

of the corresponding (weighted average) speed held in the

template, that template is used to calculate the ETA. If a

user exceeds that speed range, the application calculates

the estimated travel time for that region based on the

user's current average speed within that region. The total

ETA is always calculated using the template values for

any subsequent regions.

On average, the algorithm updates its prediction every 40

seconds. When the route prediction application updates a

prediction, it sends the ETA to the OQO device via

Bluetooth. The ETA message is a simple string

containing the estimated number of seconds. Given the

update frequency, if the device is within one minute of

the estimated arrival point, we just maintain a constant

time compression factor and play until the end of the

track.

5 Related Work

AWTY Player contains some echoes of the time critical

music scheduling systems found in broadcast radio

stations. In fact, there are now a number of desktop

1
 This speed range was reached through trial and error.

applications that perform similar functions (such as the

GPL’ed GJay software). There are also many systems

that aim to automatically generate play lists. Some, such

as CUIDADO (Aucouturier and Pachet 2002), base the

play list on the current user specified preference. Others,

like PATS (Pauws et al. 2002) and Riot! 1831 (Cater et

al. 2005) generate a playlist for the specific real world

environment or location (respectively) in which the audio

will be heard.

It is also worth noting that most car navigation systems

already calculate at least one instance of an estimated

journey time. This suggests that car stereos (which are

often located in close proximity to the GPS navigation

systems) would be an ideal benefactor of the techniques

described in this paper.

6 Conclusion

In this paper we have described the design and

implementation of the AreWeThereYet? Player. AWTY

uses time compression and track selection techniques to

help the listener make more efficient use of their time.

More importantly, it possesses an awareness of the

listener’s temporal context. It forms an estimate of the

available listening time and uses this prediction to

compose a playlist of a suitable length. We hope that this

research prototype will inspire others to further

investigate the ways in which temporally aware

computing might be employed.

7 Acknowledgements

Thank you to Pattie Maes for her helpful input. Matt

Adcock is on leave from CSIRO Australia while at the

MIT Media Lab.

8 References

Aucouturier, J.-J. and F. Pachet (2002) “Scaling up Music

Playlist Generation”, IEEE International Conference

on Multimedia Expo, Lausanne (Switzerland).

Beasley, D.S. and Maki, J.E. (1976) Time- and

Frequency- Altered Speech. In N.J. Lass, editor,

Contemporary Issues in Experimental Phonetics,

Academic Press, 419–458.

Cater, K., Fleuriot, C., Hull, R., and Reid, J. (2005)

Location Aware Interactive Applications. In: ACM

SIGGRAPH 2005, Conference Abstracts and

Applications, ACM.

Chung, J. (2006) Will You Help Me: Enhancing personal

safety and security utilizing mobile phones. Masters

Thesis, MIT Media Lab.

Cormen, T., Leiserson, C., and Rivest, R. Introduction to

Algorithms. MIT Press, Cambridge, MA, 1990.

Foulke, W., and Sticht, T.G. (1969) Review of research

on the intelligibility and comprehension of accelerated

speech Psychological Bulletin, 72, 50–62,

Pauws, Steffen, and Eggen, B. (2002) “PATS:

Realization and user evaluation of an automatic playlist

generator”, Proceedings of the 3rd International

Conference on Music Information Retrieval, 222-230.

