Discourse Strategies for Conversation in Time

James Raymond Davis
Media Laboratory
Massachusetts Institute of Technology
E15-325
Cambridge, MA 02139

617-253-0314

jrd@media-lab.media.mit.edu

and

Chris Schmandt
Media Laboratory
Massachusetts Institute of Technology
E15-327
Cambridge, MA 02139

617-253-5156

geek@media-lab.media.mit.edu



Introduction

Speech takes time and takes place over time. As a consequence, conversational computer systems must
be very different from graphical user interfaces, which are designed around the assumption that the graphics
operations are more or less instantaneous, in response to user input happening sporadically over time.
Conversational programs must account for the duration of an utterance and the history of the conversation.
In deciding what to say now, a program should consider what it has said in the past and what it is likely to
say in the future. This assumes, of course, that the program is sufficiently powerful that it chooses for itself
what to say and how to say it. This paper considers these issues in general, and in particular as they affect
the Back Seat Driver, a program which gives real time driving instructions.

Deciding what to say

First and foremost, a program should say as little as possible!. All things being equal, we would rather a
machine be silent - and this will be true until we produce machines with either more pleasant voices or more
brilliant thoughts than anything in the laboratory today. Systems which engage in only the simplest kinds
of dialogs can simply be designed for maximum brevity, but those with more powerful uses of language will
require the ability to decide at run time what to say and how much to say about it. This will especially be
true for programs which pursue more than one goal at a time. Such programs will often have more than one
possible thing to say. In this case, they may choose to be brief because time spent on one goal 1s necessarily
taken from some other.

Choosing what to say

If a program can not meet all goals with a single utterance, it must then have some means of choosing
which goal to pursue. For an interactive program this is even more crucial, because the user can add a
new goal or cancel (or just make impossible) an existing one at any time. Choosing what to work on is an
instance of the more general problem of efficient resource allocation, made more acute by the fact that time
can not truly be “saved” - any moment that a program does not speak is lost forever.

Having chosen a goal, a program will sometimes find it must change that choice while working on it, that
1s, while speaking, and for speech, this means interrupting itself. This is undesirable because it wastes time
and takes extra work. It wastes time because a partially spoken utterance can not reliably convey anything?
so the time devoted to the interrupted utterance is wasted - and since the user gained nothing for her time
listening, she is probably annoyed. It takes extra work because the interruption needs to be marked in some
way - either by a cue phrase (e.g. “Ooops” or “That reminds me”) as in [8] or by a change in intonation?,
as in [6]. To return to the interrupted subject later may also require a cue phrase (e.g. “anyway”, or “as I
was saying”).

IMany current telephone “information services” violate this rule by adopting overly polite phrasing, even those which are
free. Since “pay” phone services (i.e. 900 or 976 numbers) might increase revenue by increasing the duration of the call, perhaps
they should reverse the strategies we describe below.

2This is for lack of a good linguistic or psychological theory. We know that people can communicate even when interrupting
themselves and each other but we do not know how to make a program do this.

3Current speech synthesizers are not capable of smoothly stopping and restarting speech, so almost any effort to cause an
interruption will result in some kind of audible boundary in the speech, if not a natural one. This is one advantage to the
current poor state of machine prosody.



Since abandoning an utterance is undesirable, it follows that a planning policy should try to avoid
pursuing goals that are likely to be discarded. Depending on the goals and task it may be better to speak
only when reasonably confident that the utterance can be completed. This requires that the goal control
mechanism have some way of estimating the probability of interruption.

Conversational systems which can interrupt themselves require a speech synthesis system able to stop
speaking asynchronously without making unnatural sounds. It is also desirable that the synthesizer be able
to report at any time whether it is presently speaking and, if so the position in the input of the last word
spoken. It is also desirable that the speech rate be sufficiently predictable that the program can estimate the
time required for speaking an utterance without having to actually speak it. Note also that current (analog)
telephony makes it difficult for a program employing speech recognition over the telephone to understand
speech that occurs while the program is talking, because the programs own audio output is fed back (albeit
at a reduced level) to the recognizer through the telephone. This may improve when the telephone network
is all digital.

How to be brief

A program can reduce the time required for an utterance by speaking more quickly, provided this does
not reduce intelligibility. There are other means as well. A program can also be brief by saying less; either
conveying less information or using fewer words to do so. Saying less means omitting detail. For instance, a
program might answer the question “Where are my keys?” saying either “Your keys are on your desk, next
to the terminal, behind your book” or just “on your desk”. This example shows both a reduction in detail
and a change from a full sentence to a sentence fragment.

Note that the reduced form is not only less informative (though perhaps still sufficient) it is also has
less redundancy. The advantage of the full sentence form is that it not only answers the question, it also
shows how the answerer understood the question. Given that current speech recognition systems are not
fully reliable, it may be desirable to use full sentence answers, when time allows, just to make systems more
robust, as in [9].

Moreover, the reduced forms may be less intelligible to the human either because of this same lack of
redundancy or because too much has been omitted. This requires that programs be prepared to repeat
themselves on demand. When repeating, programs should speak more slowly, provided this does not intro-
duce unnatural prosody in the synthesizer. Another possibility is to generate an alternative phrasing for the
message to be repeated. Such a paraphrase should always be marked as such, lest the user the confused.

Note that humans are capable of great economy in their speech, partially because of their ability to make
powerful inferences, and partially because they have powerful means of checking that references are correctly
understood, identifying trouble spots, and repairing them, as for example described in [2]. It will be a long
time until programs have such abilities, however.

Discourse is the history of a conversation

Programs must also consider the history of the conversation - the discourse - in deciding what to say.
Limited space here does not allow us to describe any of the many theories of discourse developed by linguists.
We refer the interested reader to [1, 5]. A proper model of discourse structure is necessary if a program is to
generate (or comprehend) texts greater than a single sentence. Without a discourse model, each sentence a
program generates must stand on its own, and each sentence of input must be similarly treated in isolation.



The term “history” should not be understood to imply that discourse is simply a sequential list of utterances.
Discourse structures include the purposes of utterances and the relations among those purposes, and tracks
the concepts and objects of the domain under discussion as they come into focus.

Actually, discourse as it is currently understood is too narrow a term. What is actually needed is a
structure that includes all kinds of actions, not simply acts of speaking. Current theories of discourse
structure treat linguistic actions only, and not actions in general. Thus there 1s no way to account for
utterances like “Stop doing that” where that refers to some ongoing action.

Referring to time

The program may also need to refer to time itself. A familiar example is the telephone “time service”. Here
the speech is referring to a specific moment - the “now”. If the hearer must take an action at the specified
time, then some kind of warning or countdown is required. One reason, we believe, for the incoherence of
messages on telephone answering machines is that the “beep” catches people by surprise. Even though they
are warned to expect it, there is no clue about exactly when it will come. By contrast, people seem to be
able to give good cues for timing by making rather complicated adjustments to pitch and speech rate while
they talk. Such adjustments are beyond the present state of the art for speech synthesis.

Programs undertaking lengthy operations should inform their users of the expected duration, if longer
than a few seconds, and should inform the user of the program’s progress while working [7]. This is especially
true for speech systems, which present no other indication of progress while working. A program which is
capable of pursuing a second goal “in the foreground” may do well to make this explicit, perhaps by means
of a cue phrase, as in:

I’ve started the first file transfer going.
It will probably take a few minutes.
Meanwhile, do you want to read your new mail?

The Back Seat Driver

The Back Seat Driver is a program which gives real time driving instructions to the operator of a car.
Only a brief description is possible here, but see [3]. The Back Seat Driver is installed in a car. A navigation
system provides it the current position twice a second. It finds routes using a digital street map, and speaks
using a Digital Equipment Corporation DECTALK. As a program which pursues multiple goals over an
extended time period in a moving vehicle, the Back Seat Driver illustrates all the issues described above.

The Back Seat Driver has many goals. Two of greatest importance are to keep the driver safe by giving
warnings of upcoming traffic hazards and to get the driver to his or her destination. Lesser goals include
informing the driver of her present location and providing background information about the current locale.

The Back Seat Driver is able to make an efficient choice of goal because each goal has four state variables
which are helpful for scheduling. The priority is an integer which tells the importance of the goal. It
is assigned by the programmer and does not change. The progressable flag is a Boolean variable which
tells whether the goal can accomplish anything at the present time. For instance, the goal which warns of
upcoming traffic hazards only needs to run if some hazard exists ahead and has not already been mentioned.
Each progressable goal also estimates the maximum speech time, which is the number of seconds the
program would require for delivering its message, were it to be allowed to speak at this time. Goals calculate



this by formulating a message, counting the words in it, and dividing by the synthesizer speech rate. Finally,
each goal which is not currently progressable estimates its minimum silence time, which is the number
of seconds the goal i1s confident it will have nothing to say. Given this information, the Back Seat Driver
finds the goal of highest priority which is progressable, provided that there is no goal with higher priority
with a minimum silence time less than the maximum speech time of the progressable goal. If there is such
a goal, 1t might need to speak before the lower-priority goal had finished, and would need to interrupt it.
This algorithm runs goals as soon as possible without wasting time starting goals which will fail. A possible
improvement is to add the notion of urgency - an urgent goal is one that must run as soon as possible; an
goal which is not urgent can tolerate a slight delay, and need not interrupt a goal of lesser importance.

Time is of the essence for navigation. As the driver travels along the route, the Back Seat Driver looks
ahead for the next place where an instruction will be given. It generates some text which describes the
instruction (e.g. “At the next set of lights, take a right.”) and estimates the time required to speak the
text, and then the time when it must begin to speak to allow the driver to carry out the instruction. As the
speed of the car changes, this time changes as well. The program usually gives each instruction twice, first
30 seconds in advance and then at the actual time for the instruction. In the latter case, the instruction
text 1s briefer, because it is really only a reminder to the driver, telling where to take the action which has
already been described. This spares the driver from needing to look for street signs or landmarks in order
to know where to act. This is also an example of using time to refer to space.

When generating the text for an instruction, the Back Seat Driver also looks ahead for the next instruc-
tion, and checks whether there will be sufficient time after the current instruction to utter the text for that
next instruction. If there is not, as for instance at a “jog” type turn, the text for the second instruction is
folded into the text for the first.

The Back Seat Driver has an implementation of the discourse theory of Grosz and Sidner, as in [4].
Space does not allow an adequate description of their theory. Suffice it to say that the program works
with DISCOURSE SEGMENTS (which are utterances) and tracks the set of domain concepts and objects (e.g.
traffic lights, turns on the route, bridges) which are mentioned in the unfolding discourse. In particular, the

program attempts to model the driver’s ATTENTIONAL STRUCTURE, which records which concepts are “in
focus” at a given moment.

A goal “speaks” by forming a discourse segment which expresses the concept to be conveyed. The segment
is converted to a text string for the speech synthesizer, including the necessary synthesizer-dependent escape
sequences, and sent to the synthesizer to be spoken. When the synthesizer reports that the string has been
spoken, all conceptual items in the segment are added to the current attentional space. This means that the
program can henceforth assume the driver is familiar with them. For instance, when giving an instruction
for the second time, 1t 1s the attentional structure which records that this indeed is the second time the
instruction has been given, and thus allows the briefer text.

The attention space allows the program to make more fluent instructions. For example, when the route
calls for the driver to make two successive turns in the same direction, the program refers to the second turn
as “another” turn, and if the program uses traffic lights as a land mark twice in a row, the second set of
lights is also called “another”; as in “Now go to another set of lights and take another left.”. It allows the
program to generate fluent intonation, for example to DEACCENT old information or to raise the pitch range
when starting a new topic. In some case, when the attentional model shows that the driver knows everything
about the action to be taken except where to do it, the instruction text can be a very brief “Do it now”.

No algorithm can guarentee that goals will never be interrupted, since the driver can add new goals at
any moment. Should an interruption occur, the synthesizer is halted and the interrupted goal is informed.
Since the text is never completely spoken, nothing is added to the attentional space. The goal can handle
the interruption by requesting to be rescheduled or by giving up. This latter action is appropriate for goals
such as providing help, which can consider themselves to have been satisfied if the user shows that she knows
what to do by doing something.



Conclusions

Speech is inherently temporal. In contrast to graphical systems, programs which engage in conversation

must consider the time it takes to say something, and must choose their utterances accordingly. Discourse

is concerned with the history of the conversation. Programs which maintain discourse records can generate

speech which is more fluent and also more brief, both advantages in spoken language systems. The Back

Seat Driver is an implementation of a spoken language system which illustrates these issues.

Acknowledgments

This work was supported by a grant from NEC Home Electronics Ltd.

References

Gillian Brown and George Yule. Discourse Analysis. Camb Univ Press, 1983.

Herbert H. Clark and Deanna Wilkes-Gibbs. Referring as a collaborative process. Cognition, 22:1-39,
1986.

James R. Davis. Back Seat Driver: wvoice assisted automobile navigation. PhD thesis, Massachusetts
Institute of Technology, September 1989.

Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and the structure of discourse. Compu-
tational Linguistics, 12(3):175-204, 1986.

Barbara J. Grosz, Karen Sparck-Jones, and Bonnie Lynn Webber, editors. Readings in Natural Language
Processing. Morgan Kaufman Publishers, Inc., 1986.

Julia Hirschberg, Diane Litman, Janet Pierrehumbert, and Gregory Ward. Intonation and the inten-
tional structure of discourse. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, 1987.

Brad A Myers. The importance of percent-done progress indicators for computer-human interfaces. In
Proceedings of the Human Factors in Computing Systems Conference, pages 11-17. ACM, 1985.

Rachel Reichman. Getting Computers to Talk Like You and Me. MIT Press, 1985.

Chris Schmandt and Barry Arons. A robust parser and dialog generator for a conversational office system.

In Proceedings of 1986 Conference, pages 355-365. American Voice I/O Society, 1986.



