
The Design of Audio Servers and Toolkits

for Supporting Speech in the User Interface

Barry Arons

Media Laboratory

Massachusetts Institute of Technology

1 Abstract

An audio server is a software platform that oversees the sharing of audio resources in a
distributed computing environment, and simpli�es the task of integrating speech into the
user interface. An audio toolkit layered on top of an audio server further simpli�es the
creation of voice interfaces, by providing a higher level of abstraction to the application
programmer.

This article explores the design of audio servers, toolkits built on audio servers, and some
applications that use these facilities to integrate voice into our everyday computing en-
vironment [14, 18]. It discusses the implementation of an audio server, the impact of a
software-based digital audio system on the design of a server, proposes an architecture
for a toolkit, and a minimal set of speech interface components. The interaction of the
toolkit with the audio server and the window server is investigated by drawing parallels
with window systems and their graphical toolkits.

2 Why Audio Servers?

Most current interactive voice applications assume a particular hardware con�guration and
control that hardware directly (and few such applications run on general-purpose worksta-
tions). This approach is easiest from the application writer's point of view; the program
communicates with the hardware in an e�cient device-dependent manner, and the exact
con�guration of the hardware is prede�ned. When incompatible hardware from di�erent
vendors must be supported, or when more than one application requires access to a voice
I/O device at a given time, this approach breaks down. These limitations are acceptable
for stand-alone applications, but impose severe restrictions if the audio resources are to
be shared by several applications. For example, all the voice-based applications running
concurrently within di�erent windows on a multi-tasking operating system might need to
share a single microphone or speech recognizer.

One attractive solution is a client-server model. This paradigm logically separates the
application from the hardware; client processes make requests to a single server process

1



that controls the hardware resources for all applications (and thus is somewhat analogous
to an operating system). This separation is provided by a standard communication protocol
between the clients and server. The protocol de�nes the stream of bytes that represent the
request, reply, and event messages that are transported over a network. The protocol is
a well de�ned reference point between server and client. Client applications and servers
can be developed independently using di�erent programming languages, operating systems,
and underlying hardware; the server is not a subroutine library that is linked in by the
application. A variety of servers that obey the protocol speci�cation can be implemented|
one vendor, for example, can built a server on simple analog hardware, while another can
provide a highly optimized server that does all audio processing in software.

The intended use of an audio server is on a per-workstation basis|to control the digitizing,
telephony, mixing, text-to-speech synthesis, and speech recognition components envisioned
in next generation personal computers and workstations. This is analogous to the X Win-
dow System, where a window server runs on each workstation and manages the local user
interface I/O devices|the mouse, display, and keyboard.

Client applications can also communicate with audio servers located anywhere within a
network to control remote audio hardware resources. This distributed con�guration is
useful where there are limited resources that must be shared, or where there is specialized
hardware cannot be plugged into a particular workstation bus.

3 Prototype Audio Servers

A simple audio server that emphasizes the support of conversational voice applications has
been evolving at the M.I.T.Media Lab since 1984 [17]. This server originated with the desire
to use a general purpose workstation to control audio equipment built into a customized
minicomputer. The approach taken is simplistic; the \network" is a serial line (RS-232)
that carries character-oriented commands between the workstation and the server. Low-
level functions supported by the server included digital recording, telephone control, and
speech recognition. This architecture is advantageous from an interface design perspective;
it allows a clean separation of audio hardware and functionality from the remainder of the
user interface. Support for this device-independent control protocol has been superseded
by PC-BUS machines populated with voice/telephone boards from several vendors.

This serial server is limiting in several respects: (1) an entire PC server is dedicated per
workstation, (2) only a single application can access the server at a time, and (3) the serial
server only functions in a synchronous manner|when the client application makes a request
to the server, the client must wait for a response, and no other processing can take place in
the client.

The Etherphone system [20, 21] developed at Xerox PARC uses a centralized voice storage
server. Etherphone successfully integrates audio into the Cedar programming environment,
making voice accessible from the Tioga editor, and hence a range of other applications.
This system is robust, and a strong emphasis was placed on issues such as reliability and
security.



4 A Workstation-Based Audio Server

The VOX Audio Server [2] was designed speci�cally to address the types of applications
envisioned in a \desktop audio" workstation environment, and to remove the limitations
cited in previous sections. Many of the core ideas for the audio server are inherited from
the M.I.T. serial server and the X Window System[8]. VOX was developed to demonstrate
the utility of an audio server, for building research prototypes, and to explore the usefulness
of desktop audio applications.

In the same way that graphical interfaces can be built on top of the X Window System, it
is desirable to build audio user interfaces on top of an audio server platform rather than
directly on the underlying hardware. The server supports the sharing of audio resources
between multiple clients, dynamic routing, and a queuing mechanism that helps to provide
real-time response for audio events within a Unix operating environment.

4.1 Server Design Goals

The server architecture supports a wide range of potential interactive voice applications by
emphasizing:

� Resource management: The architecture supports the transparent sharing of audio
resources by multiple applications. By default, resources are shared with a preemptive
scheme; however, applications can gain exclusive access to audio resources for a limited
time. For example, control of the telephone cannot be taken from an application if a
call is already in progress.

� Real-time behavior: The architecture addresses the issue of real-time behavior in
the handling of audio events by supporting a queuing mechanism that minimizes the
overhead of processing audio requests. Note that this service is provided in a non-
real-time Unix environment.

� Routing: The architecture enables applications to create dynamic routings between
audio components. For example, in conversational applications it is often desirable to
switch rapidly from a speech recognition to a recording con�guration.

� Network transparency: The architecture permits clients and servers to communicate
asynchronously within a distributed computing environment.

� Device independence: The architecture shields applications from the idiosyncrasies of
the underlying audio hardware.

� Extensibility: The architecture allows for the unforeseen uses of voice in the interface,
and for the integration of new types of speech, audio, or telephony devices into the
server.



4.2 Server Architecture

The software architecture needed to achieve these goals is similar to that of many contem-
porary window systems (Figure 1). Multiple client applications can connect to a single
audio server process that provides voice computing and voice I/O services.

Figure 1: Audio and window server architecture.

Dynamic routing between audio devices is analogous to assembling audio circuits out of
electronic components|low-level components are grouped into higher-level assemblies of
increased functionality. The lowest level building block is called a LAUD (pronounced
\loud") for Logical AUdio Device (perhaps a \virtual" device would have been a better
name than \logical"). Examples of LAUDs include abstractions for playback, recording, or
mixing. LAUDs can be combined into a composite LAUD, called a CLAUD. LAUDs have
audio ports that can be connected during the compositing process.

Input and output to CLAUDs is asynchronously event-driven|the client submits output
requests to, and may receive input events from, a CLAUD. For example, the client may
submit dialing requests to a telephone, or receive tokens from a speech recognizer. When
enqueuing output requests, the server attempts to prepare the request as much as possible
before the activity is to take place. This may involve actions such as prefetching a recorded
sound, or establishing the state of a speech recognizer. These preparation activities can
be executed before servicing the primary request, thereby reducing the execution latency
inherent in a client-server model.

4.3 Hardware Testbed

A multi-station testbed was built on 80386-based PCs running a variant of the Unix oper-
ating system. The workstations were equipped with a mixer, microphones, loudspeakers, a
full duplex telephone echo cancellation unit, and a codec board that provided a telephone
interface.



Because it is di�cult to prede�ne the con�guration of audio devices for all possible client
applications in a research environment, devices on each workstation were interconnected
with a crossbar switch. The crossbar provides a straightforward software controlled in-
terconnection mechanism between all components, permits inter-workstation conferencing,
and makes it easy to connect new audio components, experimental speech processors, or
other devices to the workstation audio environment.

An analog crossbar switch was chosen as a central component of the research testbed (Fig-
ure 2). A full 16� 16 non-blocking switch is perhaps excessive to require on every desktop,
but this design allows maximum exibility in creating complex client applications. This
physical crossbar switch can be eliminated in a software-based all-digital implementation of
an audio server.

Figure 2: Audio workstation con�guration.

5 Server Applications

Application areas that the audio server supports include: telephone management [4, 16],
voice annotation, real-time teleconferencing, conversational answering machines, and, more
generally, voice-based tools to support collaborative work. The server mechanism allows a
range of such applications to work together synergistically.

5.1 Telephony

To implement a simple auto-dialing mechanism, a client application accesses and manip-
ulates a single LAUD. This telephone interface LAUD is the low-level device abstraction
used by the audio server that provides dialing, call progress information, ring detection,
and other telephony functions to the application.



Implementing basic answering machine capabilities (e.g., \Please leave your message...

BEEP!") with an audio server involves the playing and recording of sounds in addition
to a telephone interface. The queuing mechanism of the audio server is required for this
application to ensure that the recording is started immediately after the greeting is played.
This provides a smooth interaction with the caller, and prevents the beginning of the record-
ing from inadvertently getting clipped.

Figure 3: Answering Machine CLAUD.

Figure 3 represents a telephone answering machine built within the server. Simple playback,
recording, and telephone control LAUDs are grouped into a single telephone answering
CLAUD. Implementing such a mechanism with the audio server consists of the following
basic steps:

1. Create a new composite CLAUD
2. Initialize play, record, and telephone LAUDs
3. Insert the LAUDs into the CLAUD
4. Prepare play and record events
5. Map the composite LAUD onto physical devices
6. Wait for an incoming ring event
7. Enqueue the play and record events
8. Wait for the recording to �nish
9. Hang up

All control functions are parameterized so, for example, it is possible for the application
to set the termination conditions for recording, select the sound compression algorithm, or
select the number of rings before the call is answered. A client application program that
implements such a server-based answering machine using the C programming language
consists of about two pages of source code.

More advanced answering machines can be created by adding sophisticated interactions
to the user interface. The ability to detect touch-tones allows a user to interact with the
software-based answering machine from a standard telephone set. Adding text-to-speech



synthesis, speech recognition, and silence detection allows for conversational interactions,
as explored in the Phone Slave project [10, 11].

5.2 Workstation Control

Speech can be used to control the workstation, augmenting (not replacing) the keyboard
and mouse. The Conversational Desktop [13, 12, 15] provided a speech-based interface
to functions such as scheduling, audio reminders, teleconferencing, and voice mail. The
hardware con�guration for the system was complex and dynamic|audio was routed to
and from recognizers, recorders, synthesizers, and customized audio processing equipment.
When playing a sound, for example, audio input to the speech recognizer was switched
o� to prevent spurious insertion errors. This style of run-time con�gurability of the audio
hardware (as handled by the crossbar switch), is essential for many applications, particularly
those supporting multiperson collaboration.

Another interesting application for an audio server is to provide a speech interface to a
window system. Most current generation Unix applications are \mouse illiterate"|the
users hands only leave the keyboard to move between applications. Xspeak [9, 1] provides
a voice interface to controlling window management within the X Window System; such an
application could easily be implemented on top of an audio server platform.

6 Software-Based All-Digital Audio Servers

Window servers control a limited set of hardware: the mouse, display, and keyboard|
a hardware-based audio server (section 4.3) has a much richer set of primitive hardware
components: speech recognizers, synthesizers, digitizers, mixers, �lters, etc. This implies
that the protocol interface to the server must support all these devices, and a toolkit must
likewise reect this underlying complexity.

In the near future, a software-based all-digital audio environment will exist on general
purpose workstations. Rather than supporting a wide range of hardware components, the
server can be structured so that it handles only low-level input and output|all processing
beyond this analog-to-digital or digital-to-analog conversion is done by software modules in
the server. This design can signi�cantly reduce the cost of the audio server hardware, and
can provide long-term exibility over a hardware-based analog approach.

Software modules for text-to-speech synthesis, speech recognition, or time-scale modi�cation
of recorded sounds, are loaded on demand into server. This technique also may act to
unify the protocol interface to the audio processing components (LAUDs) and reduce the
complexity of the software interface. Crossbar-style switching can easily be implemented
by such a software-based system by simply routing, or copying, streams of data between
the various software modules in the server.

For abstraction and information-hiding reasons, as well as for e�ciency, it is desirable to
keep all digitized audio data entirely within the server. Some applications, however, will



need access to the data for specialized audio processing, or to display the data in graphical
form. One attractive alternative to having all the data cross the client-server interface is
to have an interpreter in the server [19]. This permits a client application to download
programs to the server that manipulate the data directly in the server.

7 Software Toolkits for Audio

While an audio server may provide great exibility, it can increase the complexity of ap-
plication programs. A software layer built on top of an audio server can provide high-level
abstractions to hide the intricacies of the server, and thus simplify the applications. The
application writer is thus freed of low-level interrupt and device handling, and can con-
centrate on writing interactive voice-based applications. A \toolkit" approach to designing
such an interface is explored, using the architecture of existing graphical toolkits as a point
of departure.

7.1 Graphical Toolkits

A graphical toolkit is a high-level software interface built on top of a window server. An
analogous architecture is proposed for a toolkit built on an audio server.

A graphical toolkit hides the details of input, event, and display handling from the ap-
plication, allowing the programmer to develop an e�ective user interface without being
concerned with details such as tracking the mouse, or updating the display. Equally impor-
tant, a graphical toolkit provides a set of commonly used presentation components such as
scrollbars, text editors, selection menus, and command buttons, that can easily be incorpo-
rated into graphical applications and interfaces.

For example, the software hierarchy of the X Window System is shown in the Figure 4. The
window server is directly accessible to applications at the protocol level through a library
(Xlib). A toolkit (Xt Intrinsics) is built on this library, and several sets of presentation
components or \widget sets" are built on top of the toolkit (e.g., Athena Widgets, Open
Look Widgets, Motif Widgets).

A toolkit is usually implemented as a library; however, it provides functionality well beyond
a conventional subroutine library. Besides enabling access to the server and underlying
hardware, it provides memory management, a comprehensive set of options that be can
overridden by the user at run-time, and mechanisms for input, output, and event handling.
The X Toolkit [3] is built on an object-oriented framework with simple base classes and
multiple levels of inheritance. This development environment makes it easy to create new
user interface components since many attributes can be inherited from existing components,
thus substantially reducing the complexity of the software.

The handling of input and output events is particularly important in a multitasking environ-
ment where many applications can be active concurrently (unlike the single process nature
of the MS-DOS and Macintosh operating systems). The X Toolkit is structured to gather



Figure 4: Window system and audio system hierarchies.

input from the user, and asynchronously call speci�c routines in the application program.
The toolkit also provides a simpli�ed procedural interface to the low-level asynchronous
protocol layer provided by the X server. A client application can query the server by mak-
ing subroutine calls to the toolkit|the query request to, and asynchronous reply from, the
server are hidden from the application. Between the query and reply, other asynchronous
events may have been received by the toolkit from the server.

7.2 Audgets

In X Window System terminology, a \widget" is a graphical user interface component. The
term \audget," for \audio widget," will be used to represent an audio interface component
analogous to a graphical widget (e.g., scrollbar or button). An audget set prede�nes common
audio con�gurations to reduce the complexity of application programs, and to provide
components for creating uniform user interfaces.

An application can create a combined sound and graphical interface by using both an
audget and a graphical widget. A \multimedia toolkit" can be create multimedia interface
components by encapsulating several audgets and widgets. Note that a graphical interface
to an audget (or an audio interface to a widget) should be completely isolated from its voice
interface so that a single audget can be used from a variety of user interfaces, and from
more than one graphical widget set.

8 An Audget Set

Until a complete audio server, toolkit, and a range of applications have been developed it
is di�cult to envision a proper base set of voice interface components. However, experience
with audio server designs and previous interactive voice-based applications leads to an initial



set of audgets as proposed here. Presentation audgets, for example, include interfaces to
digital recorders, sound editors, or voice menus.

Note that there is nothing magic about the presentation audgets described in this section,
or applications that use them. Any application, such as the telephone answering machine
described in section 5.1, can be built using a collection of audgets, or directly on top of an
audio server. However, the program using the toolkit and audgets will be shorter, simpler,
and more concise than the server-only version (e.g., see [5, 7]).

8.1 Voice Menu Audget

Menus are commonly used in voice mail systems, interactive voice response systems, and
a range of other speech applications. A voice menu is similar to a graphical pull-down
or pop-up menu; it presents a set of choices to, and accepts input from, the user. Voice
menu items are presented with recorded or synthesized speech rather than in textual form,
and input is gathered from a speech recognizer or telephone keypad, instead of a mouse or
keyboard.

The programmatic interface to a voice menu minimally includes a list of text strings that
represent voice prompts for use with a text-to-speech synthesizer, or a list of �le names for
a digital playback system. These prompts are then used by the audget to present options to
the user. A voice menu audget also could handle more complex interactions, for example,
with additional lists of second or third round prompts if the user fails to respond. The
audget can have a built-in help facility that is derived directly from the prompt strings and
the menu semantics, and the structure of the interactions may be customizable so that a
variety of user interfaces can be rapidly prototyped. For example, the audget can sort the
menu items alphabetically, or break the items down into submenus if the list is greater than
a speci�ed length.

8.2 Editor Audget

Applications often need to manipulate and edit audio bu�ers or sound �les. The application
programmer may want to use high-level cut, copy, and paste functions, while internally (in
the server) this is accomplished through the manipulation of linked lists of pointers to
audio bu�ers, reference counts, etc. An editing audget could manage these internal data
structures, and provide a device-independent interface to a range of sound formats and
encoding styles.

Editing functions can be controlled by touch-tones, mouse interactions, or possibly voice
commands. With a sound editing audget, it is possible to create an audio-only user inter-
face, or a combined audio and graphical user interface. The graphical interface can be a
mouse-based selection mechanism, or keystroke-oriented, if integrated with a conventional
keyboard-based text editor. An audio editor audget thus can be connected to a range of
graphical components to create a variety of interactive editors each with its own look and
feel.



Figure 5: A prototype graphical interface to an audio editor.

A prototype graphical interface to a voice editor is shown in Figure 5 (this application
was built using the X Toolkit directly on the audio server|not using an audio toolkit).
In this example, up to four sound bu�ers can be loaded and edited concurrently. The
energy content of the sound is represented by black (high energy, sound present) and white
(low-energy, silence) bars. The vertical dotted line in the �rst and third bu�ers show the
current selection/insertion point in the bu�er. The three horizontal lines in the second
bu�er indicate a user selection that can be cut or played. When a bu�er is played, a cursor
moves through the graphical representation of the sound to show the current position within
the bu�er. A graphically-based sound editor such as this may be written as a stand-alone
client application, but it is expected that such sound editing capabilities will be used as a
generic tool by other applications.

8.3 Extensible Audgets

Other audgets include interfaces to stand-alone players and recorders. A recording audget,
for example, can notify the application after reaching a maximum length, on detection of
silence, or on receiving other user input. The application controls the audget|it can set a
�le name associated with the recording, the state of the recorder, or the silence detection
sensitivity. The audget can be queried for its status, position within a �le, or recording
parameters.

Basic record and play audgets can be extended via the inheritance mechanism, to operate
on a sequence of sounds rather than individual sound �les. Building on the queuing ideas
of the server, a play-list or record-list audget can be programmed to analyze the items
in the list. The audget can pre-fetch sound �les while another event is active, to reduce



operating system and audio server latencies. Such an extension increases the interactivity
of the application and may further simplify the programming interface.

9 Other Technologies Required

The development of audio servers and audio toolkits is a signi�cant step forward; however,
several critical components are still missing before voice can be completely integrated into
the desktop. As mentioned in section 6, a software-based implementation of all audio
and speech processing components would not only bring down the cost of realizing audio
technologies in the workstation, but it would simplify many aspects of the server.

To make the audio server and toolkit idea pervasive, there must be standard protocols and
software interfaces|the wide acceptance of the X Window System is due in part to de�ning
a low-level protocol speci�cation [6] that is supported on a wide range of computer systems.
Note that successful, and pro�table, proprietary implementations of servers based on public
standards can be built. In the fast-paced environment of \open systems," it is unlikely that
a fully proprietary audio server will survive in the marketplace.

Another critical component is a mechanism for synchronizing events across media and
servers. For example, the graphics-based audio editor described in section 8.2 needs to
synchronize a moving cursor with the current location within the sound bu�er as the sound
is played. The exact correspondence of the audio with the graphics display cannot be guar-
anteed since both the audio and window servers work in an asynchronous manner. While a
synchronizing mechanism can be built into a graphics or audio server, this does not solve
the general problem|it also may be necessary to synchronize audio with video, and video
with graphics. An independent synchronization service that can be used by all types of
media servers is required.

10 Discussion

There are many ways to integrate audio into the workstation, and many levels of integration.
Audio servers and toolkits directly address the issue of incorporating speech and audio I/O
into a workstation user interface. Audio servers and toolkits, as presented here, take ideas
developed by the window system community and successfully merge them with practical
experience gained from building interactive audio and voice systems. The server and toolkit
architectures discussed provide the underlying system support so that future workstations
can take full advantage of voice in the interface.

This paper raises as many design issues as it answers; it is intended to encourage future
research and development e�orts in this area. The development of window systems and
toolkits has accelerated the pace of graphical application development by allowing pro-
grammers to quickly and e�ciently harness the power of the graphical interface. Servers
and toolkits for audio, and easy-to-use audio interface components, should help bring about
a similar revolution in the design of speech interfaces.



11 Acknowledgments

Many of these ideas originated from collaboration with Chris Schmandt, Keith Lantz, and
Carl Binding. Toolkit design ideas further evolved in discussions with the Audio Group
at Sun Microsystems, particularly Wayne Yamamoto, Don Jackson, Ben Stoltz, Daniel
Steinberg, and Je� Peck. Lisa Stifelman assisted in proofreading a version of this document.

References

[1] M. S. Ackerman, S. Manandhar, and C. Schmandt. Xspeak: A use for a speech interface in a
window system. In Proceedings of 1990 Conference. American Voice I/O Society, 1990.

[2] B. Arons, C. Binding, K. Lantz, and C. Schmandt. The VOX audio server. In Proceedings of

the 2nd IEEE ComSoc International Multimedia Communications Workshop. IEEE Communi-
cations Society, Apr. 1989.

[3] P. J. Asente and R. R. Swick. X Window System Toolkit. Digital Press, 1990.

[4] R. Kamel, K. Emami, and R. Eckert. PX: Supporting voice in workstations. IEEE Computer,
Aug. 1990.

[5] J. McCormack and P. Asente. Using the X toolkit or how to write a widget. In Proceedings of

Summer USENIX '88. USENIX, Summer 1988.

[6] A. Nye, editor. X Protocol Reference Manual, volume 0 of X Window System Series. O'Reilly
and Associates, 1989.

[7] D. S. Rosenthal. A simple X 11 client program, or, how hard can it really be to write `hello
world'? In Proceedings of Winter USENIX '87. USENIX, Winter 1987.

[8] R. W. Scheier and J. Gettys. The X window system. ACM Transactions on Graphics, 5(2):79{
106, Apr. 1986.

[9] C. Schmandt, M. S. Ackerman, and D. Hindus. Augmenting a window system with speech
input. IEEE Computer, Aug. 1990.

[10] C. Schmandt and B. Arons. A conversational telephone messaging system. IEEE Transactions

on Consumer Electronics, CE-30(3):xxi{xxiv, Aug. 1984.

[11] C. Schmandt and B. Arons. Phone Slave: A graphical telecommunications interface. Proceedings
of the Society for Information Display, 26(1):79{82, 1984.

[12] C. Schmandt and B. Arons. A robust parser and dialog generator for a conversational o�ce
system. In Proceedings of 1986 Conference, pages 355{365. American Voice I/O Society, 1986.

[13] C. Schmandt and B. Arons. Conversational Desktop. ACM SIGGRAPH Video Review, Volume
27, 1987.

[14] C. Schmandt and B. Arons. Desktop audio. Unix Review, Oct. 1989.

[15] C. Schmandt, B. Arons, and C. Simmons. Voice interaction in an integrated o�ce and telecom-
munications environment. In Proceedings of 1985 Conference. American Voice I/O Society,
1985.

[16] C. Schmandt and S. Casner. Phonetool: Integrating telephones and workstations. In Proceedings
of GLOBECOM '89. IEEE Communications Society, Nov. 1989.



[17] C. Schmandt and M. McKenna. An audio and telephone server for multi-media workstations.
In Proceedings of the 2nd IEEE Conference on Computer Workstations, pages 150{160. IEEE
Computer Society, Mar. 1988.

[18] C. R. Strathmeyer. Voice in computing: An overview of available technologies. IEEE Computer,
Aug. 1990.

[19] Sun Microsystems Inc., Mountain View, California. NeWS: Technical Overview, 1987.

[20] D. Swinehart. Telephone management in the Etherphone system. In Proceedings of GlobeCom

'87. GlobeCom, Nov. 1987.

[21] D. Swinehart, L. Stewart, and S. Ornstein. Adding voice to an o�ce computer network. Tech-
nical Report CSL-83-8, Xerox Palo Alto Research Center, Feb. 1984.



Biography

Barry Arons is a doctoral candidate in the Speech Research Group at the M.I.T. Media
Laboratory. His research interests include highly interactive systems with emphasis on
conversational voice communication. Before returning to academia, he was leader of the
Desktop Audio Project at an industrial research laboratory, and a member of the technical
sta� at Hewlett-Packard Laboratories. He holds a BS in Civil Engineering from M.I.T., and
a MS from the Architecture Machine Group at M.I.T. where he co-designed Phone Slave

and the Conversational Desktop.

The author's address is:
M.I.T. Media Laboratory
20 Ames Street, E15-353
Cambridge, MA, 02139

e-mail: arons@media-lab.media.mit.edu


