woel

pE————

[T

;
;

Cognitive Engineering in the Design of Human-Computer Interaction und Expert Systems,
edited by G. Salvendy
Elsevier Science Publishers B.V., Amsterdam, 1987 — Printed in The Netherlands

Conversational Telecommunications Environments

Chriséopﬁer Schmandt
Media Laboratory, Massachusetts Institute of Technology
20 Ames St.,Cambridge, MA 02139, U.S.A

Abstract

This paper describes several conversational voice interactive computer systems, each capable of
handling a small number of office and telecommunication functions. These systems both utilize dialog
as an integral component of the user interface, and this dialog is essential to the successful completion
of a transaction. The Phone Slave is a conversational answering machine utilizing digitized speech.
The Conversational Deskiop uses voice recognition and synthesis as part of an networked office
environment.

1 Conversation in the speech interface

Conversation as a mode of interaction for human-computer voice interfaces is both natural
and necessary. Conversation is intuitive, as it is the technique humans ordinarily use te
convey information or make requests. Dialog is rational; it is used as a2 means for the hearer
to request clarification from the talking in the event of misunderstanding or transmission
errors. This use will prove essential with speech recognition systems, which are prone to
high error rates.

The ability of a computer system to maintain a conversation depends on the guality
of its speech input and output, its model of human dialog, and its knowledge about the
domain in which it is operating. This paper discusses two systems implemented at the
Media Laboratory to explore issues in the design of conversational systems.

Implicit in the design of these two systemms is recognition of the trade-off between dialog
complexity and acoustic quality. For word recognition devices, the probability of error
increases with vocabulary size and sentence length (number of words). For speech output,
text-to-speech synthesis offers greater flexibility, but at a steep price in terms of intelligibility
as compared to pre-recorded human speech.

Conversation, and voice in general, may be used as a data channel or as a control channel
[Wat83]. In some cases, such as a voice storage and forward system, the voice is itself the
data, and the act of playing that voice back to a user consumates the transaction or request
for information. In other cases, such as accessing an airline reservation system or schedule
utility, voice is merely the channel to initiate and control the transaction, which causes
some database to be updated appropriately.

L

noL

440

2 Phone Slave

The Phone Slave [SA84,SA85] is an example of a restricted domain, low branching factor
conversational system in which voice is itself the data. Because the branching factor in the’
dialog is 50 low (at least from the point of view of the computer’s role) it is possible to usé
high quality pre-recorded speech for cutput. Although it uses no speech recognition in
interactions of interest here, it may appear to understand the talker quite well, due {0
constraints in the particular domain of taking a telephone message

The Phone Slave is a conversational answering machine, which takes telephone messages
by asking callers a series of questions and recording their responses digitally. Each recording
goes into a separate audio file to facilitate later retrieval. Each question/answer transaction
is terminated by an adaptive pause detection algorithm which detects when the human caller
has finished speaking.

2.1 Voice as data

When the telephone rings, the Phone Slave answers it and immediately takes the initiative
in the conversation, an initiative which it cannot afford to lose because it has no ability to
answer questions and does not use speech recognition to try to understand what the caller k
is asking. A message is taken by asking a standard series of questions, such as “Who's
calling please?”, “What’s this in reference to?”, and “At what number can you be reached?”

Each reply by the caller is recorded into a separate audio file to facilitate access by
the system’s owner. Recorded speech is a difficult medium for perusal or filing because it
is slow and sequential in nature; these faciors certainly interfere with acceptance of voice
storage and forward systems. The Phone Slave does not attempt to understand the content
of a caller’s response, but rather notes the confezt in which it was recorded to understand
something about how the recorded audio might be used, and when to present it to the
machine’s owner.

For example, the owner may ask “Who left messages?”, for which it should suffice to
play back serially each of the callers’ responses to the machine’s query of “Who's calling
please ?”. While playing the third calling party identifying herself, the owner may ask “What
does she want?”. A suitable response by the machine would be to play the next audio file
associated with that message, the caller’s response to “What’s this in reference to?”

2.2 User expectation

This interface proved to be surprisingly effective in elliciting the desired responses to its
dialog in order to gather messages. The success of this conversational system is due in large
part to very strong user expectations, and reinforced by the apparent high quality of the
voice interaction.

Phone Slave has a very limited branching capacity in its conversations, triggered mostly

443

by error conditions (see below). It can succeed only in interactions wherein it can maintain
the initiative. Such an approach works successfully in a message taking application because
this is an extremely focused discourse domain and users have very strong expectations of
what is to happen in such a situation. A caller who phones my office and gets a receptionist
instead is not surprised to be asked questions which are rational in the context of answering
a telephone, and in fact finds it very difficult not to answer them.

Taking a message is a cooperative behavior; there is every reason for the caller to
participate according to conventional roles. In fact, asking a series of quesiions, as opposed
to simply “Leave your message al the beep...” makes it easier for the caller to leave &
complete message. This maintains the computer’s ability to control the conversation; the

limited discourse domain protects its fragile “intelligence”.

There are no beeps or further prompts in the conversation, nor is there any explanation
of the limitations or even existence of the answering machine. This was a deliberate design
decision prompted by several considerations:existing preconceptions as to answering ma-
chine behavior, and our desire to maintain as “natural” a conversation as possible. Callers
are used to conventional answering machines: one hears a beep and has a certain amount
(usually unknown) of time to spew out a message. Beeps reinforce the expectation that the
caller has reached a machine which operates in this manner, i.e., no conversational ability,
which is exactly what the Phone Slave seeks to avoid.

2.3 Fallure modes

The Phone Slave’s conversation can break down for several reasons, and system design has
to cope with these failure modes.

One problem is reliable pause detection on possibly noisy telephone lines. The system
desires to respond with each new query as quickly as possible; a long pause will be treated
by the caller as an invitation to continue speaking, but the owner prefers short and specific
replies. On the other hand, it is not helpful to interrupt a slow speaking talker when a short
pause is detected.

The pause detection algorithm is therefore adaptive both to phone line noise as well
as talker speech rate. Background noise adaption is done by dynamically readjusting the
“speech present” audio level threshold during pauses. The rate adaption is done by in-
creasing the pause length detection time constant for those conversations in which pauses
of greater than 500 ms seconds are detected before the “speech finished” timeout has been
reached.

Another failure mode is & rambling reply by the caller. Except for the final question
in the conversation (“Can [take o longer message for you?”) it is desireable to record
relatively short and specific responses to each question, to improve the owner’s access to
message contents. Sometimes callers give vague and lengthy replies. This is detected by
having a maximum length assoclated with each response; if the caller exceeds it, the machine
interrupts, indicates that it is only an answering machine, and asks the caller to be specific.

Clever arrangement of the dialog may sidestep other failure modes. The most common

[RERRTYIT

442

of these is for the caller to ask “Is he there?” when asked who is calling. The machine’s
second question, “What’s this in reference too?” just happens to work reasonably well asa -

response to this situation as well.

3 Conversational Desktop

The Conversational Desktop [S585,5A86] is based on the concept of an integrated office
workstation which combines the functions of a powerful personal computer and an intelligent
telecommunications system. In addition to conventional personal computer applications,
this workstation is actually an active node on a digital network. It handles its owner’s
schedule, travel plans, telephone management and message taking, and event-activated

audio memoranda or reminders.

Each workstation is equipped with a variety of speech peripherals, including recognition,-
synthesis, and digital record/playback hardware. The workstation is designed to be driven :
entirely by voice, engaging ifs owner in a conversation interleaved with transactions with
remote nodes. The repertoire of available operations includes: scheduling meetings with
individuals or groups, contacting remote databases of airline schedules and automobile
commuter traffic, placing outgoing calls, taking incoming voice messages, and recording
voice memos related to the above activities.

3.1 Mixed initiative conversations

This system tries to take a more interactive role in conversations, allowing for a mixed-
initiative [BKK¥86] interaction in which the human starts a iransaction and the computer
then builds up a series of sub-tasks to try to understand what the human wanted. The
sub-tasks are completed by having a conversation with the talker, and asking a series of
questions. Because the guestions incorporate various parts of the discourse {see below).
the branching factor in the conversation far exceeds a reasonable number of sentences for
pre-recorded storage, necessitating the use of speech synthesis for output.

The source of gaps in the computer’s understanding of the talker’s request may come
from an incomplete input utterance or from errors in speech recognition. As this system
employs connected speech recognition, a number of different classes of error are possible, and
at least some errors are likely to occur in nearly every interaction. This makes it necessary
to parse the input utterance, not only to discover the errors, but also to try to extract
whatever useful information may be present. The output of the parser is sent to a dialog
generation module which builds a sentence to be synthesized and spoken to the user.

3.2 Robust parsing of error prone input

A parser is used to analyze speech input and detect errors; this analysis is based on a
formal description of the syntax of the set of input utterances. The parser also generates a

PrT

443

description of the input, in a {rame-like {SA77] representation which is convenient for both
the dialog generator as well as action routines embedded in the application itsell. What i<
unusual about this parser is that, in addition to the usual syniax rules, it is designed to
detect input errors and parse the any remaining correct sentence fragments.

Connected speech recognition errors can be classified into three categories: substitu-
tion, rejection, and insertion. A subsiiiution error is one in which some number of words
are spoken and the same number are recognized, but one or more of them is recognized
incorrectly. A rejection error is one in which less words are recognized than were spoken,
i.e. one or more input words were simply not recognized. An rnsertion error is one in which
more words are reported than were spoken, perhaps because one input word was recognized
as several words or perhaps breath noise was matched against a word.

Most conventicnal parsers {Win83] cannot cope with any of these problems, because

they assume well formed input. Rather than detectlon of errors, their task is to correctly
determine the syntactic relationships of the input tokens. This is inadequate for voice input.

Previous speech parsers [Lev78] successfully dealt with substitution errors, by considering
a number of possible choices for each word, and choosing the most probable path through
these choices based on syntax information. Since Levinson’s parser dealt with discrete
speech in which each word has to be spoken separately, the parser assumed that the number
of input tokens was correct and would faill if an insertion or rejection error occurred.

To cope with inseriion errors, the parser considers all subsets of the tokens returned
by the recognizer. Thus if a spurious token is inserted in the recognizer’s ocutput, the
complete string of tokens will probably fail the parse. Rather than simply reject it, the
parser examines the substrings of the input, one or more of which will be syntactically
acceptable.

To cope with rejection errors, the grammar accepts syntactically correct sentence frag-
ments as well as complete sentences. This retains information about what was correctly
recognized even though it may be incomplete. If a single word is rejected, for example, the
rest of the input may be correct and should be accepted by the parser to trigger a dialog.

Having tested the substrings of the input tokens for syntax against the grammer, the
parser must select the best from among those which are acceptable. This is accomplished
by applying three simple but surprisingly effective socring rules:

Completion: a complete sentence is preferred to a fragment, as one is more likely to
speak a complete command to the machine.

Number: of two possible substrings, the one with the larger number of tokens will be
selected.

Adjency: additional weight is given to adjacent tokens, For example, if the original
input was ABCD, the substring 4BC- has a higher adjacency score than AB-D.

Adjacency is a powerful metric specifically for connected speech, because a significant
portion of the problem of connected recognition is segmentation, finding word boundaries.

If it is postulated that the second token in an utterance is correct, it is more likely that the
firet and third tokens will also be correct because at least one of each of their boundariss
must have been determined correctly [RL81,Zue85].

3.3 Dialog generator

The parser outputs both the frame, with slots filled by specific instances from the vocabu
lary, and a simpler structure which indicates what information is missing for this particula
parse path. Because discrete speech is easier to recognize than connected speech, the dialog
generator initiates a series of questions, each designed to elicit 2 single word response. The
dialog generator also employs an indirect-echoing technique [HR83) to allow implicit of wha
the system thinks it has undersiood so far; each question is phrased so as to echo as much
as is assumed to be correct in the utterance.

For example, if the user said “Schedule a meeting with Chris Friday afterncon” and the
recognizer reported “Schedule o meeting ... Friday.” the first question generated would
be “With whom do you wish te meet on Friday?” The query is generated from the fram
information as a text string, and sent 1o the speech synthesizer to be spoken. '

The dialog generator can also be used to generate queries that are not directly related
to completing a user’s command. After a user’s request is completed, an {ncomplete set of
tokens can be programmatically passed to the parser, and hence to the dialog generator,
This will cause a new question to be generated, initiating further dialog.

For example, the user might initiate an interaction with “Schedule ¢ fiight to Chicago
Friday morning.” Note that the machine tracks the user’s whereabouts, so it is not nec
essary to give the city from which you are leaving. The computer would first confirm thisl
request, perform the appropriate action, and enter the event into its calendar database
The command “Schedule a return flight from Chicago” would then be passed to the parser;
initiating the query “When would you like to return from Chicago?”, as flight scheduling
commands require a place and a time for completion. In effect, incomplete user input is
simulated to cause the proper prompt to be generated automatically by the dialog generator.

3.4 Modeling user attention

The Conversational Desktop can respond to external, asynchronous events {an incoming
telephone call, a timer going off}, and that response may include an audio component
(playing a pre-recorded reminder, alerting the owner of the incoming call, or recording a
phone message by using the Phone Slave). What behavior is most appropriate in response

to these events is a function of user attention, which is of course a difficult input to capture.

To facilitate this, the Desktop assigns spatial orientation to the system; the computer
is assigned the direction of the owner’s right, and the telephone the left. The system dis-
play, which shows calendar entries and phone message status, along with the loud speakers
through which the Desktop talks, are both situated on the right side of the office. The
“telephone” is a hands-free arrangement using the head mounted microphone for input and

a speaker for output to the left side of the office.

A pair of microphones placed behind the user determines the direction towards which the
person is speaking. The microphone receiving the menimum signal when speech is detected
in the head=mounted (recognizer) mike is in the opposite direction of the voice addressing.
Microphones were place to the rear to take advantage of the greater direction sensitivin
based on the radiational characteristics of the human head [Fla60).

Recognition output is parsed only when speech is being transmitted in the direction of
the recognizer. While speaking on the phone, the owner may have a private conversation
with his Desktop by turning to the right; as soon as speech is detected in this direction,
audio input to the telephone connection is temporarily disabled.

The direction-sensing microphones are also used to detect background noise {defined as
signal present with no speech on the owner’s microphone) which alerts the system to the
presence of other humans in the office. The “background speech present” signal is used
for a class of operations characterized by knowledge of the acoustical context of events
occurring in the domain of the Desktop system. When it is time to play an audio reminder,
for example, the system first checks this signal and can postpone the reminder until a time
when the owner is alone in his office.

4 Conclusion

Two examples of conversational voice interfaces have been presented. Although they share
the theme of dialog as a mode of interaction, they differ in their use of voice and conversa-
tional ability. This differences include: voice as data vs. voice as control, small branching
factor with high quality veice interaction vs. large branching factor with recognition errors
and synthesized output, and different error detection and recovery proceedures.

5 Acknowledgment

This work was supported by NTT, the Nippon Telegraph and Telephone Public Corporation.

The author wishes to credit and thank Barry Arons, currently at Hewlitt-Packard Labo-
ratory, for his involvement in the design and implementation of both these projects. Without
his participation they would not have happened.

References

[BKK*86] D.G. Brobow, R.M. Kaplan, D.A. Kay, M. Norman, H. Thompson, and T. Wino-
grad. GUS, a frame-driven dialog system, pages 595-604. Morgan Kaufman,
1986.

ARt

446

J. L. Flanagan. Analog measurements of sound radiation from the mouth. J.
Acoust. Soc. Am., 32(12), 1960,

P.J. Hayes and R. Reddy. Steps towards graceful interaction in spoken and
written man-machine communication. Ini J. Man-Machine Studies, 19:231::284,
1983. ’

S.E. Levinson. The effects of syntax analysis on word recognition accuracy. Bell
System Technical Journal, 57(5):1627-1644, 1978.

L. Rabiner and E. Levinson. Isolated and connected word recognition — theory
and selected applications. IEEFE Transactions on Communications, 25(5):621-
659, 1081.

R.C. Schank and R.P. Ableson. Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum Press, 1977.

C. Schmandt and B. Arons. A conversational telephone messaging system. IEEE
Trans. on Consumer Elecir., CE-30(3):xxi~xxiv, 1984.

C. Schmandt and B. Arons. Phone slave: a graphical telecommunications inter-
face. Proc. of the Soc. for Information Display, 26(1):79-82, 1985.

C. Schmandt and B. Arons. A rcbust parser and dialog generator for a con-
versational office system. In Proceedings, American Voice Input Output Society,
1986.

B. Schmandt, C. Arons and C. Simmons. Voice interaction in an integrated
office and telecommunications environment. In Proceedings, American Voice
Input Output Society, 1985.

J.A. Waterworth. Man-machine speech dialogue acts’. Br. Telecom Technol. J.,
1(1), 1983.

T. Winograd. Language as a Cogniitve Process - Syntaz. Addison-Wesley, 1983.

V.W. Zue. The use of speech knowledge in automatic speech recognition. Pro-
eceedings of the IEEE, 73(11):1602-1615, 1985.

: CONTENTS

VI. Design of Graphic Dialogues

Understanding Complex Software Systems Using GADD: A Tool for
Graphical Animated Design and Debugging
M. C. Moser

A Graphics Tool for Software Design Visualization
Masays Norifusa, Noriko Hagiwara. and Osamu Shigo

Design of a Graphic Dialogue Without Syntactic Constraints
B. Pavard

Issues in Computer-Assisted Interpretation of Graphs and Quantitative
Information
J. A. Campbell and 8, P. Ross

Enhancing a Traditional Typeface Design Environment Through the Use of
Contemporary Computing Technology
L. Ruggles

re, IN 47907,

R.C. Williges,
3086}
|
and K.E.
"W, Karwowski

ion of Human

sgerman)
s for Architects

+Computers (G.

puter

)

Advances in Human Factors/Ergonomics, 10B

Cognitive Engineering in the
Design of Human-Computer
Interaction and Expert Systems

Proceedings of the Second International Conference on Human—Computer
Interaction, Honolulu, Hawaii, August 10-14, 1987, Volume i

Edited by

Gavriel Salvendy
Purdue University, West Lafayette, IN47907, U.S.A.

ELSEVIER

Amsterdam ~ Oxford — New York — Tokyo 1987

g

ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartistraat 25
P.C.Box 211, 1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC.
52, Vanderbilt Avenue
New York, NY 10017, U.S.A.

ISBN 0-444-42847-X {(Vol. 10A}
ISBN 0-444-42848-8 (Vol. 10B)
[SBN 0-444-42848-6 (Set}

ISBN 0-444-42386-6 (Series)

© Elsevier Science Publishers B.V., 1887

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./
Science & Technology Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.

Special regulations for readers in the USA — This publication has been registered with the Copyright
Clearance Center Inc. {CCC}, Salem, Massachusetts. Information can be obtained from the CCC
about conditions under which photocopies of parts of this publication may be made in the USA. All
other copyright auestions, including photocopying outside of the USA, shouid be referred to the
copyright owner, Elsevier Scisnce Publishers B.V., uniless otherwise specified.

pp. 193—206: Copyright not transferred.

Printed in The Netherlands

