
Are We There Yet?  
User-Centered Temporal 
Awareness

T ime can be a precious 
commodity, and we 
often put great effort 
into deciding how best 

to spend it. Think, for example, about 
the decisions you might have made 
before choosing to read this article: 
Will I finish it before I need to attend 
to something else? If I don’t have 
enough time to read it thoroughly, 
can I still get the gist by skimming it? 
If I have more time available, should I 
read a longer article instead? 

It’s not unreasonable to think that 
the technologies we use in our daily 
lives could help us make these sorts 
of decisions. For example, analy-
sis of computer usage patterns can 
reveal our probable availability to 
colleagues. But, even better, it should 
be possible for devices to make some 
of these decisions for us while still 
leaving us with a comfortable level 
of control. We refer to such systems 
as exhibiting temporal awareness.

One way to realize temporally 
aware computing in everyday use is 
via wearable devices. Such devices 
could collect time-related information 
from the items and environments we 
interact with and create a personal 
temporal model. They could then 
use this information to change our 
behavior.

An example of temporal aware-
ness in action, the AreWeThereYet? 
Player is a digital audio player that 
can compose a program of audio 
media likely to fit within the user’s 
available listening time. AWTY esti-
mates this time using the listener’s 
current location and predicted desti-
nation as well as some knowledge of 
previous journeys. 

Temporally Aware  
Media Player

Consider the following scenario. 
Kayla works at a travel agency and 
usually walks to work each morn-
ing. She’s a little behind in listening 
to her podcasts, so she flicks on her 
AWTY. The player connects wire-
lessly to her phone, which is tracking 
her location and providing estimates 
of her remaining trip time. The AWTY 
subsequently assembles some of her 
latest podcasts into a program similar 
in duration to her journey.

While Kayla walks, the AWTY 
monitors her progress and automati-
cally adjusts the playlist and play 
speed based on her phone’s succes-
sive estimations of her arrival time. 
She can skip tracks, scan forward and 
back, and pause playback—the device 
simply recalculates a new playlist in 
the background. As Kayla arrives at 

her shop, the podcasts finish playing 
just a couple of meters from the front 
door, and her AWTY goes to sleep. It’s 
like clockwork.

As closing time rolls around, it 
starts to rain. Kayla calls her brother 
Jake to see if he can give her a ride. He 
can, but she’ll have to wait for about 
20 minutes. Kayla figures that, while 
waiting, she has enough time to get 
through a couple of chapters of the 
latest audio book. 

Kayla tells her phone to connect 
to her brother’s and provide his 
estimated arrival time to the media 
player. She then kicks back, know-
ing that she needn’t worry about her 
brother’s arrival interrupting a chap-
ter of her book.

Temporal Context  
from Location

To identify the available listening 
time, AWTY receives regular wireless 
updates from the user’s GPS-enabled 
phone containing the estimated travel 
time (ETT) for the current journey. 
The phone calculates this ETT with a 
prediction application that uses a per-
sonalized model of possible routes.

For the application to detect a 
given route, the user must first train 
the system by traveling along that 
route, ideally as part of a normal daily 
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routine. Then, when the user revisits 
a given route, the application can pre-
dict the user’s ultimate destination as 
well as the associated ETT.

AWTY collects information about 
intermediate points every 50 meters 
with GPS fixes and uses these iPoints 
to generate a route template, as Figure 
1 shows. The template for any given 
route also contains information about 
the time of day when the user was on 
the route. 

The prediction of the ultimate des-
tination is based on the user’s current 
direction, route traveled so far, and 
time of day. The ETT calculation is 
based on the user’s current speed as 
well as average speed during previous 
traversals of the same route.

Each route template is divided into 
regions of similar speeds roughly 
corresponding to different modes of 
transport—this is useful for the person 
who walks some distance then, say, 
catches a bus. For each region, the 
route template maintains a weighted 
average of the speeds collected during 
previous journeys along the respec-
tive route, giving the most weight to 

the most recent journey. AWTY uses 
a given template to calculate the 
ETT whenever a user’s current travel 
speed is close to the corresponding 
weighted-average speed in the tem-
plate and the time of day is similar to 
the times at which that template was 
previously recorded.

On average, the algorithm updates 
its prediction every 30-40 seconds. 
When the route prediction applica-
tion updates, it sends the new ETT 
via Bluetooth. The ETT message is 
a simple string containing the esti-
mated number of seconds to arrival. 

Time-Matching 
Techniques

There are two main ways that 
a media system such as AWTY can 
play audio so that it fits within a spe-
cific time window: time compression 
and track selection. These techniques 
aren’t mutually exclusive.

Time compression
Essentially, time compression 

“squashes” a selection of audio tracks 
into the anticipated time window. This 

works pretty well for most spoken 
word audio but faces hurdles where 
music is concerned. Several well-
known techniques permit speech to 
be played at increased speeds while 
maintaining the original pitch.

Speech playing at around 1.4× 
normal speed is usually highly com-
prehensible. Faster speeds up to 2× 
normal speed are sometimes accept-
able but often require additional 
concentration. People quickly adjust 
to time-compressed speech, and in 
fact, after a short period of listen-
ing, some prefer it to uncompressed 
speech. AWTY lets users set—and 
forget—a comfortable maximum 
time-compression rate.

The AWTY prototype’s initial 
implementation focused on audio 
books. In this case, the track (chapter) 
order is predetermined and the need 
for time compression greatest. The 
only possibility of track selection is 
to determine how many of the audio 
book chapters will be played. We 
accordingly developed an algorithm 
that both selects how many tracks to 
play and at what rate to play them.

Figure 1. Example of two learned route templates for a particular user. One corresponds to a walk from home to work (blue arrow) 
and the other to a walk from home to the supermarket (red arrow). Black dots represent iPoints. When the user sets off from home, 
AWTY uses the time of day and day of the week to identify which ultimate destination is most likely, then estimates the remaining 
journey time. The text boxes show example playlists and their respective time-compression rates. 

10:04am Sunday
Walk to Store

Playlist:
 Podcast (28:29)

ETT: 21m:45s

Playrate:
28:29/21:45
 = 1.31×

8:23am Tuesday
Walk to Work

Playlist:
 Podcast (5:37)
 Podcast (3:16)

ETT: 6m:15s

Playrate:
(5:37+3:16)/6:15
 = 1.42×
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The system first determines the 
maximum number of tracks—includ-
ing any partial current track—that can 
be played within the remaining esti-
mated listening time and adds those 
tracks to the playlist. This involves 
simply adding track lengths and divid-
ing by the user’s preset maximum 
time-compression threshold.

The next step is to divide the esti-
mated amount of listening time by the 
total normal-speed play times of the 
selected tracks. This gives the play rate 
needed for the tracks to play until the 
estimated end of the journey. Figure 
1 shows example playlists and their 
respective time-compression rates.

The system uses the resulting 
play rate or time-compression factor 
until either the estimated remain-
ing listening time diverges from 
the remaining play time or there is 
user interaction, such as rewinding. 
If either of these occurs, it simply 
recalculates the play rate. 

Track selection 
The second time-matching tech-

nique is to simply choose tracks from 
an audio library with play lengths that 
add up to the required time. This relies 
on a large source of audio material and 
can be used with music or unconnected 
recordings of speech. The experience  
for the user is similar to activating 
“shuffle” or “random” on today’s com-
mercially available media players.

One way to calculate a playlist that 
is as close to the estimated listening 
time as possible is to exhaustively solve 
the knapsack problem (named after a 
hypothetical thief trying to choose a set 
of objects that best fills his knapsack). 

However, assuming the user has a 
suitably large set of tracks from which 
to draw and that the given journey is 
an order of magnitude larger than the 
average length of tracks in the library, 
we can employ a cheaper, approxi-
mate algorithm:

[This only needs to be done once.] 
	 0.	 Create an index of the entire col-

lection ordered by track length 

and determine the average track 
length.

	 1.	 Randomly select individual tracks 
and add them to a list until the list 
is close to the total available lis-
tening time.

	 2.	 Rank the selected tracks by their 
difference from the collection’s 
average track length and assem-
ble a playlist such that the longest 
and shortest tracks will play 
first. 

	 3.	 Swap some small number of 
tracks near the end of the list—
the ones closest to the average 
length—with tracks that will 
result in the total play time equal-
ing the available listening time. 
This last step is possible in typi-
cal popular music collections that 
exhibit a normal distribution.

As the user’s journey progresses, 
the system further refines the esti-
mated available listening time. It can 
then swap the latter song(s) in the list 
accordingly. This is possible because 
the system doesn’t disclose the list to 
the user.

The Future of 
“Time/Travel”

Temporal awareness is an area 
of human-computer interaction that 
has remained relatively underex-
plored. This is somewhat surprising 
given the impact of time on our lives 
and the untapped temporal informa-
tion that already pervades everyday 
technology. 

In the AWTY Player, we use learned 
personal journey histories to generate 
temporal context information. How-
ever, many other potential sources 
of real-time temporal information 
already exist.

Most car navigation systems cal-
culate an estimated journey time, as 
do navigation systems on many trains 
and airplanes. The Massachusetts 
Registry of Motor Vehicles provides 
expected waiting times for each of its 
branches on the Web. Some parking 
garages include sensors in every bay 

and could estimate time-to-park from 
the rate at which cars enter the garage 
and at which bays are filled.

An opportunity exists to develop 
a computer-readable interchange 
language for representing temporal 
information—perhaps in XML, similar 
to RSS. Then, everyday technologies 
such as photocopiers and subway 
trains, as well as more complex tem-
poral prediction models, could use 
this language to report how many sec-
onds are left until the current task is 
completed, the destination is reached, 
or some other key event occurs.

Ultimately, temporal context 
information could also be shared 
anonymously online and then har-
vested from people who have been in 
similar situations.

I t is our hope that temporal 
awareness will receive more 
attention from researchers and 

technologists. In the not-too-distant 
future, we expect our kids to be play-
ing a computer game with the full 
confidence that they will run out of 
lives at the exact moment dinner hits 
the table. 
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