1321

6th Symposium on

Oct. 2426, 1990 Tokyo

VOICE AND WINDOW SYSTEMS:
SOME USER-INTERFACE CONSIDERATIONS

Chris SCHMANDT
Speech Research Group — Media Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Abstract. There is growing interest in voice as a data type for computer workstations. But,
with window systems already quite ubiguitous in such workstations, we must consider the
role of voice with respect to the window system. This paper covers three areas of inter-
section between speech processing and windows. The first is the use of speech recognition
for navigation between windows. The second is user interaction with and visual representa-
tions of recorded voice. The third is transfer of multi-media data between applications using
mechanisms provided by the window system.

Keywords. Speech recognition, window systems, multi-media.

introduction

As workstations become more powerful, greater
emphasis will be placed on multi-media systems.
This is leading to growing interest in use of voice
on the desktop. Voice makes attractive the user
interfaces. Voice is key in communication, and
hence, is at the root of all collaborative (CSCW)
systems. Finally, as the digital telephone network
(ISDN) grows, we expect stronger lnks between
computation and telephony.

Specch 1s portable; we need no techuology to use
it among ourselves. We can use speech while walk-
g down the corridor, and, with a teleplone, we
can use 1t frowr any remote location. Speech is
natural; we lcarn it easily as small children. Speech
is also very rich, conveying through intonation
vastly more information than a simple transcrip-
tion of speech would.

Speech technologies have various applications.
Speech recognition may be used for data in-

533

put (i.e., the proverbial "listening typewriter”),
or as a command channel for user interaction.
Speech synthesis may allow remote voice access
to computer systems, including reading of human-
authored text, such as electronic mail.. Digital
recording of speech provides voice as a data type,
and applications such as voice mail and voice an-
notation of text.

At this time, speech coding is the most advanced
of these three technologies; and, it'is likely that
within several years every workstation may sup-
port digitized speech. This is, however, no guar-
antee of its acceptance, as speech is a difficult
medium with which to work. Speech is slow; sev-
eral hundred words per minute would not be toler-
ated by modem users, in comparison to the speed
to which they are accustomed. Speech is serial;
an audio menu can be perused only by listening
to each itein in sequence, while a visual menu al-
lows more random access via the user’s wander-
ing eyes. Finally, speech 1s "bulky”; we cannot
perform key word searches with speech, making
indexing difficult.

Veooaese
60800091

These dificudtios with digitized speeelt conflict with
the goal of voice as a nbiquitons data type, one

which may be edited, browsed, transferred be-

tween applications, and presented with a consis-

tent user interface. The last two requirements
mentioned arc exactly the concerns that window
systems atteinpt to address. Window systems are
ubiguitous; they give users the ability to perform
a munber of tasks in parallel, provide a program-
ming substrate upon whicl direct tnanipmlation
interfaces can be huilt. and through style guides
and inter-application communication mechanisins,
provide a coherent whole within which applica-
tions co-exist. For voice to be successful, it must
be integrated into window systems at the applica-
tion and user interface levels.!

This paper discusses three examples of interac-
tions between voice and window systems, includ-
ing the description of a particular implementation
of each under the X Window System.

Speech Recognition for
Navigation

Much of the current work on specch recognition
foctises on voice input replacing the keyboard. In-
deed, the “listening typewriter” scoms to be the
“Holy Grail” of much conunercial speccl recogni-
tion work. The listening typewriter requires hoth
a large vocabutlary and a speaker adaptive recogni-
tion systein, which must employ auxiliary sources
of knowledge such as syntax, task coustraints, or
word order probabilities. Current speech recogui-
tion systeins simply are not capable of this task;
recognition accuracy is not adequate for most text
iput. What then is the role of speech vecognition
in computer workstations?

At the Media Laboratory, we have chosen to fo-
cus on speech as a means to angment the mouse,
by now a standard workstation component. We
hope to take advantage of the hoost 1 user per-
formance, which the introduction of a second in-
put channel affords, by distributing user input
across the multiple channels of voice and fingers
(keyboard). Experimental evidence suggests that

'T do wot mean to snggest that voice and windows
should be handled by the same server; [prefer an architee-

- ture with separate servers for each (and for other niedia as
well), This paper is about higher level links between them.

534

when subiects perform multiple tasks on multiple
input channels, their performance improves over
the case in which the same tasks are performed
Because
both the mouse and keyhoard are manual, they

using a single input modality {8, 7, 1].

do not experience this effect.

When we began this work, we identified three
main uses of the mouse in window systems. One
is to identify focus, i.e., which window will re-
ceive keystrokes. Auother is nawigation, the spec-
ification of window position and layout, including
the stacking order, which affects window visibil-
ity. The third use is direct manipulation inter-
faces, wherein an application nses mouse input
(via butbons, toggle switches, scroll bars, and the
like) as user input.

Speech recognition seems particularly appropri-
ate for the first two functions. In the case of
managing keyhoard focus, the mouse suffers the
disadvantage of requiring the user to remove her
hands from the keyboard (to find the mouse) ex-
actly at the time when she desires to type into a
different window. For navigation, the mouse suf-
fers from being a two dimensional mpnt device in |
the two-and-one-half dimensional world of over-
lapping windows. I a window is entively buried
by other windows, then it cannot he accessed until
some of the windows covering it are moved.

In order to nse voice for window navigation, we
built Xspeak, an application which allows nsers
to name windows by voice. When a window's
nawe is spoken, it moves to the foreground on
the screen, and the cursor 1s moved into the win-
dow to allow it to reccive input. In other words,
the user can change applications without remov-
ing her hands from the keyboard.

Itself an X application, Xspeal includes a graph-
ical control panel (fignre 1T and 2) which provides
additional feedback (uscful when recognition de-
teriorates) and utilities to train the recoguizer and
set audio gain levels. The control panel also pro-
vides a mechanism for the usér to nawe a wew win-
dow, which does not already exist in the speech
recognizer’s vocabulary.

An informal study of the use of Xspeak was con-
ducted over several months with six subjects [6].
The subjects were four student programmers, em-
ployed for the summer, plus two of the Xspeak
designers. For some of these users, Xspeak was
quite attractive and heavily used, but for oth-

ers, the mouse was the preferred means of inter-
action with windows. Those who enjoyed Xspeak
thought speech input was faster, though, in truth,
it was slightly slower than the mouse for the most
simple window manipulations (timing was derived
from videotaped sessions). Such a result would
be expected from the divided attention hypoth-
esis, which states that the cognitive load on the
user is reduced by spreading multiple tasks across
multiple input channels.

Un Huinﬂl util il bye

Figure 1: Xspeak control panel. The bottom text
object displays recognition results.

&% nspeak

ltrain a11||train onel]seuel

|test||calibrate|l9ainIlresetl

Train individual words || emacs

expose
hide
Console

-y

Figure 2: Xspeak pop-up utility menus.

Although it would be premature to draw strong
conclusions from such an unconstrained pilot study,
it did reveal a potential for improvement of the
interface to window systems by the addition of
voice input. We would not expect all users to em-
brace speech recognition, and some have already
developed other mechanisms (icon managoers and
“rooms” among them) for partially coping with
this problem. High accuracy speech recognition
without wearing a wicrophone on one’s head is
also a difficulty.

Some of our users complained that they already
use the mouse for many applications with direct
maunipulation interfaces, and althongh they may
have desired to use voice to switeh to a differ-
ent window, there was no point in doing so if the
mouse was required once arriving there. Users
also wished to activate commands within text
based Unix shells by voice, much like keyboard
macros, but-possibly involving focus shift as well.

These responses have encouraged follow up work
to develop a language whereby a broader range
of user input may be managed by voice. Such
a language makes extensive use of the X event
model. For example, the voice command “read
mail” may be decomposed into the following series
of events:

1. If a window named “mail” does not exist,
start the mail reader application in a win-
dow so named and wait until that window
has been exposed.

2. If the window named “mail” is not visible,
move it to the top of the window stacking
order and wait until it is exposed.

3. Move the pointer to the location of the but-
ton named “InBox”.

4. Send mouse button down and up events, on
button one, to the application.

Note that this language requires both conditional
statements and procedural waits (for asynchronous
X event notifications).

Xspeak is not, itsclf, a window manager, and it
did not require the modification of any window
managers.? This is possible due to the X Win-
dow System architecture, which provides the win-
dow systemn as a separate server process, with an
inter-process conununication method to exchange
protocol requests to the server and receive events
from the scrver by applications [3].
ticularly true of the enhanced version of Xspeak,
which relies on the ability to send “syathetic”

This i1s par-

mouse button and key press events to other appli-
cations in order to activate them. Xspeak also lis-
tens for window configuration notification events,
which tell it when windows of interest have been
made visible. This is necessary when Xspealk
wishes to expose a window, which must occur be-
fore some types of input cau reliably be directed
to the window.

SoundViewer Widget

Recorded voice is a difficult medinm for informa-
tion presentation, at least in comparison to screen-
based text display and mouse-based menu inter-
action. As mentioned carlier; speech is difficult to
manipulate because it 1s slow and sérial; and it re-
quires our attention to decode it. Althongh we ex-
pect that enabling workstations to deal with voice
as a data type will result in increased opportuuni-
ties for ranote telephone based computer access,
1t will still be the case that most workstation use,
regardless of the data media, will be done while
sitfing before a screea.

Access to audio data cau be improved by provid-
g a graphical wser nterface for sonnd playback.
Such an interface shonld provide a means of start-
ing and stopping pltayback, and allow random ac-
cess into a sound file using the wounse. Visual
mdicators shonld cue the user to the approximate
length of the sound [2]; listeners have little toler-
ance for lengtly voice messages and would bencfit
from knowing the lengtl of a sound at a glauce. It
would be beneficial to provide a single, consistent
user interface to stored andio across all applica-

2Tt should be noted that Xpeak will work only with
the so-called “real-estate” driven window managers, which
assign keyboard tocus to the window i which the cursor
appears. NXspeak would require a sitaple modification to
work with *click-to-type” window managers, which require
a monse click in a window to transter focus to that window.

536

tions. This would make it easier for the user to
detect the presence of audio data in an applica-
tion, and the single interface would make access
less confusing. It is nseful to provide this graph-
ical interactor as part of the toolkit which appli-
cations use to access the window systemn, both for
consistency as well as case of programming’

We designed the SonndViewer widget® to fulfill ex-
actly these goals. The SoundViewer provides dis-
play of sound much like a scroll bar, which moves
when the sound plays. It indicates sound Iougtli
both with its width as well as with tick marks
representing units of time (figure 3). When the
user clicks a mouse button on the SoundViewer,
the sound plays and the cursor bar moves along
(horizoutally) in synchronization. The user may
grab the bar with the mouse and move it around
for random access during playback. In providing
such an interface, we overcomie some of the limi-
tatious of the slow and serial nature of speech, by
allowing the user more control over its playback.

il

HERENEREEER

Figure 3: The SoundViewer widget; showing two
fixed 1node sounds and one scaled mode display
at the bottown.

i ithe X Window System, user interactor objects are
called widgets.

Humber of Calls: 2

Delete B1d Save/0uit

Knowun Users

Speaker (DFE Slave (OFF

Dutgoing

Chris Schmandt

Caller Info Hame Referencs Phone #

¥hen

Long Message

(unknoun)ll“,‘j[Sabonalieitond ”

1 1

I I

Figure 4: SoundViewer widgets used in a telephone answering machine.

Sun

February 1990

Moen o Tue Wed Thu Fri

3 7T 18 |9

|

i1

|
:

Sat

3
10

12 13 |14 |15 |16

17

Thursday
February 1

’IHIIHHH!HII
Speech Group hnch
2:30 dentist

A4:30 admissions meeting

Figure 5: A multi-media calendar uses SoundViewers for recorded voice.

537

The SoundViewer has several display modes to
accominodate sounds of various lengths. In the
“fixed” mode, the application tells the Sound-
Viewer its width (in pixels) and the length of
sound- it sliould display. - Theses determine the
numberof milliseconds of sound per pixel, and the
widget picks the appropriate spacing and height
of the tick marks (for example, it may display
seconds and tenths of seconds for short sounds,
hutstens. of seconds and seconds for longer ones).
When a sound name is assigned to the widget, it
determines the actual display width of this souud,
given its duration and the widget’s mapping of du-
ration to width. Thus, the displayed width of the
sound is a length cue to the user.

Fixed mode is appropriate in a sibuation where
deal of

lengths. If very long sonnds are interspersed with

there is not a great variation in sound
short sonnds, either the former will not fit on the
screen, or the latter will he too small to be of
use. Unfortunately, some applications, such as
voice mail, may experience a great deal of sound
length variability. This problem can be accon-
modated using the SoundViewer's “scaled” mode,
in which the widget scales the number of mitlisee-
onds per pixel to Gl the allocated width. Sinee
time is stretched, as a sound plays, the cursor
woves with a variable rate, depeuding on the scale
factor. The width of the widget is not a good cue
to sound length, but the spacing of the tick marks
and variable sonnd bar velocity during playback
reveal the tine compression.

The SoundViewer widget is currently heing nsed
as the standard interface to recorded andio in a
nmber of applications at the Media Laboratory.
One of these is mmess, a graphical wser interface
(figure 4) to recorded telephone messages taken by
Bach

message is displayed as one row of SoundViewers,

a conversational answering machine [4, 5]
one for each recorded messape segment. Messape
segments can he played by clicking on each ndi-
vidual SonndViewer. The entire message 1s played
by elicking on the message seader “button” on
the left: as cach segment plays, the appropriate
SonndViewer 1s antomatically activated.

538

Another application is zcal, the graphical inter-
face to a multi-media calendar. DBecanse a cal-
endar database needs to be consulted freqnently
and always kept up to date, we built a telephone-
hased interface which uses touch tones for imput
and speeclt synthesis for output to describe ap-
pointments. When the user wishies to add an ap-
pointinent, tonch tones can he used to specify the
date and time, but the actual calendar entry is
thien recorded. The screen-based interface (fignre
5) shows calendar items as cither text or Sound

Viewers, depending on their medinm,

Multi-Media Cut and Paste

Oue of the wost frequently nsed functions of a
window system s the ability to move data from
once application to another by sclecting some por-
tion of the text displayed in one window and
depositing 16 to another, where it is treated as
keystroke input. This procedure is referred to by
a variety of names, including "clipboard”, "selec-
tions” and "cut and paste”.

Selections become complicated when multiple me-
dia are involved. First, a means of specifying
the contents of the selection must be provided.
In text windows, this is usually done by display-
With
our SoundViewer widget, a (temporal) extent of
a sound can be sclected with the mouse; the se-
lected region is indicated by XORed lines (figure
6).

ing sclected characters in reverse video.

Figure 6: The SoundViewer uses XOR’ed lines to
indicate the selection.

Additionally, a mweans must be provided to al-
low applications to negotiate data representation
during transfer of the selection contents. The X
Window System provides soine convenicnt mech-
anismis for doing this, allowing particular named
selections to be used as rendezvous points be-
tween applications, as well as including a protocol
whereby clients can request and/or deny conver-
sion of the selection into various representation
types. For example, selection of a “telephone mes-
sage” from an answering machine interface. This
application conld provide the contents of the se-
lection as either a telephone number (which would
he reguested by a speed dialing tool), a name (re-
quested by a rolodex), a sound name (audio edi-
tor), or even as a simple text string (for a “media-
feeble” application such as a text editor).

Multi-media cut and paste operations can be im-
plemented easily in X Windows, because the win-
dow system selection management protocols allow
flexible negotiation as to the representation type
of the desired data. The server acts as a broker in
selection activity, but does not explicitly own the
selection, leaving negotiation under the control of
the applications. Whichever application wishes to
own the selection, so notifies the server.

An application wishing to receive the contents of
the selection makes a request to the server, spec-
ifying the representation type (farget in X par-
lance). The selection owner receives notification
of this request (through a callback if using the In-
trinsics, the standard underlying toolkit support
layer) and, if it can accommodate the requested
representation type, it passes the data back to
the server, which then delivers it. If the selection
owner does not recognize the requested represen-
tation type or cannot cope with it, a vejection goes

back to the requester via the server,*

This negotiation process makes ib casy to extend
the standard text selection which most applica-
tions currently support. A new type is defined,
c.g. XASOUND, and sound-capable clients re-
quest the selection 1n this form. This allows Sound-
Viewers to exchange portions of sounds. But the
sound-capable application should also he able to
supply some reasonable text string (such as a sound

*Well behaved X clients should also support representa-
tion type XA TARGETS, which returus a list of supported
representation types.

539

file name) when so requested by a nredia-feeble ap-
plication. This allows gradual introduction of new
representation types, with backward compatibil-
ity to weaker applications not yet capable of us-
ing the new types. It also allows the application
owning a selection with a multitude of interpre-
tations {such as the selected felephone message
mentioned above), to easily pass this to another
application in the preferred representation types
in which that application expresses an interest.

Acknowledgments

A number of members of the Media Laboratory
have assisted the anthor in many aspects of this
work. Mark Ackerman wrote the SoundViewer
widget, and also contributed to Xspeak with San-
jay Manandhar and Debby Hindus. Sheldon Pa-
cotti wrote Xcal. Lorne Berman wrote Xmess,
and implemented much of the multi-media selec-
tion handling. Elaine McCarthy provided produc-
tion assistance and editorial advice ou this paper.

This work was funded by the MIT X Consortivm
and Sun Microsystems.

References

References

[1] D. A. Allport, B. Autonis, and P. Reynolds.
On the division of attention: a disproof of the
single channel hypothesis. Quarterly Jowrnal
of Experimental Psychology, 24:225 235, 1972,

Brad A. Myers. The importance of percent-
done progress indicators for computer-human
interfaces. In Human Factors in Computing
Systems, CHI 85 Proceedings, pages 11-17.
ACM, 1985.

R. W. Scheifler and J. Gettys. The X win-
dow system. ACM Transactions on Graphics,
5(2):79-109, 1986.

C. Schmandt and B. Arons. A counversational
telephone messaging system. IEEE Trans. on
Consumer Electr., CE-30(3):xxi- xxiv, 1984,

(5]

C. Schmandt and B. Arvons. Phone slave: A
graphical telccommunications interface. Proc.
of the Soc. for Information Display, 26(1):79-
82, 1985.

Christopher Schmandt, Debby Hindus, Mark
Ackeran, and Sanjay Manandhar. Observa-
tions on sing speech input for window naviga-
tion. In Interact 1990 Counference Proceedings
(to appear), 1990.

AL Trelsman and A. Davies. Divided attention
to car and eye. In Attention and Performance,
volue TV pages 101117, 1973.

C. Do Wickens, S, J. Momtford, aud
W. Schreiner. Multiple resources, task-
hemisplheric integrity, and individual dif-
ferences i time-sharing. Human Foctors,
23:211 230, 1981

540

