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Abstract
Listening to a speech recording is much more difficult than visually
scanning a document because of the transient and temporal nature of
audio. Audio recordings capture the richness of speech, yet it is difficult
to directly browse the stored information. This dissertation investigates
techniques for structuring, filtering, and presenting recorded speech,
allowing a user to navigate and interactively find information in the
audio domain. This research makes it easier and more efficient to listen
to recorded speech by using the SpeechSkimmer system.

First, this dissertation describes Hyperspeech, a speech-only hypermedia
system that explores issues of speech user interfaces, browsing, and the
use of speech as data in an environment without a visual display. The
system uses speech recognition input and synthetic speech feedback to
aid in navigating through a database of digitally recorded speech. This
system illustrates that managing and moving in time are crucial in speech
interfaces. Hyperspeech uses manually segmented and structured speech
recordings—a technique that is practical only in limited domains.

Second, to overcome the limitations of Hyperspeech while retaining
browsing capabilities, a variety of speech analysis and user interface
techniques are explored. This research exploits properties of spontaneous
speech to automatically select and present salient audio segments in a
time-efficient manner. Two speech processing technologies, time
compression  and adaptive speech detection (to find hesitations and
pauses), are reviewed in detail with a focus on techniques applicable to
extracting and displaying speech information.

Finally, this dissertation describes SpeechSkimmer,  a user interface for
interactively skimming speech recordings. SpeechSkimmer uses simple
speech processing techniques to allow a user to hear recorded sounds
quickly, and at several levels of detail. User interaction, through a
manual input device, provides continuous real-time control of the speed
and detail level of the audio presentation. SpeechSkimmer incorporates
time-compressed speech, pause removal, automatic emphasis  detection ,
and non-speech audio feedback to reduce the time needed to listen. This
dissertation presents a multi-level structural approach to auditory
skimming, and user interface techniques for interacting with recorded
speech.
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1 Motivation and Related Work

As life gets more complex, people are likely to
read less and listen more.

(Birkerts 1993, 111)

Speech has evolved as an efficient means of human-to-human
communication, with our vocal output reasonably tuned to our listening
and cognitive capabilities. While we have traditionally been constrained
to listen only as fast as someone speaks, the ancient Greek philosopher
Zeno said “Nature has given man one tongue, but two ears so that we
may hear twice as much as we speak.” In the last 40 years technology has
allowed us to increase our speech listening rate, but only by a factor of
about two. This dissertation postulates that through appropriate
processing and interaction techniques it is possible to overcome the time
bottleneck traditionally associated with using speech—that we can skim
and listen many times faster than we can speak.

This research addresses issues of accessing and listening to speech in
new ways. It reviews a variety of areas related to high-speed listening,
presents two technical explorations of skimming and navigating in
speech recordings, and provides a framework for thinking about such
systems. This work is not an incremental change from what exists
today—the techniques and user interfaces presented herein are a whole
new way to think about speech and audio.

Important ideas addressed by this work include:
• The importance of time when listening to and navigating in

recorded speech.
• Techniques to provide multi-level structural representations of the

content of speech recordings.
• User interfaces for accessing speech recordings.

This chapter describes why skimming speech is an important but difficult
issue, reviews background material, and provides an overview of this
research.
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1.1 Defining the Title
The most difficult problem in performing a study
on speech-message information retrieval is
defining the task.

(Rose 1991, 46)

The title of this work, Interactively Skimming Recorded Speech,  is
important for a variety of reasons. It has explicitly been made concise to
describe and exemplify what this document is about—all unnecessary
words and redundancies were removed. Working backward through the
title, each word is defined in the context of this document:

Speech is “the communication or expression of thoughts in spoken
words” (Webster 1971, 840). Although portions of this work are
applicable to general audio, “speech” is used because it is our primary
form of interpersonal communication, and the research focuses on
exploiting information that exists only in the speech channel.

Recorded indicates that speech is stored for later retrieval. The form and
format of the storage are not important, although a random access digital
store is used and assumed throughout this document. While the systems
described run in “real time,” they must be used on existing speech. While
someone is speaking, it is possible to review what they have already said,
but it is impossible to browse forward in time beyond the current instant.

Skimming means “to remove the best … contents from” and “to pass
lightly or hastily: glide or skip along, above, or near a surface” (Webster
1971, 816). Skim is used to mean quickly extracting the salient
information from a speech recording, and is similar to browsing  where
one wanders around to see what turns up. Skimming and browsing
techniques are often used while searching—where one is looking for a
particular piece of information. Scanning  is similar to skimming in many
ways, yet it connotes a more careful examination using vision. Skimming
here is meant to be performed with the ears. Note that the research
concentrates on skimming rather than summarization, since it is most
general, computationally tractable, and applicable to a wide range of
problems.

Interactively  indicates that the speech is not only presented, but segments
of speech are selected and played through the mutual actions of the
listener and the skimming system. The listener is an active and critical
component of the system.
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1.2 Introduction
Reading, because we control it, is adaptive to
our needs and rhythms.… Our ear, and with it
our whole imaginative apparatus, marches in
lockstep to the speaker’s baton.

(Birkerts 1993, 111)

Skimming, browsing, and searching are traditionally considered visual
tasks. One easily performs them while reading a newspaper, window
shopping, or driving a car. However, there is no natural way for humans
to skim speech information because of the transient nature of audio— the
ear cannot skim in the temporal domain the way the eyes can browse in
the spatial domain.

Speech is a powerful communications medium—it is, among other
things, natural, portable, and rich in information, and it can be used while
doing other things. Speech is efficient for the talker, but is usually a
burden on the listener (Grudin 1988). It is faster to speak than it is to
write or type; however, it is slower to listen than it is to read. This
research integrates information from multiple sources to overcome some
of the limitations of listening to speech. This is accomplished by
exploiting some of the regular properties of speech to enable high-speed
skimming.

1.2.1 The Problem: Current User Scenarios

Recorded audio is currently used by many people in a variety of
situations including:

• lectures and interviews on microcassette
• voice mail
• tutorial and motivational material on audio cassette
• conference proceedings on tape
• books on tape
• time-shifted, or personalized, radio and television programs

Such “personal” uses are in addition to commercial uses such as:
• story segments for radio shows
• using the audio track for editing a video tape story line
• information gathering by law enforcement agencies

This section presents some everyday situations that demonstrate the
problems of using stored speech that are addressed by this research.
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1.2.1.1 Searching for Audio in Video

When browsing the meeting record sequentially,
it is convenient to replay it in meaningful units.
In a medium such as videotape, this can be
difficult since there is no way of identifying the
start of a meaningful unit. When fast forwarding
through a videotape of the meeting, people
[reported they] … frequently ended up in the
middle of a discussion rather than the start.

(Wolf 1992, 4)

There are important problems in the field of video production, logging,
and editing that are better addressed in the audio domain than in the
visual domain (Davenport 1991; Pincever 1991). For example, after a
television reporter and crew conduct an interview for the nightly news
they edit the material under tight time and content constraints. After the
interview, the reporter’s primary task is typically to find the most
appropriate “sound bite” before the six o’clock news. This is often done
in the back of a news van using the reporter’s hand-scribbled notes, and
by searching around an audio recording on a microcassette recorder.

Finding information on an audio cassette is difficult. Besides the fact that
a tape only provides linear access to the recording, there are several
confounding factors that make browsing audio difficult. Although
speaking is faster than writing or typing, listening to speech is slow
compared to reading. Moreover, the ear cannot browse an audio tape. A
recording can be sped up on playback; however on most conventional
tape players this is accompanied by a change in pitch, resulting in a loss
of intelligibility.

Note that the task may not be any easier if the reporter has a videotape of
the interview. The image of a “talking head” adds few useful cues since
the essential content information is in the audio track.  When the
videotape is shuttled at many times normal speed an identifiable image
can be displayed, yet the audio rapidly becomes unintelligible.

1.2.1.2 Lecture Retrieval

When attending a presentation or a lecture, one often takes notes by hand
or with a notebook computer. Typically, the listener has to choose
between listening for the sake of understanding the high-level ideas of
the speaker or taking notes so that none of the low-level details are lost.
The listener may attempt to capture one level of detail or the other, but
because of time constraints it is often difficult to capture both
perspectives. Few people make audio recordings of talks or lectures. It is
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much easier to browse one’s hand-written notes than it is to listen to a
recording. Listening is a time-consuming real time process.

If an audio recording is made, it is difficult to access a specific piece of
information. For example, in a recorded lecture one may wish to review a
short segment that describes a single mathematical detail. The listener
has two choices in attempting to find this small chunk of speech: the
entire tape can be played from the beginning until the desired segment is
heard, or the listener can jump around the tape attempting to find the
desired information. The listener’s search is typically inefficient, time-
consuming, and frustrating because of the linear nature of the tape and
the medium. In listening to small snippets of speech from the tape, it is
difficult to find audio landmarks that can be used to constrain the search.
Users may try to minimize their search time by playing only short
segments from the tape, yet they are as likely to play an unrelated
comment or a pause as they are to stumble across an emphasized word or
an important phrase. It is difficult to perform an efficient search even
when using a recorder that has a tape counter or time display.

This audio search task is analogous to trying to find a particular scene in
a video tape, where the image can only be viewed in play mode (i.e., the
screen is blank while fast forwarding or rewinding). The user is caught
between the slow process of looking or listening, and an inefficient
method of searching in the visual or auditory domain.

1.2.2 Speech Is Important

Speech is a rich and expressive medium (Chalfonte 1991). In addition to
the lexical content of our spoken words, our emotions and important
syntactic and semantic information are captured by the pitch, timing, and
amplitude of our speech. At times, more semantic information can be
transmitted by the use of silence than by the use of words. Such
information is difficult to convey in a text transcription, and is best
captured in the sounds themselves.

Transcripts are useful in electronically searching for keywords or
visually skimming for content. Transcriptions, however, are expensive—
a one hour recording of carefully dictated business correspondence takes
at least an hour to transcribe and will usually cost roughly $20 per hour.
A one hour interactive meeting or interview will often take over six hours
to transcribe and cost over $150.  Note that automatic speech recognition-
based transcriptions of spontaneous speech, meetings, or conversations
are not practical in the foreseeable future (Roe 1993).



20 Chapter 1

Speech is becoming increasingly important for I/O and for data storage
as personal computers continue to shrink in size. Screens and keyboards
lose their effectiveness in tiny computers, yet the transducers needed to
capture and play speech can be made negligible in size. Negroponte said:

The … consequence of this view of the future is that the
form factor of such dynadots  suggests that the dominant
mode of computer interaction will be speech. We can speak
to small things. (Negroponte 1991, 185)

1.2.3 Speech Storage

Until recently, the use of recorded speech has been constrained by
storage, bandwidth, computational, and I/O limitations. These barriers
are quickly being overcome by recent advances in electronics and related
disciplines, so that it is now becoming technologically feasible to record,
store, and randomly access large amounts of recorded speech. Personal
computers and workstations are now capable of recording and playing
audio, regularly contain tens or hundreds of megabytes of RAM, and can
store tens of gigabytes of data on disks.

As the usage scenarios in section 1.2.1 illustrate, recorded speech is
important in many existing interfaces and applications. Stored speech is
becoming more important as electronics and storage costs continue to
decrease, and portable and hand-held computers (“personal digital
assistants” and “personal communicators”) become pervasive.
Manufacturers are supplying the base hardware and software
technologies with these devices, but there is currently no means for
interacting with, or finding information in, large amounts of stored
speech.

One interesting commercial device is the Jbird digital recorder (Adaptive
1991). This portable pocket-sized device is a complete digital recorder,
with a signal processing chip for data compression, that stores up to four
hours of digitized audio to RAM. This specialized device is designed to
be used covertly by law enforcement agencies, but similar devices may
eventually make it to the consumer market as personal recording devices
and memory aids (Lamming 1991; Stifelman 1993; Weiser 1991).
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1.2.4 A Non-Visual Interface

If you were driving home in your car right now,
you couldn’t be reading a newspaper.

Heard during a public radio fund drive.

Speech is fundamental for human communication, yet this medium is
difficult to skim, browse, and navigate because of the transient nature of
audio. In displaying a summary of a movie, television show, or home
video one can show a time line of key frames (Davis 1993; Mills 1992)
or a video extrusion (Elliott 1993), possibly augmented with text or
graphics, that provides a visual context. It is not possible to display a
conversation or radio show in an analogous manner. If the highlights of
the radio program were to be played simultaneously, the resulting
cacophony would be neither intelligible nor informative.

A waveform, spectrogram, or other graphical representation can be
displayed, yet this provides little content information.1 Text tags (or a full
transcription) can be shown; however, this requires an expensive
transcoding from one medium to another, and causes the rich attributes of
speech to be lost. Displaying speech information graphically for the sake
of finding information in the signal is somewhat like taking aspirin for a
broken arm—it makes you feel better, but it does not attack the
fundamental problem.

This research therefore concentrates on non-visual, or speech-only
interfaces that do not use a display or a keyboard, but take advantage of
the audio channel. A graphical user interface may make some speech
searching and skimming tasks easier, but there are several reasons for
exploring non-visual interfaces. First, there are a variety of situations
where a graphical interface cannot be used, such as while walking or
driving an automobile, or if the user is visually impaired. Second, the
important issue addressed in this research is structuring and extracting
information from the speech signal. Once non-visual techniques are
developed to extract and present speech information, they can be taken
advantage of in visual interfaces. However, tools and techniques learned
from graphical interfaces are less applicable to non-visual interfaces.

1A highly trained specialist can slowly “read” spectrograms; however, this approach is
impractical and slow, and does not provide the cues that make speech a powerful
communication medium.
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1.2.5 Dissertation Goal

The focus of this research is to provide simple and efficient methods for
skimming, browsing, navigating and finding information in speech
interfaces. Several things are required to improve information access and
add skimming capabilities in scenarios such as those described in section
1.2.1. Tools and algorithms, such as time compression and semantically
based segmentation, are needed to enable high-speed listening to
recorded speech. In addition, user interface software and technologies
must be developed to allow a user to access the recorded information and
control its presentation.

This dissertation addresses these issues and problems by helping users
skim and navigate in speech. Computer-based tools and interaction
techniques have been developed to assist in interactively skimming and
finding information purely in the audio domain. This is accomplished by
matching the system output to the listener’s cognitive and perceptual
capabilities. The focus of this research is not on developing new
fundamental speech processing algorithms,2 but to combine interaction
techniques with speech processing technologies in novel and powerful
new ways. The goal is to provide auditory “views” of speech recordings
at different time scales and abstraction levels under interactive user
control—from a high-level audio overview to a detailed presentation of
information.

1.3 Skimming this Document
auditory information is temporally fleeting: once
uttered, special steps have to be taken to refer to
it again, unlike visually presented information
that may be referred to at leisure.

(Tucker 1991, 148)

This section provides a brief road map to the dissertation research and
this document, encouraging quick visual skimming in areas of interest to
the reader. The number of bullets indicate the chapters that a reader
should consider looking at first.

••• Casual readers will find chapter 1, particularly section 1.2 most
interesting, as it describes the fundamental problems being
addressed and the general approach to their solution through
several user scenarios.

2However, they were developed where needed.
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•• Chapter 2 describes Hyperspeech, a preliminary investigation of
speech-only browsing and navigation techniques in a manually
authored hypermedia database. The development of this system
inspired the research described in this dissertation.

• Chapter 3 reviews methods to time compress speech, including
perceptual limits, and the significance and importance of pauses
in understanding speech.

• Chapter 4 reviews techniques of finding speech versus
background noise in recordings, focusing on techniques that can
be used to segment recordings, and methods that adapt to
different background noise levels.

••• Chapter 5 describes SpeechSkimmer, a user interface for
interactively skimming recorded speech. Section 5.9 details
algorithms developed for segmenting speech recordings based
on pauses and on pitch.

•• Chapter 6 discusses the contributions of the research, and areas
for continued work.

1.4 Related Work

This research draws from diverse disciplines, integrating theories, ideas,
and techniques in important new ways. There is a wide body of
knowledge and literature that addresses particular aspects of this
problem; however, none of them provides an adequate solution to
navigating in recorded speech.

Time compression technologies allow the playback speed of a recording
to be increased, but there are perceptual limits to the maximum speed
increase. The use of time-compressed speech plays a major role in this
dissertation and is reviewed in detail in chapter 3.

There has been some work done in the area of  summarizing and gisting
(see section 1.4.2),  but these techniques have been constrained to limited
domains. Research on speech interfaces has laid the groundwork for this
exploration by providing insight into the problems of using speech, but
has not directly addressed the issue of finding information in speech
recordings. There has been significant work in presenting  and retrieving
information, but this has focused on textual information and graphical
interfaces.
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1.4.1 Segmentation

There are several techniques for segmenting speech, but these have not
been applied to the problem of skimming and navigating. Chapter 2
describes some manual and computer-assisted techniques for segmenting
recorded speech. A speech detector that determines the presence or
absence of speech can be effective at segmenting recordings. A variety of
speech detection techniques are described in chapter 4. Sections 5.9.3
and 5.9.5 describe other segmentation techniques based on pauses and
the fundamental frequency of speech.

Kato and Hosoya investigated several techniques to enable fast message
searching in telephone-based information systems (Kato 1992; Kato
1993). They broke up messages on hesitation boundaries, and presented
either the initial portion of each phrase or segments based on high energy
portions of speech. They found that combining these techniques with
time compression enabled fast message browsing.

Hawley describes many techniques and algorithms for extracting
structure out of sound (Hawley 1993). Hawley’s work focuses on finding
music and speech in audio recordings with an eye towards parsing movie
sound tracks.

Wolf and Rhyne present a method for selectively reviewing meetings
based on characteristics captured by a computer-supported meeting tool
(Wolf 1992). They found the temporal pattern of workstation-based turn-
taking to be a useful index to points of interest within the meeting log.
They did this by analyzing patterns of activity that are captured by the
computerized record of the meetings. They then attempted to characterize
the structure of the meetings by correlating these data with points of
interest to assist in reviewing the meeting. The intent of each turn taken
during a meeting was coded into one of five categories. The turn
categories of most interest for assisting in browsing the meeting record
were preceded by longer gaps than the other turn types. They found, for
example, that finding parts following gaps of ten seconds or longer
provides a more efficient way of browsing the meeting record than
simply replaying the entire recording. Wolf and Rhyne found that the
temporal pattern of turn-taking was effective in identifying interesting
points in the meeting record. They also suggest that using a combination
of indicators such as user identification combined with a temporal
threshold might make the selective review of meetings more effective.
While these gaps do not have a one-to-one correspondence with pauses
in speaking, the general applicability of this technique appears valid.
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1.4.2 Speech Skimming and Gisting

A promising alternative to the fully automated
recognition and understanding of speech is the
detection of a limited number of key words,
which would be automatically combined with
linguistic and non-linguistic cues and situation
knowledge in order to infer the general content
or “gist” of incoming messages.

(Maksymowicz 1990, 104)

Maxemchuk suggests three techniques (after Maxemchuk 1980, 1395)
for skimming speech messages:

• Text descriptors can be associated with points in a speech
message. These pointers can be listed, and the speech message
played back starting at a selected pointer. This is analogous to
using the index in a text document to determine where to start
reading.

• While playing back a speech message it is possible to jump
forward or backward in the message. This is analogous to flipping
through pages in a text document to determine the area of interest.

• Finally, the playback rate can be increased. When the highest
playback rate is selected, not every word is intelligible; however,
the meaning can generally be extracted. This is analogous to
skimming through a text document to determine the areas of
interest.

Several systems have been designed that attempt to obtain the gist of a
recorded message (Houle 1988; Maksymowicz 1990; Rose 1991) from
acoustical information. These systems use a form of keyword spotting
(Wilcox 1991; Wilcox 1992a; Wilpon 1990) in conjunction with
syntactic and/or timing constraints in an attempt to broadly classify a
message. Similar work has recently been reported in the areas of
retrieving speech documents (Glavitsch 1992) and editing applications
(Wilcox 1992b).

Rose demonstrated the first complete system that takes speech messages
as input, and produces as output an estimated “message class” (Rose
1991). Rose’s system does not attempt to be a complete speech message
understanding system that fully describes the utterance at all acoustic,
syntactic and semantic levels of information. Rather, the goal is only to
attempt to extract a general notion of topic or category of the input
speech utterance according to a pre-defined notion of topic. The system
uses a limited vocabulary Hidden Markov Model (Rabiner 1989) word
spotter that provides an incomplete transcription of the speech. A second
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stage of processing interprets this incomplete transcription and classifies
the message according to a set of pre-defined topics.

Houle et al. proposed a post-processing system for automatic gisting of
speech (Houle 1988). Keyword spotting is used to detect, classify and
summarize speech messages that are then used to notify an operator
whenever a high-priority message arrives. They say that such a system
using keyword spotting is controlled by the trade-off between the
probability of detecting the spoken words and the false alarm rate. If, for
example, a speaker-independent word spotting system correctly detects
80% of the individual keywords, there will be 120 false alarms per hour.
With an active vocabulary of ten words in the spotting system, this would
correspond to 1200 false alarms per hour, or one false alarm every three
seconds. Such a system is impractical because if each keyword that was
detected was used to draw the attention of the operator, the entire speech
recording would effectively need to be monitored. A decreased false
alarm rate was achieved by looking for two or more keywords within a
short phrase window. The addition of these syntactic constraints greatly
improves the effectiveness of the keyword spotting system. The other
technique that they use is termed “credibility adjustment.” This is
effectively setting the rejection threshold of the keyword spotter to
maximize the number of correct recognitions and to minimize the
number of false acceptances. The application of these two kinds of back-
end filters significantly reduces the number of false alarms.

It appears to be much easier to skim synthetic speech than recorded
speech since the words and layout of the text (sentences, paragraphs, and
formatting information) provide knowledge about the structure and
content of a document. Raman (Raman 1992a, Raman 1992b) and
Stevens (Edwards 1993; Stevens 1993) use such a technique for speaking
documents containing mathematics based on TEX or LATEX formatting
information (Knuth 1984; Lamport 1986).

For example, as the skimming speed increases, along with raising the
speed of the synthesizer, simple words such as “a” and “the” could be
dropped. Wallace (Wallace 1983) and Condray (Condray 1987) applied
such a technique to recorded “telegraphic speech”3 and found that
listener efficiency (the amount of information acquired per unit time)
increased under such conditions. When the skimming speed of synthetic
speech is increased, only selected content words or sentences could be
presented. For example, perhaps only the first two sentences from each

3Telegraph operators often dropped common words to speed the transmission of
messages.
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paragraph are presented. With higher speed skimming, only the first
sentence (assumed to be the “topic” sentence) would be synthesized.

Consumer products have begun to appear with rudimentary speech
skimming features. Figures 1-1 and 1-2 show a telephone answering
machine that incorporates time compression. The “digital message
shuttle” allows the user to play voice messages at 0.7x, 1.0x, 1.3x, and
1.6x of normal speed, permits jumping back about 5 seconds within a
message, and skipping forward to the next message (Sony 1993).

Fig. 1-1. A consumer answering machine with time compression.

Fig. 1-2. A close-up view of the digital message shuttle.

This dissertation addresses the issues raised by these previous
explorations and integrates new techniques into a single interface. This
research differs from previous approaches by presenting an interactive
multi-level representation based on simple speech processing and
filtering of the audio signal. While existing gisting and word spotting
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techniques have a limited domain of applicability, the techniques
presented here are invariant across all topics.

1.4.3 Speech and Auditory Interfaces

This dissertation also builds on ideas of conversational interfaces
pioneered at MIT’s Architecture Machine Group and Media Laboratory.
Phone Slave (Schmandt 1984) and the Conversational Desktop
(Schmandt 1985; Schmandt 1987) explored interactive message
gathering and speech interfaces to simple databases of voice messages.
Phone Slave, for example, segmented voice mail messages into five
chunks4 through an interactive dialogue with the caller.

VoiceNotes (Stifelman 1993) explores the creation and management of a
self-authored database of short speech recordings. VoiceNotes
investigates many of the user interface issues addressed in the
Hyperspeech and SpeechSkimmer systems (chapters 2 and 5) in the
context of a hand-held computer.

Resnick (Resnick 1992a; Resnick 1992b; Resnick 1992c) designed
several voice bulletin board systems accessible through a touch tone
interface. These systems are unique because they encourage many-to-
many communication by allowing users to dynamically add voice
recordings to the database over the telephone. Resnick’s systems address
issues of navigation among speech recordings, and include tone-based
commands equivalent to “where am I” and “where can I go?” However,
they require users to fill out an “audio form” to provide improved access
in telephone-based information services.

These predecessor systems all structure the recorded speech information
through interaction with the user, placing a burden on the creator or
author of the speech data. The work presented herein automatically
structures the existing recordings from information inherent in a
conversational speech signal.

Muller and Daniel’s description of the HyperPhone system (Muller 1990)
provides a good overview of many important issues in speech-I/O
hypermedia (see chapter 2). They state that navigation tends to be
modeled spatially in almost any interface, and that voice navigation is
particularly difficult to map into the spatial domain. HyperPhone “voice
documents” are a collection of extensively interconnected fine-grained
hypermedia objects that can be accessed through a speech recognition
interface. The nodes contain small fragments of ASCII text to be

4Name, subject, phone number, time to call, and detailed message.
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synthesized, and are connected by typed links. Hyperspeech differs from
HyperPhone in that it is based on recordings of spontaneous speech
rather than synthetic speech, there is no default path through the nodes,
and no screen or keyboard interface of any form is provided (chapter 2).

Non-speech sounds can be used as an “audio display” for presenting
information in the auditory channel (Blattner 1989; Buxton 1991). This
area has been explored for applications ranging from the presentation of
multidimensional data (Bly 1982) to “auditory icons” that use everyday
sounds (e.g., scrapes and crashes) as feedback for actions in a graphical
user interface (Gaver 1989a; Gaver 1989b; Gaver 1993).

The “human memory prosthesis” is envisioned to run on a lightweight
wireless notepad-style computer (Lamming 1991). The intent is to help
people remember things such as names of visitors, reconstructing past
events, and locating information after it has been filed. This system is
intended to gather information through active badges (Want 1992),
computer workstation use, computer-based note taking, and
conversations. It is noted that video is often used to record significant
events such as design meetings and seminars, but that searching through
this information is a tedious task. Users must play back a sufficient
amount of data to reestablish context so that they can locate a small, but
important, snippet of audio or video. By time-stamping the audio and
video streams and correlating these with time stamps of the note taking,
it is possible to quickly jump to a desired point in the audio or video
stream simply by selecting a point in the hand-written notes (section
1.6.3.1).

1.5 A Taxonomy of Recorded Speech

This section broadly classifies the kinds of speech that can be captured
for later playback. This taxonomy is not exhaustive, but lists the
situations that are of most interest for subsequent browsing and review.
Included are lists of attributes that help distinguish the classifications,
and cues that can assist in segmenting and skimming the recorded
speech. For example, if a user explicitly made a recording, or was present
when a recording was made, the user’s high-level content knowledge of
the recording can assist in interactively retrieving information.

The classifications are listed roughly from hardest to easiest in terms of
the ability to extract the underlying structure purely from the audio
signal. Note that these classification boundaries are easily blurred. For
example, there is a meeting-to-lecture continuum: parts of meetings may
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be more structured, as in a formal lecture, and parts of lectures may be
unstructured, as in a meeting discussion.

These categories can be organized along many dimensions, such as
structure, interactivity, number of people, whether self-authored, etc.
Items can also be classified both within or across categories. For
example, a voice mail message is from a single person, yet a collection of
voice mail messages are from many people. Figure 1-3 plots these
classifications as a function of number of participants and structure. The
annotated taxonomy begins here:

Captured speech.
Such as a recording of an entire day’s activities. This includes informal
voice communication such as conversations that occur when running into
someone in the hall or elevator.

• least structured
• user present
• unknown number of talkers
• variable noise
• all of the remaining items in this list

Meetings.
Including design, working, and administrative gatherings.

• more interactive than a lecture
• more talkers than a lecture
• may be a written agenda
• user may have been present or participated
• user may have taken notes

Possible cues for retrieval: who was speaking based on speaker
identification, written or typed notes.

Lectures.
Including formal and informal presentations.

• typically a monologue
• organization may be more structured than a meeting
• may be a written outline or lecture notes
• user may have been present
• user may have taken notes

Possible cues for retrieval: question-and-answer period, visual aids,
demonstrations, etc.
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lecture

phone call

voice message
dictation

voice notes

meeting

self-authored other person other people

most
structured

least
structured

Fig. 1-3. A view of the categories in the speech taxonomy.

Personal dictation.
Such as letters or notes that would traditionally be transcribed.

• single talker
• user authored
• can be explicitly categorized by user (considered as long voice

notes—see below)
Possible cues for retrieval: date, time, and place of recording.

Recorded telephone calls .
• different media than face-to-face communication
• well defined beginning and ending
• typically two talkers
• well documented speaking and hesitation characteristics (Brady

1965; Brady 1968; Brady 1969; Butterworth 1977)
• user participation in conversation
• can differentiate caller from callee (Hindus 1993)
• consistent audio quality within calls

Possible cues for retrieval: caller identification, date, time, length of call.

Voice mail.
Speech messages gathered by a computer-based answering system.

• single talker per message
• typically short
• typically contain similar types of information
• user not present
• consistent audio quality within messages
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Possible cues for retrieval: caller identification, date, time, length of
message.

Voice notes.
Short personal speech recordings organized by the user (Stifelman 1993).
In addition to the VoiceNotes system, several other Media Laboratory
projects have used small snippets of recorded speech in applications such
as calendars, address books, and things-to-do lists (Schmandt 1993).

• single talker
• typically short notes
• authored by user
• consistent audio quality

Possible cues for retrieval: notes are categorized by user when authored.

Most predecessor systems rely on speech recordings that are structured in
some fashion (i.e., in the lower left quadrant of figure 1-3). This
dissertation attempts to segment recordings that are unstructured (i.e., in
the upper right quadrant of figure 1-3).

1.6 Input (Information Gathering) Techniques
When the medium of communication is free-hand
sketching and writing, conventional keyword
searches of the meeting are not possible. The
content and structure of the meeting must be
inferred from other information.

(Wolf 1992, 6)

This section describes several data collection techniques that can occur
when a recording is created. These data could subsequently be used as
mechanisms to access and index the speech recordings.

1.6.1 Explicit

Explicit (or active) techniques require the user to manually identify
interesting or important audio segments such as with button or keyboard
presses (Degen 1992). Explicit techniques are uninteresting in the context
of this dissertation as they burden the user during the recording process.
Such techniques place an additional cognitive load on the user at record
time or during authoring (see chapter 2), and do not generalize across the
entire speech taxonomy. Such techniques assume that the importance and
archival nature of the recording is known ahead of time. If large
quantities of audio are recorded (e.g., everything that is said or heard
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every day), explicitly marking all recordings becomes tedious and
impractical.

1.6.2 Conversational

It is also possible to use structured input techniques, or an interactive
conversation with the user, to gather classification and segmentation
information about a recording (see section 1.4.3). Such techniques are
useful for short recordings and limited domains. However, these methods
increase the complexity of creating a recording and cannot be used for all
classes of recordings.

1.6.3 Implicit

One of the requirements in providing access to
the meeting record is to do so in a way which is
efficient for users who are searching the history
and is not burdensome for users as they generate
the meeting record.

(Wolf 1992, 1)

Implicit (or passive) techniques provide audio segmentation and search
cues without requiring additional action from the user. Implicit input
techniques include:

Synchronizing keyboard input with the audio recording.
Keystrokes are time-stamped and synchronized with an audio recording
to provide an access mechanism into the recording (Lamming 1991).
This technique is discussed further in section 1.6.3.1.

Pen or stylus synchronization with audio.
This is similar to keystroke synchronization, but uses a pen rather than a
keyboard for input. Audio can thus be synchronized with handwritten
notes that are recognized and turned into text, or with handwriting,
figures, and diagrams that are recorded as digital “ink” or bitmaps.

CSCW keyboard synchronization.
This is a superset of keystroke or pen synchronization, but allows for
multi-person input and the sharing of synchronization information
between many machines.

Synchronizing an existing on-line document with audio.
The structure of an existing document, agenda, or presentation can be
synchronized with button or mouse presses to provide cues to accessing
chunks of recorded speech. This technique typically provides coarse-
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grained chunking, but is highly correlated with topics. A technique such
as this could form the basis for a CSCW application by broadcast the
speaker’s slides and mouse clicks to personal machines in the audience
as a cue for subsequent retrieval.

Electronic white board synchronization.
The technology is similar to pen input, but is less likely to support
character recognition. White board input has different social implications
than keyboard or pen synchronization since the drawing space is shared
rather than private.

Direction sensing microphones.
There are a variety of microphone techniques that can be used to
determine where a talker is located. Each person can use a separate
microphone for person identification, but this is a physical imposition on
each talker. An array of microphones can be used to determine the
talker’s location, based on energy or phase differences between the
arrival of signals at the microphone location (Flanagan 1985;
Compernolle 1990). Such talker identification information can be used to
narrow subsequent audio searches. Note that this technique can be used
to distinguish between talkers, even if the talkers’ identities are not
known.

Active badge or UNIX “finger” information.
These sources can provide coarse granularity information about who is in
a room, or logged on a machine (Want 1992; Manandhar 1991). These
data could be combined with other information (such as direction-sensing
microphones) to provide more precise information than any of the
individual technologies can support.

Miscellaneous external information.
A variety of external sources such as room lights, video projectors,
computer displays, or laser pointers can also be utilized for relevant
synchronization information. However, it is difficult to obtain and use
this information in a general way.

These techniques appear quite powerful; however, there are many times
where it is useful to retrieve information from a recording created in a
situation where notes were not taken, or where the other information-
gathering techniques were not available. A recording, for example, may
have been created under conditions where it was inconvenient or
inappropriate to take notes. Additionally, something may have been said
that did not seem important at the time, but on reflection, may be
important to retrieve and review (Stifelman 1992a). Therefore it is
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crucial to develop techniques that do not require input from the user
during recording.

1.6.3.1 Audio and Stroke Synchronization

Keyboard and pen synchronization techniques are the most interesting of
the techniques described in section 1.6.3. They are tractable and provide
fine granularity information that is readily obtained from the user.
Keystrokes (or higher level constructs such as words or paragraphs) are
time-stamped and synchronized with an audio recording.5 The user’s
keyboard input can then be used as an access mechanism into the
recording.6

Keyboard synchronization technology is straightforward, but may
become complex with text that is manipulated and edited, or if the notes
span across days or meetings. It is hypothesized that such a
synchronization mechanism can be significantly more effective if it is
combined with audio segmentation (section 5.9). The user’s textual notes
can be used as the primary means of summarizing and retrieving
information; the notes provide random access to the recordings, while the
recording captures all  the spoken details, including things missed in the
notes. These techniques are promising and practical, as laptop and
palmtop computers are becoming increasingly common in public
situations.

Note that while the intent of this technique is to not place any additional
burden on the user, such a technology may change the way people work.
For example, the style and quantity of notes people take in a meeting
may change if they know that they can access a detailed audio recording
based on their notes.

1.7 Output (Presentation) Techniques

Once recordings are created, they are processed and presented to the
user. This research also explores interaction and output techniques for
presenting this speech information.

5L. Stifelman has prototyped such a system on a Macintosh.
6The information that is provided by written notes is analogous to the use of keyword
spotting.
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1.7.1 Interaction

In a few seconds, or even fractions of a second,
you can tell whether the sound is a news anchor
person, a talk show, or music. What is really
daunting is that, in the space of those few
seconds, you effortlessly recognize enough about
the vocal personalities and musical styles to tell
whether or not you want to listen!

(Hawley 1993, 53)

Interactive user control of the audio presentation is synergistically tied to
the other techniques described in this document to provide a skimming
interface. User interaction is perhaps the most important and powerful of
all the techniques, as it allows the user  to filter and listen to the
recordings in the most appropriate manner for a given search task (see
chapters 2 and 5).

For example, most digital car radios have “scan” and “seek” buttons.
Scan is automatic simply going from one station to the next. Seek allows
users to go to the next station under their own control. Scan mode on a
radio can be frustrating since it is simply interval-based—after roughly
seven seconds, the radio jumps to the next station regardless of whether a
commercial, a favorite song, or a disliked song is playing.7 Since scan
mode is automatic and hands-off, by the time one realizes that something
of interest is playing, the radio has often passed the desired station. The
seek command brings the listener into the loop, allowing the user to
control the listening period for each station, thus producing a more
desirable and efficient search. This research takes advantage of this
concept, creating a closed-loop system with the user actively controlling
the presentation of information.

1.7.2 Audio Presentation

There are two primary methods of presenting supplementary and
navigational information in a speech-only interface: (1) the use of non-
speech audio and (2) taking advantage of the spatial and perceptual
processing capabilities of the human auditory system.

The use of non-speech audio cues and sound effects can be applied to
this research in a variety of ways. In a speech- or sound-only interface,
non-speech audio can provide terse, but informative, feedback to the
user. In this research, non-speech audio is explored for providing

7Current radios have no cues to the semantic content of the broadcasts.
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feedback to the user regarding the internal state of the system, and for
navigational cues (see also Stifelman 1993).

The ability to focus one’s listening attention on a single talker among a
cacophony of conversations and background noise is sometimes called
the “cocktail party effect.” It may be possible to exploit some of the
perceptual, spatial, or other characteristics of speech and audition that
give humans this powerful ability to select among multiple audio
streams. A spatial audio display can be used to construct a 3-D audio
space of multiple simultaneous sounds external to the head (Durlach
1992; Wenzel 1988; Wenzel 1992). Such a system could be used in the
context of this research to present multiple speech channels
simultaneously, allowing a user to “move” between parallel speech
presentations. In addition, one can take advantage of perceptually based
audio streams (Bregman 1990)—speech signals can be mixed with a
“primary” signal using signal processing techniques to enhance the
primary sound, bringing it into the foreground of attention while still
allowing the other streams to be attended to (Ludwig 1990; Cohen 1991;
Cohen 1993). These areas are outside the primary research of this
dissertation, but are discussed in Arons 1992b.

1.8 Summary

This chapter provides an overview of what speech skimming is, its
utility, and why it is a difficult problem. A variety of related work has
been reviewed, and a range of techniques that can assist in skimming
speech have been presented.

Chapter 2 goes on to describe an experimental system that addresses
many of these issues in the context of a hypermedia system. Subsequent
chapters address the deficiencies of this experimental system and present
new methods for segmenting and skimming speech recordings.
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2 Hyperspeech: An Experiment in
Explicit Structure

The Hyperspeech system began with a simple question: How can one
navigate in a speech database using only speech? In attacking this
question a variety of important issues were raised regarding structuring
speech information, levels of detail, and browsing in speech user
interfaces. This experiment thus motivated the remainder of this research
into the issues of skimming and navigating in speech recordings.8

2.1 Introduction

Hyperspeech is a speech-only hypermedia application that explores
issues of navigation and system architecture in an audio environment
without a visual display. The system uses speech recognition to
maneuver in a database of digitally recorded speech segments; synthetic
speech is used for control information and user feedback.

In this prototype system, recorded audio interviews were manually
segmented by topic; hypertext-style links were added to connect logically
related comments and ideas. The software architecture is data-driven,
with all knowledge embedded in the links and nodes, allowing the
software that traverses through the network to be straightforward and
concise. Several user interfaces were prototyped, emphasizing different
styles of speech interaction and feedback between the user and the
machine.

Interactive “hypertext” systems have been proposed for nearly half a
century (Bush 1945; Nelson 1974), and realizable since the 1960’s
(Conklin 1987; Engelbart 1984). Attempts have continually been made to
create “hypermedia” systems by integrating audio and video into
traditional hypertext frameworks (Multimedia 1989; Backer 1982). Most
of these systems are based on a graphical user interface paradigm using a
mouse, or touch sensitive screen, to navigate through a two-dimensional
space. In contrast, Hyperspeech is an application for presenting “speech

8This chapter is based on Arons 1991a and contains portions of Arons 1991b.
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as data,” allowing a user to wander through a database of recorded
speech without any visual cues.

Speech interfaces must  present information sequentially while visual
interfaces can present information simultaneously  (Gaver 1989a; Muller
1990). These confounding features lead to significantly different design
issues when using speech (Schmandt 1989), rather than text, video, or
graphics. Recorded speech cannot be manipulated, viewed, or organized
on a display in the same manner as text or video images. Schematic
representations of speech signals (e.g., waveform, energy, or magnitude
displays) can be viewed in parallel and managed graphically, but the
speech signals themselves cannot be listened to simultaneously (Arons
1992b). Browsing such a display is easy since it relies “on the extremely
highly developed visuospatial processing of the human visual system”
(Conklin 1987, 38).

Navigation in the audio domain is more difficult than in the spatial
domain. Concepts such as highlighting, to-the-right-of, and menu
selection must be accomplished differently in audio interfaces than in
visual interfaces. For instance, one cannot “click here” in the audio world
to get more information—by the time a selection is made, time has
passed, and “here” no longer exists.

2.1.1 Application Areas

Applications for such a technology include the use of recorded speech,
rather than text, as a brainstorming tool or personal memory aid. A
Hyperspeech-like system would allow a user to create, organize, sort, and
filter “audio notes” under circumstances where a traditional graphical
interface would not be practical (e.g., while driving) or appropriate (e.g.,
for someone who is visually impaired). Speech interfaces are particularly
attractive for hand-held computers that lack keyboards or large displays.
Many of these ideas are discussed further in Stifelman 1992a and
Stifelman 1993.

2.1.2 Related Work: Speech and Hypermedia Systems

Compared with traditional hypertext or multimedia systems, little work
has been done in the area of interactive speech-only hypertext-like
systems (see also section 1.4.3). Voice mail and telephone accessible
databases can loosely be placed in this category; however they are far
from what is considered “hypermedia.” These systems generally present
only a single view of the underlying data, have a limited 12-button
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interface, do not encourage free-form exploration of the information, and
do not allow personalization of how the information is presented.

Parunak (Parunak 1989) describes five common hypertext navigational
strategies in geographical terms. Hyperspeech uses a “beaten path”
mechanism and typed links as additional navigational aids that reduce the
complexity of the hypertext database. A beaten path mechanism (e.g.,
bookmarks or a back-up stack) allows a user to easily return to places
already visited.

Zellweger states “Users are less likely to feel disoriented or lost when
they are following a pre-defined path rather than browsing freely, and the
cognitive overhead is reduced because the path either makes or narrows
their choices” (Zellweger 1989, 1). Hyperspeech encourages free-form
browsing, allowing users to focus on accessing information rather than
navigation. Zellweger presents a path mechanism that leads a user
through a hypermedia database. These paths are appropriate for scripted
documents and narrations; this system focuses on conversational
interactions.

IBIS has three types of nodes and a variety of link types including
questions, objects-to, and refers-to. Trigg’s Textnet proposed a taxonomy
of link types encapsulating ideas such as refutation  and support. The
system described in this chapter has two node types, and several link
types similar to the argumentation links in Textnet and IBIS (Conklin
1987).

2.2 System Description

This section describes how the Hyperspeech database and links were
created, and provides an overview of the hardware and software systems.

2.2.1 The Database

If a man can … make a better mouse-trap … the
world will make a beaten path to his door.

R. W. Emerson

Audio interviews were conducted with five academic, research, and
industrial experts in the user interface field.9 All but one of the interviews

9The interviewees and their affiliations at the time were: Cecil Bloch (Somosomo
Affiliates), Brenda Laurel (Telepresence Research), Marvin Minsky (MIT), Louis
Weitzman (MCC Human Interface Group), and Laurie Vertelney (Apple Human
Interface Group).
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was conducted by telephone, since only the oral content was of interest.
Note that videotaping similar interviews for a video hypermedia system
would have been more expensive and difficult to schedule than telephone
interviews.10

A short list of questions was discussed with the interviewees to help them
formulate their responses before a scheduled telephone call. A
telemarketing-style program then called, played recorded versions of the
questions, and digitally recorded the response to each question in a
different data file. Recordings were terminated without manual
intervention using speech detection (see chapter 4). There were five short
biographical questions (name, title, background, etc.), and three longer
questions relating to the scope, present, and future of the human
interface.11 The interviews were deliberately kept short; the total time for
each automated interview was roughly five minutes.

The recordings were then manually transcribed on a Sun SparcStation
using a conventional text editor while simultaneously controlling audio
playback with a custom-built foot pedal (figures 2-1 and 2-2). A serial
mouse was built into the foot pedal, with button clicks controlling the
playback of the digital recordings.

The transcripts for each question were then manually categorized into
major themes (summary nodes) with supporting comments (detail
nodes). Figure 2-3 is a schematic representation of the nodes in the
database.12 The starting and stopping points of the speech files
corresponding to these categories were then determined with a
segmentation tool. Note that most of the boundaries between segments
occurred at natural pauses between phrases, rather than between words
within a phrase. This attribute is of use in systems that segment speech
recordings automatically (see chapter 5).

10One of the participants was in a bathtub during their telephone interview.
11The questions were:

1. What is the scope, or boundaries, of the human interface? What does the human
interface mean to you?
2. What do you perceive as the most important human interface research issues?
3. What is the future of the human interface? Will we ever achieve “the ultimate”
human interface, and if so, what will it be?

12The node and link images are included here with some hesitation. Such images,
intended only for the author of the database, can bias a user of the system, forcing a
particular spatial mapping onto the database. When the application is running, there is no
visual display of any information.
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Fig. 2-1. The “footmouse” built and used for workstation-based transcription.

Fig. 2-2. Side view of the “footmouse.”  Note the small screws used to depress
the mouse buttons.

After manually analyzing printed transcripts to find interesting speech
segments, a separate segmentation utility was used to determine the
corresponding begin/end points in the sound file. This utility played
small fragments of the recording, allowing the database author to
determine segment boundaries within the sound files. Keyboard-based
commands analogous to fine-, medium-, and coarse-grained cursor
motions of the Emacs text editor (Stallman 1979) were used to move
through the sound file and determine the proper segmentation points.13

13E.g., the forward character command (Control-F) moved forward slightly (50 ms), the
forward word command (Meta-F) moved forward a small amount (250 ms), and the
forward page command moved a medium amount (1 s). The corresponding backward
commands also allowed movement with the recorded sound file. Other keyboard and
foot-pedal commands allowed larger movements.
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Fig. 2-3. A graphical representation of the nodes in the database.  Detail nodes
(circles) that are related to a summary node (diamonds) are horizontally
contiguous. The three columns (narrow, wide, narrow) correspond to each of the
primary questions. The five rows correspond to each of the interviewees.

Of the data gathered14 (approximately 19 minutes of speech, including
trailing silences, um’s, and pauses), over 70 percent was used in the final
speech database. Each of the 80 nodes15 contains short speech segments,
with a mean length of 10 seconds (SD = 6 seconds, maximum of 25
seconds). These brief segments parallel Muller’s fine-grained
hypermedia objects (Muller 1990). However, in this system each
utterance represents a complete idea or thought, rather than a sentence
fragment.

2.2.2 The Links

For this prototype, an X Window System-based tool designed for
working with Petri nets (Thomas 1990) was used to link the nodes in the
database. All the links in the system were typed according to function.
Initially, a small number of supporting and opposing links between
talkers were identified. For example, Minsky’s comments about
“implanting electrodes and other devices that can pick information out of

14In the remainder of the chapter, references to nodes and links do not include responses
to the biographical questions.
15There are roughly equal numbers of summary nodes and detail nodes.
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the brain and send information into the brain” are opposed to Bloch’s
related view that ends “and that, frankly, makes my blood run cold.”

As the system and user interface developed, a large number of links and
new link types were added (there are over 750 links in the current
system). Figure 2-4 shows the links within the database. The figure also
illustrates a general problem of hypermedia systems—the possibility of
getting lost within a web of links. The problems of representing and
manipulating a hypermedia database become much more complex in the
speech domain than with traditional media.

Fig. 2-4. Graphical representation of all links in the database (version 2). Note
that many links are overlaid upon one another.16

2.2.3 Hardware Platform

The telephone interviews were gathered on a Sun 386i workstation
equipped with an analog telephone interface and digitization board. The
Hyperspeech system is implemented on a Sun SparcStation, using its
built-in codec for playing the recorded sound segments. The telephone
quality speech files are stored uncompressed (8-bit µ-law coding, 8000
samples/second). A DECtalk serial-controlled text-to-speech synthesizer
is used for user feedback. The recorded and synthesized speech sounds
are played over a conventional loudspeaker system (figure 2-5).

16A more appropriate authoring tool would provide a better layout of the links and visual
differentiation of the link types.
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isolated word
recognizer

text-to-speech
synthesizer

SparcStation

computer control

Fig. 2-5. Hyperspeech hardware configuration.

Isolated word, speaker-dependent, speech recognition is provided by a
TI-Speech board in a microcomputer; this machine is used as an RS-232
controlled recognition server by the host workstation (Arons 1989;
Schmandt 1988). A headset-mounted noise-canceling microphone
provides the best possible recognition performance in this noisy
environment with multiple sound sources (user + recordings +
synthesizer).

2.2.4 Software Architecture

The software is written in C, and runs in a standard UNIX operating
environment. A simple recursive stack model tracks all nodes that have
been visited, and permits the user to return (pop) to a previously heard
node at any time.

Because so much semantic and navigational information is embedded in
the links, the software that traverses through the nodes in the database is
straightforward and concise. This data-driven architecture allows the
program that handles all navigation, user interaction, and feedback to be
handled by approximately 300 lines of C code.17 Note that this data-
driven approach allows the researcher to scale up the size of the database
without having to modify the underlying software system. This data-
driven philosophy was also followed in SpeechSkimmer (see chapter 5).

2.3 User Interface Design

The Hyperspeech user interface evolved during development of the
system; many improvements were made throughout an iterative design
process. Some of the issues described in the following sections illustrate
the differences between visual and speech interfaces, and are important
design considerations for those implementing speech-based systems.

17Excluding extensive library routines and drivers that control the speech I/O devices.
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2.3.1 Version 1

The initial system was sparsely populated with links and had a simple
user interface paradigm: explicit menu control. After the sound segment
associated with a node was played, a list of valid command options (links
to follow) was spoken by the synthesizer. The user then uttered their
selection, and the cycle was repeated.

The initial system tried to be “smart” about transitioning between the
nodes. After playing the recording, if no links exited that node, the
system popped the user back to the previous node, as no valid links could
be followed or navigational commands issued. This automatic return-to-
previous-node function was potentially several levels deep. Also, once a
node had been heard, it was not mentioned in succeeding menus in order
to keep the prompts as short as possible—it was (incorrectly) assumed
that a user would not want to be reminded about the same node twice.

Navigation in this version was very difficult. The user was inundated
with feedback from the system—the content of the recordings became
lost in the noise of the long and repetitive menu prompts. The supposedly
“smart” node transitions and elision of menu items brought users to
unknown places, and left them stranded without landmarks because the
menus were constantly changing.

2.3.2 Version 2

This section describes the current implementation of the Hyperspeech
system. The most significant change from Version 1 was the addition of
a variety of new link types and a large number of links.

A name  link will transition to a node of a particular talker. For example,
user input of Minsky  causes a related comment by Marvin Minsky to be
played.

Links were also added for exploring the database at three levels of detail.
The more link allows a user to step through the database at the lowest
level of detail, playing all the information from a particular talker. The
browse  link permits a user to skip ahead to the next summary node
without hearing the detailed statements. This lets a user skim and get an
overview of a particular talker’s important ideas. The scan18 command
automatically jumps between the dozen or so nodes that provide a high-
level overview path through the entire database, allowing a user to skim
over all the recordings to find a topic of interest.

18In retrospect, these may not have been the most appropriate names (see section 1.1).
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In order to reduce  the amount of feedback to the user, the number of
links was greatly increased  so that a link of every type exists for each
speech node. Since any link type can be followed from any node,
command choices are uniform across the database, and menus are no
longer needed. This is analogous to having the same graphical menu
active at every node in a hypermedia interface; clicking anywhere
produces a reasonable response, without having to explicitly highlight
active words or screen areas. Figure 2-6 shows the vocabulary and link
types of the system.

Link type Command Description
name Bloch Transition to related comments from

Laurel a particular talker
Vertelney
Weitzman
Minsky

dialogical supporting Transition to a node that supports this viewpoint
opposing Transition to a node that opposes this viewpoint

control more Transition to next detail node
continue Transition to next detail node (alias for more)
browse Transition to next summary node
scan Play path through selected summary nodes

Utilities Command Description
control return Pop to previous node

repeat Replay current node from beginning
help help Synthesize a description of current location

options List current valid commands
on/off pay attention Turn on speech recognizer

stop listening Turn off speech recognizer

Fig. 2-6. Command vocabulary of the Hyperspeech system.

A host of minor changes made the system more interactive and
conversational. Since the most valuable commodity in speech systems is
time rather than screen real estate, every effort was made to speed the
interactions. The speech segments in the database are, by default, played
back 1.25 times faster than they were recorded without a change of pitch
(see chapter 3). If the repeat command is invoked, the node is replayed at
normal speed for maximum intelligibility. The speaking rate of the
synthetic speech has also been significantly increased (from the default
of 180 wpm) to reduce user feedback time. Short repetitive types of
feedback (e.g., direct echoing of recognized commands) are spoken at a
faster rate (350 wpm) than help or navigation-related feedback (250
wpm). The output volume levels were also adjusted so that the speech
recordings—the primary output of the system—are louder than the
synthetic speech.
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A sample interactive dialog that illustrates what the Hyperspeech system
sounds like is shown in figure 2-7. See Arons 1993b for a video tape
demonstrating the system in use.

Talker Utterance Comments
Minsky What I think will happen over the next

fifty years is we’ll learn more and more
about implanting electrodes, and other
devices, that can pick information out of
the brain and send information into the
brain.

User opposing User objects to
idea, does anyone
else?

Bloch The ultimate is obviously some sort of
direct coupling between the nervous
system and artificial devices, and that,
frankly makes my blood run cold.

User browse Go to next
summary from
Bloch.

Bloch In terms of ultimate development, I
think that the thing that can be said is
that it is unpredictable.

User Weitzman What is
Weitzman’s view?

Weitzman I would hope that we never do achieve
the ultimate interface.

User continue Get more
information.

Weitzman We’ll always be able to improve on it,
and just the fact that during the process
of getting there …

User help Interrupt to get
information.

Synthesizer This is Louie Weitzman on the future of
the human interface.

Weitzman … we are going to learn new things and
be able to see even better ways to attack
the problem.

Continue playing
comment.

User Vertelney What does the
industrial designer
think?

Vertelney I think it’s like back in the
Renaissance…

User return Not of interest.
Interrupt, and go
back to previous
node.

Weitzman We’ll always be able to… Weitzman again.
User Minsky What’s Minsky’s

view of the future?
Minsky And when it becomes smart enough we

won’t need the person anymore, and the
interface problem will disappear.

Fig. 2-7. A sample Hyperspeech dialog.
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Explicit echoing (Hayes 1983) of recognized commands is no longer the
default. However, at start-up time the system can be configured for
various degrees of user feedback. Observers and first-time users of the
system are often more comfortable with the interface if command
echoing is turned on. As soon as a spoken command is recognized,
speech output (synthesized or recorded) is immediately halted, providing
crucial feedback to the user that a command was heard. The system
response time is fast enough that a rejection error 19 is immediately
noticeable to an experienced user. If a substitution error20 occurs, the
user can quickly engage the machine in a repair dialog (Schmandt 1986).
Note that speech recognition parameters are typically set so that
substitution errors are less common than rejection errors. Figure 2-8
illustrates what a repair dialog (with command echoing on) might sound
like.

Talker Utterance Description of action
User Weitzman Desired command is spoken
Synthesizer “supporting” Fast  echoing (substitution error)
Minsky “The interfa…” Incorrect sound is started
User return Interrupt recording, pop to previous node
User Weitzman Repeat of misrecognized command
Synthesizer “Weitzman” Echo of correctly recognized word
Weitzman “I hope we never do

achieve the ultimate
interface…”

Desired action is taken

Fig. 2-8. An interactive repair.

2.4 Lessons Learned on Skimming and Navigating

Einstein is reported to have once said, “make everything as simple as
possible, but not too simple.” This idea also holds true in user interfaces,
particularly those involving speech. Since time is so valuable in a speech
application, every effort must be made to streamline the interactions.
However, if things are made too simple, the interface also can fall apart
because of the lack of identifiable landmarks. Keeping the feedback
concise, or allowing various degrees of feedback to be selected, helps
keep the interaction smooth and efficient. Grice’s four maxims21 about
what, and how, something is said, are perhaps more applicable in
machine-to-human dialogs then they are in human-to-human
conversations (Grice 1975). These maxims capture many of the key ideas
necessary for streamlining conversational interfaces.

19Rejection error: a word was spoken, but none was recognized.
20Substitution error: a word was spoken, but a different word was recognized.
21Summary of points of interest: be as informative as required, be relevant, avoid
ambiguity, and be brief.
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The design of this system is based on allowing the user to actively drive
through the database rather than being passively chauffeured around by
menus and prompts. This ability is based, in part, on having a fixed set of
navigation commands that are location independent—from any location
in the database, any command can be used (i.e., any link type can be
followed). Note that this scheme may be difficult to implement in
systems with a much larger number of nodes or link types. The total
number of links is proportional to the number of nodes and the number of
link types (TotalLinks =  TotalNodes  x LinkTypes).

To make the interactions fluent, transitions from one interaction mode to
another (e.g., recognition to playback) must be designed for low system
response time (Arons 1989; Schmandt 1988). Similarly, any action by the
system must be easily interruptible by the user. The system should
provide immediate feedback to the user that an interrupt was received;
this usually takes the form of instantly halting any speech output, then
executing the new command.

One general advantage of speech over other types of input modalities is
that it is goal directed. A speech interface is uncluttered with artifacts of
the interaction, such as menus or dialog boxes. The recognition
vocabulary space is usually flat and always accessible. This is analogous
to having one large pull-down menu that is always active, and contains
all possible commands.

Authoring is often the most difficult part of hypermedia systems;
Hyperspeech-like systems have the added complication of the serial and
non-visual nature of the speech signal. Recorded speech cannot be
manipulated on a display in the same manner as text or video images.
Note that schematic representations of speech signals can be viewed in
parallel and handled graphically, but that the speech segments
represented by such a display still cannot be heard simultaneously.

One solution to managing speech recordings is to use traditional text (or
hypertext) tools to manipulate transcriptions. Unfortunately, the
transcription process is tedious, and the transcripts do not capture the
prosody, timing, emphasis, or enthusiasm of speech that is important in a
Hyperspeech-like system. Sections 2.4.1 and 2.4.2 outline ways that an
audio-equipped workstation can help bridge this gap in the Hyperspeech
authoring process.
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2.4.1 Correlating Text with Recordings

The technology for the transcription of recorded interviews or dictation is
steeped in tradition. A transcriptionist controls an analog tape machine
through a foot pedal while entering text into a word processor. Modern
transcribing stations have “advanced” features that can speed up or slow
down the playback of recorded speech, can display the current location
within the tape, and have high-speed search.

In addition to transcription, a Hyperspeech system (and many other
speech-based applications) needs to accurately correlate the text with the
recorded sound data. Ideally this is done automatically without explicit
action by the transcriptionist—as the text is typed, a rough
correspondence is made between words and points in the recorded file.
An accurate one-to-one mapping between the recording and the
transcription is unlikely because of the typist’s ability to listen far ahead
of letters being typed at any moment (Salthouse 1984). However, even an
approximate correlation is useful (Lamming 1991), allowing the
hypermedia author to easily jump to the approximate sound segment and
fine-tune the begin/end points to accurately match the transcription.

Once a transcript is generated, fine-grained beginning and ending points
must be determined for each speech segment. A graphical editor can
assist in this process by displaying the text in parallel with a visual
representation of the speech signal. This allows the hypermedia author to
visually locate pauses between phrases for segments of speech in the
Hyperspeech database. Specialized text editors can be used for managing
transcripts that have inherent structure or detailed descriptions of actions
(such as data from psychological experiments that include notations for
breathing, background noises, non-speech utterances, etc., see Pitman
1985).

If an accurate transcript is available, it is possible to automatically
correlate the text with syllabic units detected in the recording (Hu 1987;
Mermelstein 1975). For a Hyperspeech database, this type of tool would
allow the hypermedia author to segment the transcripts in a text-based
editor, and then create the audio file correspondences as an automated
post-process. Even if the processing is not completely accurate, it would
provide rough begin and end points that could be tuned manually.

2.4.2 Automated Approaches to Authoring

Unfortunately, fully automatic speaker-independent speech-to-text
transcription of spontaneous speech is not practical in the near future
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(Roe 1993). However, there are a variety of techniques that can be
employed to completely automate the Hyperspeech authoring process
(see chapter 5).

The telemarketing-style program that collected the interview database
asked a series of questions that served as the foundation for the
organization of the Hyperspeech database. In this prototype application,
the questions were very broad, and much manual work was required to
segment and link the nodes in the database. However, if the process that
gathers the speech data asks very specific questions, it is possible to
automatically segment and organize recorded messages by semantic
content (Malone 1988; Resnick 1992b; Schmandt 1984). If the questions
are properly structured (and the interviewees are cooperative), the bulk of
the nodes in the Hyperspeech database can be automatically generated.
This technique is particularly powerful for Hyperspeech authoring, as it
not only creates the content of the database, but can link the nodes as
well.

2.5 Thoughts on Future Enhancements

Hyperspeech raises as many questions as it answers. There are many
improvements and extensions that can be made in terms of basic
functionality and user interface design. Some of the techniques proposed
in this section are intriguing, and are presented to show the untapped
power of the speech communication channel.

2.5.1 Command Extensions

A variety of extensions are possible in the area of user control and
feedback. Because of the difficulty of creating and locating stable
landmarks in the speech domain, it is desirable to be able to dynamically
add personalized bookmarks (the need for this feature reappears in
section 5.10.13). While listening to a particular sound segment the user
might say “bookmark: hand-held computers,” creating a new method of
accessing that particular node. Note that the name of the bookmark does
not have to be recognized by the computer the first time it is used.
Instead, after recognizing the key phrase bookmark,  a new recognizer
template is trained on-the-fly with the utterance following the key phrase
(Stifelman 1992a; Stifelman 1993). A subsequent “go to:  hand-held
computers” command, will take the user back to the appropriate node and
sound segment.
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Besides adding links, it is desirable to dynamically extend the database
by adding new nodes. For example, using a scheme similar to that of
adding bookmarks, the user can record a new node by saying22 “add
supporting: conversational interfaces will be the most important
development in the next 20 years.” This creates new supporting and
name  links, as well as a node representing the newly recorded speech
segment.23 A final variant of this technique is to dynamically generate
new link types. For example, a command of the form “link to:  hand-held
computers,  call it: product idea” would create a product idea  link
between the bookmark and the currently active node.24

There are many speech commands that can be added to allow easier
navigation and browsing of the speech data. For example, a command of
the form “Laurel on Research” would jump to a particular talker’s
comments on a given topic. It is also possible to add commands, or
command modifiers, that allow automated cross-sectional views or
summary paths through the database. Command such as “play all
Minsky” or “play all future” would play all of Minsky’s comments or all
comments about the future of the human interface. It may also be
possible to generate on-the-fly arguments between the interviewees. A
command such as “contrast Bloch and Vertelney on the scope of the
human interface” could create a path through the database simulating a
debate.

2.5.2 Audio Effects

Audio cues can provide an indication of the length of a given utterance, a
feature particularly useful if there is a wide range of recording lengths.
Some voice mail systems, for example, inform the user “this is a long
message” before playing a long-winded recording25 (Stifelman 1991). In
Hyperspeech, where playing sounds is the fundamental task of the
system, a more efficient (less verbose) form of length indication is
desired. For example, playing a short (perhaps 50 millisecond) high
pitched tone might indicate a brief recording, while a longer (250 ms)
low tone may suggest a lengthy recording (Bly 1982; Buxton 1991).
Doppler effect frequency shifts of a speech segment can also suggest that

22An isolated word recognizer can be trained with short utterances (e.g., “add
supporting”) in addition to single words. Some of the examples presented in this section,
however, would be better handled by a continuous speech recognizer.
23One complication of this design is that it may create nodes that are under populated
with links. This may not present a problem if such nodes are sparsely distributed
throughout the database.
24Many links can be generated, including product idea  and name  links in both directions.
25Note that it is counterproductive to say “this is a short message.”
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the user is approaching, or passing, a Hyperspeech branch that exists
only in time.

2.6 Summary

The Hyperspeech system provides an introduction to the possibilities of
constructing speech-only hypermedia environments and interactively
skimming speech recordings. An important implication of Hyperspeech
is that it is significantly different to create and navigate in speech-only
hypermedia than it is to augment, or use, visually based hypermedia with
speech (see also Mullins 1993).

It is difficult to capture the interactive conversational aspects of the
system by reading a written description. Most people who have heard this
interface have found it striking, and its implications far reaching. One
user of the system felt that they were “creating artificial conversations
between Minsky and Laurel” and that the ability to stage such
conversations was very powerful.

Many of the ideas developed in the Hyperspeech system, such as
different levels of representation, interactive control, and the importance
of time in speech interfaces, can be applied to create a more general form
of interaction with unstructured speech data. During the Hyperspeech
authoring process, it became painfully clear that continued development
of such a system would require significantly better, or radically different,
authoring tools and techniques. The remainder of this dissertation
addresses these issues.



56



57

3 Time Compression of Speech

That is to say, he can listen faster than an
experienced speaker can talk.

(Smith 1970, 219)

Hyperspeech (chapter 2) and previous interactive systems have
demonstrated the importance of managing time in speech-based systems.
This chapter investigates methods for removing redundancies in speech,
to allow recordings to be played back in less time than it took to create
them. The ideas presented in this chapter are a crucial component of the
SpeechSkimmer system described in chapter 5.

A variety of techniques for time compressing speech have been
developed over the last four decades. This chapter contains a review of
the literature on methods for time compressing speech, including related
perceptual studies of intelligibility and comprehension.26

3.1 Introduction

Time-compressed speech is also referred to as accelerated, compressed,
time-scale modified, sped-up, rate-converted, or time-altered speech.
“Time-scale modified” is often used in the digital signal processing
literature; “time-compressed” or “accelerated” is often used in the
psychology literature. Time-compressed is used here instead of time-
scale modified since the goal of this research is to make things faster,
rather than slow things down.

The primary motivation for time-compressed speech is to reduce the time
needed for a user to listen to a message—to increase the communication
capacity of the ear. A secondary motivation is that of data reduction—to
save storage space and transmission bandwidth for speech messages.

Time-compressed speech can be used in a variety of application areas
including teaching, aids to the disabled, and human-computer interfaces.
Studies have indicated that listening twice to teaching materials that have

26This chapter is based on Arons 1992a.
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been speeded up by a factor of two is more effective than listening to
them once at normal speed (Sticht 1969). Time-compressed speech has
been used to speed up message presentation in voice mail systems
(Maxemchuk 1980; Hejna 1990), and in aids for the visually impaired.
Speech can be slowed for learning languages, or for the hearing
impaired. Time compression techniques have also been used in speech
recognition systems to time normalize input utterances to a standard
length (Malah 1979; Watanabe 1992).

While the utility of time compressing recordings is generally recognized,
surprisingly, its use has not become pervasive. Rippey performed an
informal study on users of a time compression tape player installed in a
university library. Virtually all the comments on the system were
positive, and the librarians reported that the speech compressor was the
most popular piece of equipment in the library (Rippey 1975).

The lack of commercial acceptance of time-compressed speech is partly
because of the cost of compression devices and the quality of the
reproduced speech, but is also attributable to the lack of user control.
Traditionally, recordings were reproduced at fixed compression ratios
where:

the rate of listening is completely paced by the recording and
is not controllable by the listener. Consequently, the listener
cannot scan or skip sections of the recording in the same
manner as scanning printed text, nor can the listener slow
down difficult-to-understand portions of the recording.
(Portnoff 1978, 10)

3.1.1 Time Compression Considerations

The techniques presented in this chapter can be applied to a wide range
of recordings, and used under disparate listening conditions. The items
listed in this section should be kept in mind while reading the remainder
of this document, and while designing time compression techniques
appropriate for a given interactive speech application.

There are three variables that can be studied in compressed speech
(Duker 1974):

• The type of speech material to be compressed: content, language,
background noise, etc.

• The process of compression: algorithm, monophonic or
stereophonic presentation, etc.

• The listener: prior training, intelligence, listening task, etc.
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Other related factors come into play in the context of integrating speech
into computer workstations or hand-held computers:

• Is the material familiar or self-authored, or is it unfamiliar to the
listener?

• Does the recorded material consist of many short items, or large
unsegmented chunks of speech?

• Is the user quickly browsing or listening for maximum
comprehension?

3.1.2 A Note on Compression Figures

There are several ways to express the amount of compression produced
by the techniques described in this document. The most common figure
in the literature is the compression percentage.27 A compression of 50%
corresponds to a factor of two increase in speed (2x), halving the time
required to listen. A compression of 20% corresponds to a factor of five
increase in speed. These numbers are most easily thought of as the total
reduction in time or data.

3.2 General Time compression Techniques

A variety of techniques for increasing the playback speed of speech are
described briefly in the following sections (most of these methods also
work for slowing down speech). Note that these techniques are primarily
concerned with reproducing the entire recording, not skimming portions
of the signal. Much of the research summarized here was performed
between the mid-1950’s and the mid-1970’s, often in the context of
developing accelerated teaching techniques, or aids for the visually
impaired.

3.2.1 Speaking Rapidly

The normal English speaking rate is in the range of 130–200 words per
minute (wpm). When speaking fast, talkers unintentionally change
relative attributes of their speech such as pause durations, consonant-
vowel duration, etc. Talkers can only compress their speech to about
70% because of physiological limitations (Beasley 1976).28

27An attempt has been made to present all numbers quoted from the literature in this
format.
28However, according to the Guinness Book of World Records, John Moschitta has been
clocked speaking at a rate of 586 wpm. Mr. Moschitta is best known for his roles as the
fast-talking businessman in Federal Express television commercials.
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3.2.2 Speed Changing

Speed changing is analogous to playing a tape recorder at a faster (or
slower) speed. This method can be replicated digitally by changing the
sampling rate during the playback of a sound. Techniques such as these
are undesirable since they produce a frequency shift29 proportional to the
change in playback speed, causing a decrease in intelligibility.

3.2.3 Speech Synthesis

With purely synthetic speech (Klatt 1987) it is possible to generate
speech at a variety of word rates. Current text-to-speech synthesizers can
produce speech at rates up to 350–550 wpm. This is typically done by
selectively reducing the phoneme and silence durations. This technique is
useful, particularly in aids for the disabled, but is not relevant to recorded
speech. Note that these maximum speech rates are higher than many of
the figures cited in the remainder of this chapter because of special
requests by members of the blind community.

3.2.4 Vocoding

Vocoders (voice coders) that extract pitch and voicing information can be
used to time compress speech. For example, if a vocoder that extracts
speech features every 20 ms is used to drive a decoder that expects
speech data every 10 ms, the speech will be compressed by 50%. Most
vocoding efforts, however, have focused on bandwidth reduction rather
than on naturalness and high speech quality. The phase vocoder (section
3.4.2) is a high quality exception.

3.2.5 Pause Removal

A variety of techniques can be used to find pauses (hesitations) in speech
and remove them since they contain no lexical information. The resulting
speech is “natural, but many people find it exhausting to listen to because
the speaker never pauses for breath” (Neuburg 1978, 624).

The simplest methods involve the use of energy or average magnitude
measurements combined with time thresholds; other metrics include zero
crossing rate measurements, LPC parameters, etc. A variety of speech
and background noise detection techniques are reviewed in detail in
chapter 4.

29Causing the talker to sound like Mickey Mouse or the “Chipmunks.”
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3.3 Time Domain Techniques

The most practical time compression techniques work in the time domain
and are based on removing redundant information from the speech
signal. The most common of these techniques are discussed in this
section.

3.3.1 Sampling

The basis of much of the research in time-compressed speech was
established in 1950 by Miller and Licklider’s experiments that
demonstrated the temporal redundancy of speech. The motivation for this
work was to increase communication channel capacity by switching the
speech on and off at regular intervals so the channel could be used for
another transmission (figures 3-1 and 3-2B). It was established that if
interruptions were made at frequent intervals, large portions of a message
could be deleted without affecting intelligibility (Miller 1950).

Other researchers concluded that listening time could be saved by
abutting the interrupted speech segments. This was first done by Garvey
who manually spliced audio tape segments together (Garvey 1953a;
Garvey 1953b), then by Fairbanks with a modified tape recorder with
four rotating pickup heads (Fairbanks 1954).

The bulk of literature involving the intelligibility and comprehension of
time-compressed speech is based on such electromechanical tape
recorders. In the Fairbanks (or sampling) technique, segments of the
speech signal are alternatively discarded and retained, as shown in figure
3-2C. This has traditionally been done isochronously—at constant
sampling intervals without regard to the content of the signal.

         
Is Id Is Id . . .
sampling interval Is
discard interval Id
time compression ratio Rc = Id/(Id+Is)

Fig. 3-1. Sampling terminology (after Fairbanks 1957).

Word intelligibility decreases if Id is too large or too small. Portnoff
notes that the duration of each sampling interval should be at least as
long as one pitch period (e.g., >~15 ms), but should also be shorter than
the length of a phoneme (Portnoff 1981). Although computationally
simple, such time-domain techniques introduce discontinuities at the
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interval boundaries that are perceived as “burbling” distortion and
general signal degradation.

                                    

1

1 2

3

3 4

5

5 6

7

7 8

9

9 10

B) Interrupted signal

A) Original signal

1 3 5 7 9

C) Sampling method

1 3 5 7 9

2 4 6 8 10

D) Dichotic sampling

Right ear

Left ear

Fig. 3-2. (A) is the original signal; the numbered regions represent short (e.g.,
50 ms) segments. Signal (B) is still intelligible. For a 2x speed increase using the
sampling method (C), every other chunk of speech from the original signal is
discarded. The same technique is used for dichotic presentation, but different
segments are played to each ear (D).

It has been noted that some form of windowing function or digital
smoothing at the junctions of the abutted segments will improve the
audio quality. The “braided-speech” method continually blended adjacent
segments with linear fades, rather than abutting segments (Quereshi
1974). Lee describes two digital electronic implementations of the
sampling technique (Lee 1972), and discusses the problems of
discontinuities when segments are simply abutted together.

3.3.2 Sampling with Dichotic Presentation

One of the most striking facts about our ears is
that we have two of them—and yet we hear one
acoustic world; only one voice per speaker.

(Cherry 1954, 554)

Sampling with dichotic30 presentation is a variant of the sampling
method that takes advantage of the auditory system’s ability to integrate
information from both ears (figure 3-2D). It improves on the sampling
method by playing the standard sampled signal to one ear and the

30Dichotic  means a different signal is presented to each ear; diotic  means the same signal
is presented to both ears; monotic  means a signal is presented to only one ear.
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“discarded” material to the other ear31 (Scott 1967, summarized in Orr
1971). Under this dichotic condition, where different signals are
presented to each ear over headphones, both intelligibility and
comprehension increase. Most subjects also prefer this technique to a
diotic presentation of a conventionally sampled signal. Listeners initially
reported a switching of attention between ears, but they quickly adjusted
to this unusual sensation. Note that for compression ratios up to 50%, the
two signals to the ears contain common information. For compression
greater than 50% some information is necessarily lost.

3.3.3 Selective Sampling

The basic sampling technique periodically removes pieces of the speech
waveform without regard to whether it contains unique or redundant
speech information. David and McDonald demonstrated a bandwidth
reduction technique in 1956 that selectively removed redundant pitch
periods from speech signals (David 1956). Scott applied the same ideas
to time compression, setting the sampling and discard intervals to be
synchronous with the pitch periods of the speech. Discontinuities in the
time compressed signal were reduced, and intelligibility increased (Scott
1972). Neuburg developed a similar technique in which intervals equal to
the pitch period were discarded (but not synchronous with the pitch
pulses). Finding the pitch pulses is hard (Hess 1983), yet estimating the
pitch period is much easier, even in noisy speech (Neuburg 1978).

Since frequency-domain properties are expensive to compute, it has been
suggested that easy-to-extract time-domain features can be used to
segment speech into transitional and sustained segments. For example,
simple amplitude and zero crossing measurements for 10 ms frames can
be used to group adjacent frames for similarity—redundant frames can
then be selectively removed (Quereshi 1974). Toong selectively deleted
50–90% of vowels, up to 50% of consonants and fricatives, and up to
100% of pauses (Toong 1974). However, it was found that complete
elimination of pauses was undesirable (see also section 3.7.4). Portnoff
summarized these findings:

The most popular refinement of the Fairbanks technique is
pitch-synchronous implementation. Specifically, for portions
of speech that are voiced, the sections of speech that are
repeated or discarded correspond to pitch periods. Although
this scheme produces more intelligible speech than the basic
asynchronous pitch-independent method, errors in pitch
marking and voiced-unvoiced decisions introduce
objectionable artifacts… Perhaps the most successful variant

31Often with a delay of half of the discard interval.
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of the Fairbanks method is that recently proposed by
Neuburg. This method uses a crude pitch detector, followed
by an algorithm that repeats or discards sections of the
speech equal in length to the average pitch period then
smooths together the edges of the sections that are retained.
Because the method is not pitch synchronous, and, therefore,
does not require pitch marking, it is more robust than pitch-
synchronous implementations, yet much higher quality than
pitch-independent methods. (Portnoff 1978, 12)

3.3.4 Synchronized Overlap Add Method

The synchronized overlap add method (SOLA) first described by Roucos
and Wilgus (Roucos 1985) has recently become popular in computer-
based systems. It is a variant of a Fourier-based algorithm described by
Griffin and Lim (Griffin 1984), but is optimized to eliminate the need for
an iterative solution. “Of all time scale modification methods proposed,
SOLA appears to be the simplest computationally, and therefore most
appropriate for real-time applications” (Wayman 1989, 714).
Conceptually, the SOLA method (figure 3-3) consists of shifting the
beginning of a new speech segment over the end of the preceding
segment to find the point of highest cross-correlation (i.e., maximum
similarity). Once this point is found, the frames are overlapped and
averaged together, as in the sampling method. SOLA provides a locally
optimal match between successive frames (the technique does not
attempt to provide global optimality). The shifts do not accumulate since
the target position of a window is independent of any previous shifts
(Hejna 1990).

Combining the frames in this manner tends to preserve the time-
dependent pitch, magnitude, and phase of a signal. The SOLA method is
simple and effective as it does not require pitch extraction, frequency-
domain calculations, or phase unwrapping, and is non-iterative (Makhoul
1986). The SOLA technique can be considered a type of selective
sampling that effectively removes redundant pitch periods.

A windowing function can be used with this technique to smooth
between segments, producing significantly fewer artifacts than traditional
sampling techniques. Makhoul used both linear and raised cosine
functions for averaging windows, and found the simpler linear function
sufficient (Makhoul 1986). The SOLA algorithm is robust in the
presence of noise, and can improve the signal-to-noise ratio of noisy
speech since the cross-correlation tends to align periodic features (i.e.,
speech) in the signal (Wayman 1988; Wayman 1989).
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A)

B)

C)

D)

Maximum
cross
correlation

Overlap region

Fig. 3-3. SOLA: shifting the two speech segments (as in figure 3-2) to find the
maximum cross correlation. The maximum similarity occurs in case C, eliminating
a pitch period.

Several improvements to the SOLA method have been suggested that
offer improved computational efficiency, or increased robustness in data
compression applications (Makhoul 1986; Wayman 1988; Wayman
1989; Hardam 1990; Hejna 1990). Hejna, in particular, provides a
detailed description of SOLA, including an analysis of the interactions of
various parameters used in the algorithm. Hejna states:

Ideally the modification should remove an integer multiple
of the local pitch period. These deletions should be
distributed evenly throughout the segment, and to preserve
intelligibility, no phoneme should be completely removed.
(Hejna 1990, 2)

3.4 Frequency Domain Techniques

In addition to the frequency domain methods outlined in this section,
there are a variety of other frequency-based techniques that can be used
for time compressing speech (e.g., McAulay 1986; Quatieri 1986).

3.4.1 Harmonic Compression

Harmonic compression involves the use of a fine-tuned (typically analog)
filter bank. The energy outputs of the filters are used to drive filters at
half of the original frequency. A tape of the output of this system is then
played on a tape recorder at twice normal speed. The compression ratio
of this frequency domain technique was fixed, and was being developed
before it was practical to use digital computers for time compression.
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Malah describes time-domain harmonic scaling that requires pitch
estimation, is pitch synchronous, and can only accommodate certain
compression ratios (Malah 1979; Lim 1983).

3.4.2 Phase Vocoding

A vocoder that maintains phase (Dolson 1986) can be used for high
quality time compression. A “phase vocoder” can be interpreted as a
filter bank and thus is similar to the harmonic compressor. A phase
vocoder is, however, significantly more complex because calculations are
done in the frequency domain, and the phase of the original signal must
be reconstructed.

Portnoff developed a system for time-scale modification of speech based
on short-time Fourier analysis (Portnoff 1981). The system provided high
quality compression of up to 33% (3x) while retaining the natural quality
and speaker-dependent features of the speech. The resulting signals were
free from artifacts such as glitches, burbles, and reverberations typically
found in time-domain methods of compression such as sampling.

Phase vocoding techniques are more accurate than time domain
techniques, but are an order of magnitude more computationally complex
because Fourier analysis is required. Dolson says, “A number of time-
domain procedures … can be employed at substantially less
computational expense. But from a standpoint of fidelity (i.e., the relative
absence of objectionable artifacts), the phase vocoder is by far the most
desirable” (Dolson 1986, 23). The phase vocoder is particularly good at
slowing speech down to hear features that cannot be heard at normal
speed—such features are typically lost using the time-domain techniques
described in section 3.3.

3.5 Tools for Exploring the Sampling Technique

A variety of software tools and utilities were built for investigating
variants of the sampling method (sections 3.3.1 and 3.3.2) and new ways
to combine time compression techniques (section 3.6) for the
SpeechSkimmer system. Figure 3-4 shows some of the parameters
available in the sampling tool. Additional tools enabled speech or
background noise segments to be extracted from a sound file, two files to
be interleaved for dichotic presentation, SOLA time compression, etc.



Time Compression 67
         

chunk size
Is

gapf

A)

B)

C) …
Fig. 3-4. Parameters used in the sampling tool. In (A) the sampling interval, Is , is
specified as a fraction of the chunk size. In (B), the length of the linear fade, f, is
specified at the chunk boundaries. The gap length can be set to allow time
between fades (in B), to abut the fade segments, or to overlap the fades for a
linear cross fade (in C).

These software tools permitted the rapid exploration of combined and
novel time compression techniques (sections 3.6.2 and 3.6.3). For
example, the speech segments could be extracted from a file with
different amounts of the background noise inserted between segments.
The length of the background noise segments can be a fraction of the
actual noise between speech segments, set to a predefined length, or
linearly interpolated between two set values based on the actual length of
the pauses. These explorations led to the time compression and pause
removal parameters used in the final SpeechSkimmer design.

3.6 Combined Time Compression Techniques

The time compression techniques described earlier in this chapter can be
mixed and matched in a variety of ways. Such combined methods can
provide a variety of signal characteristics and a range of compression
ratios.

3.6.1 Pause Removal and Sampling

Maxemchuk found that eliminating every other non-silent block (1/16
second) produced “extremely choppy and virtually unintelligible
playback” (Maxemchuk 1980, 1392). Eliminating intervals with less
energy than the short-term average (and no more than one in a row),
produced distorted but intelligible speech. This technique produced
compressions of 33 to 50 percent. Maxemchuk says that this technique:

has the characteristic that those words which the speaker
considered to be most important and spoke louder were
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virtually undistorted, whereas those words that were spoken
softly are shortened. After a few seconds of listening to this
type of speech, listeners appear to be able to infer the
distorted words and obtain the meaning of the message.
(Maxemchuk 1980, 1393)

Maxemchuk believes such a technique would be:

useful for users of a message system to scan a large number
of messages and determine which they wish to listen to more
carefully or for users of a dictation system to scan a long
document to determine the areas they wish to edit.
(Maxemchuk 1980, 1393)

Pause compression and sampling can be combined in several ways.
Pauses can first be removed from a signal that is then sampled.
Alternatively, the output of a speech detector can be used to set
boundaries for sampling, producing a selective sampling technique. Note
that using pauses to find discard intervals eliminates the need for a
windowing function to smooth (de-glitch) the sound at the boundaries of
the sampled intervals.

3.6.2 Silence Removal and SOLA

On the surface it appears that removing silences and time compressing
speech with SOLA should be linearly independent, and could thus be
performed in any order. In practice there are some minor differences,
because the SOLA algorithm makes assumptions about the properties of
the speech signal. Informal tests found a slight improvement in speech
quality by applying the SOLA algorithm before removing silences. Note
that the silence removal timing parameters must be modified under these
conditions. For example, with speech sped up by a factor of two, the
silence removal timing thresholds must be cut in half. This combined
technique is effective, and can produce a fast and dense speech stream.
Note that silence periods can be selectively retained or shortened, rather
than simply removed to provide the listener with cognitive processing
time.

3.6.3 Dichotic SOLA Presentation

A sampled signal compressed by 2x can be presented dichotically so that
exactly half the signal is presented to one ear, while the remainder of the
signal is presented to the other ear. Generating such a lossless dichotic
presentation is difficult with the SOLA method because the segments of
speech are shifted relative to one another to find the point of maximum
cross correlation. However, by choosing two starting points in the speech
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data carefully (based on the parameters used in the SOLA algorithm), it
is possible to maximize the difference between the signals presented to
the two ears. This technique has been informally found to be effective
since it combines the high quality sounds produced with the SOLA
algorithm with the advantages of dichotic presentation.

3.7 Perception of Time-Compressed Speech

There has been a significant amount of perceptual work performed in the
areas of intelligibility and comprehension of time-compressed speech.
Much of this research is summarized in (Beasley 1976; Foulke 1969;
Foulke 1971).

3.7.1 Intelligibility versus Comprehension

“Intelligibility” usually refers to the ability to identify isolated words.
Depending on the type of experiment, such words may either be selected
from a closed set or written down (or shadowed) by the subject from an
open-ended set. “Comprehension” refers to the understanding of the
content of the material. This is usually tested by asking questions about a
passage of recorded material.

Intelligibility is generally more resistant to degradation as a function of
time compression than is comprehension (Gerber 1974). Early studies
showed that single well-learned phonetically balanced words could
remain intelligible with a 10–15% compression (10x normal speed),
while connected speech remains comprehensible to a 50% compression
(2x normal speed).

If speech, when accelerated, remains comprehensible the
savings in listening time should be an important
consideration in situations in which extensive reliance is
placed on aural communication. However, current data
suggest that although individual words and short phrases
may remain intelligible after considerable compression by
the right method, when these words are combined to form
meaningful sequences that exceed the immediate memory
span for heard words, as in a listening selection,
comprehension begins to deteriorate at a much lower
compression. (Foulke 1971, 79)

3.7.2 Limits of Compression

There are some practical limitations on the maximum amount that a
speech signal can be compressed. Portnoff notes that arbitrarily high
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compression ratios are not physically reasonable. He considers, for
example, a voiced phoneme containing four pitch periods. Greater than
25% compression reduces this phoneme to less than one pitch period,
destroying its periodic character. Thus, high compression ratios are
expected to produce speech with a rough quality and low intelligibility
(Portnoff 1981).

The “dichotic advantage” (section 3.3.2) is maintained for compression
ratios of up to 33%. For discard intervals between 40–70 ms, dichotic
intelligibility was consistently higher than diotic (same signal to both
ears) intelligibility (Gerber 1977). A dichotic discard interval of 40–
50 ms was found to have the highest intelligibility (40 ms was described
as the “optimum interval” in another study, see Gerber 1974; earlier
studies suggest that a shorter interval of 18–25 ms may be better for
diotic speech, see Beasley 1976).

Gerber showed that 50% compression presented diotically was
significantly better than 25% compression presented dichotically, even
though the information quantity of the presentations was the same. These
and other data provide conclusive evidence that 25% compression is too
fast for the information to be processed by the auditory system. The loss
of intelligibility, however, is not due to the loss of information because of
the compression process (Gerber 1974).

Foulke reported that comprehension declines slowly up to a word rate of
275 wpm, but more rapidly beyond that point (Foulke 1969). The decline
in comprehension was not attributable to intelligibility alone, but was
related to a processing overload of short-term memory. Recent
experiments with French have shown that intelligibility and
comprehension do not significantly decay until a high rate (300 wpm) is
reached (Richaume 1988).

Note that in much of the literature the limiting factor that is often cited is
word rate, not compression ratios. The compression required to boost the
speech rate to 275 words per minute is both talker- and context-
dependent (e.g., read speech is typically faster than spontaneous speech).

Foulke and Sticht permitted sighted college students to select a preferred
degree of time compression for speech spoken at an original rate of 175
wpm. The mean preferred compression was 82%, corresponding to a
word rate of 212 wpm. For blind subjects it was observed that 64–75%
time compression and word rates of 236–275 words per minute were
preferred. These data suggest that blind subjects will trade increased
effort in listening to speech for a greater information rate and time
savings (Zemlin 1968).
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In another study (Heiman 1986), comprehension of interrupted speech
(see section 3.3.1) was good, probably because the temporal duration of
the original speech signal was preserved, providing ample time for
subjects to attempt to process each word. Compression requires that each
portion of speech be perceived in less time than normal. However, each
unit of speech is presented in a less redundant context, so that more time
per unit is required. Based on a large body of work in compressed
speech, Heiman et al. suggest that 50% compression removes virtually all
redundant information. With greater than 50% compression, critical non-
redundant information is also lost. They conclude that the compression
ratio rather than word rate is the crucial parameter, because greater than
50% compression presents too little of the signal in too little time for
enough words to be accurately perceived. They believe that the 275 wpm
rate is of little significance, but that compression and its underlying
temporal interruptions decrease word intelligibility that results in
decreased comprehension.

3.7.3 Training Effects

As with other cognitive activities, such as listening to synthetic speech,
exposure to time-compressed speech increases both intelligibility and
comprehension. There is a novelty in listening to time-compressed
speech for the first time that is quickly overcome with experience.

Even naive listeners can tolerate compressions of up to 50%, and with 8–
10 hours of training, substantially higher speeds are possible (Orr 1965).
Orr hypothesizes that “the review of previously presented material could
be more efficiently accomplished by means of compressed speech; the
entire lecture, complete with the instructor’s intonation and emphasis,
might be re-presented at high speed as a review” (Orr 1965, 156). Voor
found that practice increased comprehension of rapid speech, and that
adaptation time was short—minutes rather than hours (Voor 1965).

Beasley reports on an informal basis that following a 30 minute or so
exposure to compressed speech, listeners become uncomfortable if they
are forced to return to the normal rate of presentation (Beasley 1976).
Beasley also reports on a controlled experiment extending over a six-
week period that found subjects’ listening rate preference shifted to faster
rates after exposure to compressed speech.
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3.7.4 The Importance of Pauses

Well-timed silence hath more eloquence
than speech.

Martin Farquhar Tupper
Proverbial Philosophy,  1838–42

Just as pauses are critical for the speaker in facilitating fluent
and complex speech, so are they crucial for the listener in
enabling him to understand and keep pace with the utterance.
(Reich 1980, 388)

the debilitating effects of compressed speech are due as
much to depriving listeners of ordinarily available processing
time, as to degradation of the speech signal itself. (Wingfield
1980, 100)

It may not be desirable to completely remove pauses, as they often
provide important semantic and syntactic cues. Wingfield found that with
normal prosody, intelligibility was higher for syntactic segmentation
(inserting silences after major clause and sentence boundaries) than for
periodic segmentation (inserting 3 s pauses after every eighth word).
Wingfield says that “time restoration, especially at high compression
ratios, will facilitate intelligibility primarily to the extent that these
presumed processing intervals coincide with the linguistic structure of
the speech materials” (Wingfield 1984, 133)

In another experiment, subjects were allowed to stop time-compressed
recordings at any point, and were instructed to repeat what they had
heard (Wingfield 1980). It was found that the average reduction in
selected segment duration was almost exactly proportional to the increase
in the speech rate. For example, the mean segment duration for the
normal speech was 3 seconds, while the chosen segment duration of
speech compressed 60% was 1.7 seconds. Wingfield found that:

while time and/or capacity must clearly exist as limiting
factors to a theoretical maximum segment size which could
be held [in short-term memory] for analysis, speech content
as defined by syntactic structure, is a better predictor of
subjects’ segmentation intervals than either elapsed time or
simple number of words per segment. This latter finding is
robust, with the listeners’ relative use of the [syntactic]
boundaries remaining virtually unaffected by increasing
speech rate. (Wingfield 1980, 100)

In the perception of normal speech, it has been found that pauses exerted
a considerable effect on the speed and accuracy with which sentences
were recalled, particularly under conditions of cognitive complexity
(Reich 1980). Pauses, however, are only useful when they occur between
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clauses within sentences—pauses within clauses are disrupting. When a
330 ms pause was inserted ungrammatically, response time for a
particular task was increased by 2 seconds. Pauses suggest the
boundaries of material to be analyzed, and provide vital cognitive
processing time.

Maxemchuk found that eliminating hesitation intervals decreased
playback time of recorded speech with compression ratios of 50 to 75
percent depending on the talker and material. In his system a 1/8 second
pause is inserted whenever a pause greater or equal to 1 second occurred
in a message. This appeared to be sufficient to prevent different ideas or
sentences in the recorded document from running together. This type of
rate increase does not affect the intelligibility of individual words within
the active speech regions (Maxemchuk 1980).

Studies of pauses in speech also consider the duration of the “non-pause”
or “speech unit.” In one study of spontaneous speech, the mean speech
unit was 2.3 seconds. Minimum pause durations typically considered in
the literature range from 50–800 ms, with the majority in the 250–500 ms
region. As the minimum pause duration increases, the mean speech unit
length increases (e.g., for pauses of 200, 400, 600, and 800 ms, the
corresponding speech unit lengths were 1.15, 1.79, 2.50, and 3.52 s
respectively). In another study, it was found that inter-phrase pauses were
longer and occurred less frequently than intra-phrase pauses (data from
several articles summarized in Agnello 1974).

“Hesitation” pauses are not under the conscious control of the talker, and
average 200–250 ms. “Juncture” pauses are under talker control, and
average 500–1000 ms. Several studies show that breath stops in oral
reading are about 400 ms. In a study of the durational aspects of speech,
it was found that the silence and speech unit durations were longer for
spontaneous speech than for read speech, and that the overall word rate
was slower. The largest changes occurred in the durations of the silence
intervals. The greater number of long silence intervals were assumed to
reflect the tendency for talkers to hesitate more during spontaneous
speech than during oral reading (Minifie 1974). Lass states that juncture
pauses are important for comprehension, so they cannot be eliminated or
reduced without interfering with comprehension (Lass 1977).

Theories about memory suggest that large-capacity rapid-decay sensory
storage is followed by limited capacity perceptual memory. Studies have
shown that increasing silence intervals between words increases recall
accuracy. Aaronson suggests that for a fixed amount of compression, it
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may be optimal to delete more from the words than from the intervals
between the words (Aaronson 1971). Aaronson states:

English is so redundant that much of the word can be
eliminated without decreasing intelligibility, but the
interword intervals are needed for perceptual processing.
(Aaronson 1971, 342).

3.8 Summary

This chapter reviewed a variety of techniques for time compressing
speech, as well as related perceptual limits of intelligibility and
comprehension.

The SOLA method produces the best quality speech for a
computationally efficient time domain technique and is currently in
vogue for real-time applications. However, a digital version of the
Fairbanks sampling method with linear crossfades can easily be
implemented, and produces good speech quality with little computation.
The sampling technique also lends itself to dichotic presentation for
increased comprehension.

For spontaneous or conversational speech the limit of compression is
about 50% (2x normal speed). Pauses, at least the short ones, can also be
removed from a speech signal, but comprehension may be affected.
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4 Adaptive Speech Detection

This chapter presents a survey of the techniques, applications, and
problems of automatically discriminating between speech and
background noise. An introduction to the basic techniques of speech
detection is presented, including a literature survey, and a summary of
the techniques in use by the Media Laboratory’s Speech Research Group.
A variety of analyses of speech recordings are included.

There are two motivations for this work. The primary area of interest is
to design an adaptive speech detector to be used with time-compressed
speech techniques for pause removal, and for automatically segmenting
recordings and finding structure and as part of an exploration of speech
skimming (see chapter 5). For example, in Hyperspeech (chapter 2) it
was found that the majority of manually selected speech segments began
on natural phrase boundaries that coincided with hesitations in the speech
recordings (see section 2.2.1). Thus if hesitations can be easily found, it
is possible to segment recordings into logical chunks.

The second reason for this work is to investigate techniques for
improving the robustness of the Speech Research Group’s voice-operated
recording system (described in sections 4.3.1 and 4.3.2).

4.1 Introduction

Speech is a non-stationary (time-varying) signal; silence (background
noise) is also typically non-stationary. Speech detection32 involves
classifying these two non-stationary signals. “Silence detection” is
something of a misnomer since the fundamental problem is in detecting
the background noise. Background noise may consist of mechanical
noises such as fans, that can be defined temporally and spectrally, but
noise can also consist of conversations, movements, and door slams, that
are difficult to characterize. Due to the variability of the speech and
silence patterns, it is desirable to use an adaptive, or self-normalizing,

32The term speech detection is used throughout this document since the speech portions
of a signal, rather than the silence, are of primary interest.
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solution for discriminating between the two signals that does not rely
heavily on arbitrary fixed thresholds (de Souza 1983).

This chapter begins with a detailed description of algorithms used in the
Speech Research Group for voice operated recording. Much of the
literature found on speech detection under noise conditions, however, is
an outgrowth of two research areas: speech recognition and speech
interpolation.

In recognizing discrete speech (i.e., isolated words), the end-points of a
word must be accurately determined; otherwise recognition algorithms,
such as dynamic time warping, may fail. For example, in recognizing the
spoken letters of the alphabet (i.e., aye, bee, see, dee, etc.), much of this
small vocabulary is distinguished solely by the beginnings and endings of
the words—recognition accuracy may be severely reduced by errors in
the end-point detection algorithm (Savoji 1989). In end-point detection,
however, it is desirable to eliminate speech artifacts such as clicks, pops,
lip smacks, and heavy breathing.

“Speech interpolation” is used in the telephone and satellite
communication industries for systems that share scarce resources (such
as transoceanic channel capacity) by switching telephone conversations
during silent intervals. In a telephone conversation, a talker typically
speaks for only 40% of the time (Brady 1965); during the silent intervals,
the channel is reassigned to another talker. Such a scheme typically
doubles the capacity of a bank of telephone lines (Miedema 1962).

Voice activation33 algorithms, such as those for voice-operated recording
or speech interpolation, do not need to be as accurate as for speech
recognition systems in determining the start and end points of a signal.
Such voice activation schemes, including speech interpolation, usually
switch on quickly at low thresholds, and have a “hang-over time” of
several hundred milliseconds before turning off, to prevent truncation of
words (see section 4.5). In such a system, a small amount of channel
capacity or recording efficiency is traded off for conservative speech
detection.

4.2 Basic Techniques

Depending on the type of analysis being done, a variety of measures can
be used for detecting speech under noise conditions. Five features have

33Also called “silence detection” or “pause detection”; sometimes referred to as a “voice
operated switch” and abbreviated VOX.
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been suggested for voiced/unvoiced/silence classification of speech
signals (Atal 1976):

• energy or magnitude
• zero crossing rate (ZCR)34

• one sample delay autocorrelation coefficient
• the first LPC predictor coefficient
• LPC prediction error energy

Two or more of these (or similar) parameters are used by most existing
speech detection algorithms (Savoji 1989). The computationally
expensive parameters are typically used only in systems that have such
information readily available. For example, linear prediction coefficients
are often used in speech recognition systems that are based on LPC
analysis (e.g., Kobatake 1989). Most techniques use at most the first
three parameters, of which signal energy or magnitude has been shown to
be the best for discriminating speech and silence (see sections 4.4.1 and
4.5.2 for the relative merits of magnitude versus energy). The number of
parameters affects the complexity of the algorithm—to achieve good
performance, speech detectors that only use one parameter tend to be
more complex than those employing multiple metrics (Savoji 1989).

Most of the algorithms use rectangular windows and time-domain
measures to calculate the signal metrics as shown in figure 4-1. These
measures are typically scaled by 1/N to give an average over the frame;
the zero crossing rate is often scaled by Fs/N to normalize the value to
zero crossings per second (where Fs is the sampling rate in samples per
second, and N is the number of speech samples).

magnitude = x[i]
i=1

N

∑

energy = x[i]( )2

i=1

N

∑

ZCR = sgn x[i]( ) − sgn x[i −1]( )
i=1

N

∑

where sgn x[i]( ) =
1 if x[i] ≥ 0

−1 otherwise




Fig. 4-1. Time-domain speech metrics for frames N samples long.

34A high zero-crossing rate indicates low energy fricative sounds such as “s” and “f.” For
example, a ZCR greater than 2500 crossings/s indicates the presence of a fricative
(O’Shaugnessy 1987; see also section 5.9.3).
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The speech detection algorithms make two basic types of errors. The
most common is the misclassification of unvoiced consonants or weak
voiced segments as background noise. The other type of error occurs at
boundaries between speech and silence segments where the classification
becomes ambiguous. For example, during weak fricatives the energy
typically remains low, making it difficult to separate this signal from
background noise. However, the zero crossing rate typically increases
during fricatives, and many algorithms combine information from both
energy and zero crossing measures to make the speech versus
background noise decision. The zero crossing rate during silence is
usually comparable with that of voiced speech.

Some algorithms assume that the beginning of the signal is background
noise; however for some applications this condition cannot be
guaranteed. The requirements for an ideal end-point detector are:
reliability, robustness, accuracy, adaptivity, simplicity, and real-timeness
without assuming a priori  knowledge of the background noise (Savoji
1989).

4.3 Pause Detection for Recording

A simple adaptive speech detector based on an energy threshold is used
by the Speech Research Group for terminating recordings made over the
telephone (i.e., voice mail messages). Applications can set two
parameters to adjust the timing characteristics of this voice-operated
recorder. The “initial pause time” represents the maximum amount of
silence time permitted at the beginning of a recording. Similarly, the
“final pause time” is the amount of trailing silence required to stop the
recording. For example, an initial pause time of 4 seconds allows talkers
a chance to collect their thoughts before starting to speak. If there is no
speech during this initial interval, the recording is terminated, and no
data is saved. If speech is detected during the initial interval, recording
continues until a trailing of silence of the final pause time is
encountered.35 For example, with a final pause time of 2 seconds, there
must be two contiguous seconds of silence after speech is detected for
recording to stop. The leading and trailing silences are subsequently
removed from the data files.

35Recording will also terminate if a predefined maximum length is reached.
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4.3.1 Speech Group Empirical Approach: Schmandt

The speech detection system is used with a Natural Microsystems VBX
board running on a Sun 386i workstation. The board records 8-bit 8 kHz
µ-law speech from an analog telephone line and provides a “rough log
base 2 energy value” every 20 ms (Natural 1988, 22). This value is then
used in a simple adaptive energy threshold detector to compensate for
differences in background noise across telephone calls and varying
quality connections.

The minimum energy value (the “silence threshold”) is tracked
throughout a recording. A piecewise linear function maps this value into
a “speech threshold” (figure 4-2). Signal values that are below the speech
threshold are considered background noise; those above it are considered
speech. The mapping function was determined empirically, by manually
analyzing the energy patterns from many recordings made by the system
under a variety of line, noise, and speaking conditions.
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Fig. 4-2. Threshold used in Schmandt algorithm.

If there is only background noise at the beginning of a recording, the
silence threshold and speech threshold are set during the first frame,
before the caller starts speaking. Because of variations in the background
noise, the noise threshold then typically drops by small amounts during
the remainder of the recording.

This algorithm is simple and effective as a speech-controlled recording
switch, but has several drawbacks:

• The mapping function between the noise threshold and speech
threshold must be determined manually. These values are
dependent on the recording hardware and the energy metric used,
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and must be determined for each new hardware configuration
supported.

• The algorithm assumes semi-stationary background noise, and
may fail if there is an increase in background noise during a
recording.

• Since the noise threshold is determined on-the-fly, the algorithm
can fail if there is speech during the initial frames of the
recording. Under this condition the silence threshold remains at its
initial default value, and the algorithm may incorrectly report
speech as silence. The default value of the silence threshold,
representing the highest level of background noise ever expected,
must thus be chosen carefully to minimize this type of error.

4.3.2 Improved Speech Group Algorithm: Arons

In an attempt to implement a pause detection algorithm on new hardware
platforms, and to overcome some of the limitations of the Schmandt
algorithm (section 4.3.1), a new approach was taken. A pause detection
module is called with energy values at regular intervals. This value is
then converted to decibels to reduce its dynamic range, and provide a
more intuitive measure based on ratios.

The algorithm currently runs in two operating environments:
• On a Sun SparcStation, RMS energy is calculated in real time

with a default frame size of 100 ms.
• On Apple Macintoshes, an average magnitude measure is used.

The Macintosh Sound Manager is queried during recording to
obtain a “meter level” reading indicating the value of the most
recent sample. Because of background processing in our
application environment, the time between queries ranges from
100 to 350 ms. During a typical interval of 100 ms, the meter is
polled roughly seven times, but may be called only once or twice
(and is thus similar to the technique described in section 4.3.3).

The complex mapping function used in the Schmandt algorithm is
replaced by a simple signal-to-noise (SN) constant. For example, with the
SN constant set to 4 dB, if the lowest energy obtained during a recording
is 20 dB, the speech threshold is set to 24 dB. Any frames with energy
under the speech threshold (i.e., < 24 dB) are judged as background
noise, while frames above the threshold (i.e., ≥ 24 dB) are judged as
speech (figure 4-3).
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Fig. 4-3. Threshold values for a typical recording.  Note that the threshold falls by
6 dB from its default value (31 dB) in the first frame, then decreases by 1 dB two
other times.

If there is an initial silence in the signal, the threshold drops to the
background noise level during the first frame of the recording. However,
if there is speech during the first frame, the threshold is not set to
background noise, and a speech segment may be inappropriately judged
as silence because it is below the (uninitialized) speech threshold. To
overcome this limitation, if there is a significant drop in energy after the
first frame, the algorithm behaves as if speech were present since the
recording was started (figure 4-4). The value of the drop required
currently is set to the same numerical value as the SN constant (i.e., 4
dB).
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Fig. 4-4. Recording with speech during initial frames. A “drop” in the noise
threshold occurs at frame 6, suggesting that speech was present for frames 0–6.
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The large window size and simple energy measure used in these two
algorithms is crude in comparison to the other techniques described in
this chapter, and hence may incorrectly identify weak consonants as
silence. For these speech recording applications, however, initial and
final pause durations are also typically large (in the 1–4 second range).
After a recording has been terminated by pause detection, the leading and
trailing silences are truncated. This truncation is done conservatively in
case the recording begins or ends with a weak consonant. For example, if
the requested trailing pause is 2000 ms, only the last 1900 ms is truncated
from the recording.

4.3.3 Fast Energy Calculations: Maxemchuk

Maxemchuk used 62.5 ms frames of speech corresponding to disk blocks
(512 bytes of 8 kHz, 8-bit µ-law data). For computational efficiency,
only a pseudo-random sample of 32 out of every 512 values were looked
at to determine low-energy portions of the signal (Maxemchuk 1980).
Several successive frames had to be above or below a threshold in order
for a silence or speech determination to be made.

4.3.4 Adding More Speech Metrics: Gan

Gan and Donaldson found that amplitude alone was insufficient to
distinguish weak consonants from the background, so a zero crossing
metric and two adaptive amplitude thresholds were used to classify each
10 ms frame of a voice mail message (Gan 1988). The algorithm uses
four primary parameters:

• the zero crossing threshold between speech and silence
• the minimum continuous amount of time needed for a segment to

be classified as speech
• the amplitude threshold for determining a silence-to-speech

transition
• the amplitude threshold for determining a speech-to-silence

transition

The local average of the ten most recent silence frames determines the
background noise. This noise average is multiplied by the amplitude
thresholds to adapt to non-stationary noise conditions. The average noise
value is initialized to a default value, and all ten values are reset during
the first silence frame detected. This technique therefore does not require
that the beginning segments of a recording be silence. Short sound bursts,
that are inappropriately classified as speech because of energy and ZCR
metrics, are eliminated by the minimum speech time requirement.
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Note that the four parameters must be tuned for proper operation of the
algorithm. Parameters were varied for a 30 second test recording to
achieve the highest silence compression without cutting off a predefined
set of weak consonants and syllables. The details of the algorithm are
straightforward, and the technique was combined and tested with several
waveform coding techniques.

4.4 End-point Detection

Rabiner has called locating the end-points essentially a problem of
pattern recognition—by eye one would acclimate to a “typical” silence
waveform and then try to spot radical changes in the waveform (Rabiner
1975). This approach may not work, however, in utterances that begin or
end with weak fricatives, contain weak plosives, or end in nasals.

4.4.1 Early End-pointing: Rabiner

In Rabiner’s algorithm, signal magnitude values are summed as a
measure of “energy” (Rabiner 1975). Magnitude is used instead of true
energy for two reasons: first, to use integer arithmetic for computational
speed and to avoid possible overflow conditions, and second because the
magnitude function de-emphasizes large-amplitude speech variations and
produces a smoother energy function. The algorithm assumes silence in
the first 100 ms, and calculates average energy and zero crossing
statistics during that interval. Several thresholds are derived from these
measures and are used for end-pointing.

The use of energy is perhaps more physically meaningful than average
magnitude, as it gives more weight to sample values that are not near
zero. Energy calculations, however, involve a multiplication, and are
hence considered more computationally expensive than magnitude
computations. Note that on some microprocessors a floating multiply and
add are faster than an integer addition.

4.4.2 A Statistical Approach: de Souza

Knowledge of the properties of speech is not required in a purely
statistical analysis; it is possible to establish the patterns of the silence,
and measure changes in that pattern (de Souza 1983, based on Atal
1976). With a statistical test, arbitrary speech-related thresholds are
avoided; only the significance level of the statistical test is required.
Setting the significance level to P means that, on average, P percent of
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the silent frames are mislabeled as speech. A significance level of one
percent was found to produce an acceptable tradeoff between the types of
errors produced.

The statistical system of de Souza requires that the first 500 ms of the
recording be silence to bootstrap the training procedure. The system uses
parameters for 10 blocks of silence in a first-in first-out (FIFO)
arrangement, discarding the oldest parameters whenever a new 500 ms
block of silence is found. This technique allows the system to adapt to a
smoothly varying background noise. Training is complete when five
seconds of silence data have been processed; the silence detector then
returns to the start of the input to begin its final classification of the
signal.

Five metrics are computed for each 10 ms frame in the signal. In addition
to energy, zero crossings, and the unit sample delay autocorrelation
coefficient, two additional metrics attempt to capture the information a
person uses when visually analyzing a waveform display. The
“jaggedness” is the derivative of the ZCR, and the “shade” is a
normalized difference signal measure.36 The author conceded that the
choice of metrics was somewhat arbitrary, but they work well in practice.

4.4.3 Smoothed Histograms: Lamel et al.

Lamel et al. developed an end-point detection algorithm for recordings
made over telephone lines (Lamel 1981). The first stage of the algorithm
is of most interest in speech detection; the “adaptive level equalizer”
normalizes the energy contour to compensate for the mean background
noise. This portion of the algorithm is described in further detail in
(Wilpon 1984).

The minimum energy is tracked for all frames. Then this background
level estimate is refined further by computing a histogram of the energy
values within 10–15 dB of the minimum. A three-point averager is
applied to the histogram, then the mode (peak) of the histogram is taken
as the background noise level.

36The base 10 logarithm of two of the parameters was taken to improve the fit of the
measure to a normal distribution.
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Fig. 4-5. Energy histograms with 10 ms frames. Bottom graph has been
smoothed with a three-point filter. Data is 30 seconds of speech recorded over
the telephone.

The Lamel noise detector improves on those described in sections 4.3.1
and 4.3.2 by providing a margin of error if the minimum energy value is
anomalous, or if the background noise changes slowly over time.37

Figures 4-5 and 4-6 show energy histograms for speech of a single talker
recorded over a telephone connection. Frame sizes of 10 (figure 4-5) and
100 ms (figure 4-6) are shown, including a three-point averaged version
of each histogram. The noise thresholds determined by the Lamel and
Schmandt algorithms are noted in figure 4-5. Energy values within a
constant of the threshold (Lamel, Arons), or determined by a function
(Schmandt), are judged as silence. Figure 4-7 shows similar histograms
for four different talkers. Note the difference in energy patterns and total

37Other algorithms described in this chapter are better at adapting to faster changes in
noise level.
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percentage of “silence” time for each talker (these data are for telephone
monologues).
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smoothed with a three-point filter. The same speech data is used in figure 4-5.
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Fig. 4-7. Energy histograms of speech from four different talkers recorded over
the telephone.

The end-point detector then uses four energy thresholds and several
timing thresholds to determine speech-like bursts of energy in the
recording (also summarized in O’Shaughnessy 1987). The application of
the thresholds is an attempt to eliminate extraneous noises (e.g.,
breathing), while retaining low energy phonemes.

Lamel’s work is also concerned with implicit versus explicit end-point
detection, and develops an improved hybrid approach that combines end-
pointing with the speech recognition algorithm. Wilpon said that Lamel’s
bottom-up algorithm works well in stationary noise with high signal-to-
noise ratios, but it fails under conditions of variable noise (Wilpon 1984).
Wilpon retained the same adaptive level equalizer, but improved on the
performance of the end-pointing algorithm by using top-down syntactic
and semantic information from the recognition algorithm (Wilpon 1984).

4.4.4 Signal Difference Histograms: Hess

Hess recognized silences by capitalizing on the fact that histograms38 of
energy levels tend to have peaks at levels corresponding to silence (Hess
1976). It was noted that since the speech signal level changes much faster
than the semi-stationary background noise, a histogram shows a distinct
maximum at the noise level. A threshold above this peak is then derived

38This section is included in the end-pointing portion of this chapter because this earlier
paper ties in closely with the histograms used by Lamel et al. (section 4.4.3).
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for separating speech from silence. To adapt to varying levels of
background noise, the entire histogram was multiplied by a constant (less
than 1.0) when one value in the histogram exceeded a predefined
threshold.

To help identify weak fricatives (which may be confused with noise), a
histogram was also made of the magnitude of the differenced signal:

differenced magnitude = x[i] − x[i −1]
i=1

N
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Fig. 4-8. Signal and differenced signal magnitude histograms. Note that the
speech thresholds for the signal (Ts) and the differenced signal (Td) are a fixed
amount above the noise threshold. The phonetic categorizations are after (Hess
1976).

In figure 4-8, Ts is the speech threshold for the signal, and is set above
the noise threshold for the signal. Td is similarly the speech threshold for
the differenced signal. Each frame has two metrics associated with it; the
magnitude level of the signal (Ls), and the magnitude level of the
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differenced signal (Ld). A frame is classified as silence if (Ls < Ts) and
(Ld < Td); otherwise it is speech.

4.4.5 Conversational Speech Production Rules: Lynch et al.

Lynch et al. present a technique for separating speech from silence
segments, and an efficient method of encoding the silence for later
reconstruction as part of a speech compression system (Lynch 1987). The
algorithm uses a few simple production rules and draws on statistical
analyses of conversational telephone speech (Brady 1965; Brady 1968;
Brady 1969; see also Lee 1986). For example, the empirical evidence
shows that 99.9% of continuous speech spurts last less then 2.0 seconds,
and that such speech contains short (<150 ms) intersyllabic gaps. The
production rules based on these data allow the background noise level to
be tracked in real time. If there is non-stationary noise, the system adapts
instantly if the noise level is decreased. If the noise level is increased,
there is a lag of about 5 seconds before the system adapts because of the
time constants used in the production rules.

Removing silences in this manner has little effect on perceived quality if
the signal-to-noise ratio (SNR) is at least 20 dB. Quality is degraded if
the SNR is between 10–20 dB because of the clipping of low-level
sounds at the ends of speech segments. Below 10 dB SNR, intelligibility
is degraded from misclassifications of speech as noise. Lynch et al.
report that the silence reconstruction39 does not affect intelligibility.

This technique was subsequently modified, including the addition of zero
crossing rate detection, to create a robust end-point detector (Savoji
1989).

4.5 Speech Interpolation Systems

TASI (Time Assigned Speech Interpolation) was used to approximately
double the capacity of existing transoceanic telephone cables (Miedema
1962). Talkers were assigned to a specific channel while they were
speaking; the channel was then freed during silence intervals. During
busy hours, a talker was assigned to a different channel about every other
“talkspurt.” The TASI speech detector was necessarily a real time device,
and was designed to be sensitive enough to prevent clipping of the first
syllable. However, if it is too sensitive, the detector triggers on noise and

39The silence reconstruction is based on an 18th-order polynomial with only three non
zero terms. This produces a pseudo-random noise sequence with a long (33 s) repetition
rate.
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the system operates inefficiently. The turn-on time for the TASI speech
detector is 5 ms, while the release time is 240 ms. The newer DSI
(Digital Speech Interpolation) technique is similar, but works entirely in
the digital domain.

If the capacity of a speech interpolation system is exceeded, a
conversation occupying the transmission channel will “freeze out” other
conversations that attempt to occupy the channel (Campanella 1976).40 A
DSI system is more flexible, allowing the quality of several channels to
be slightly degraded for a short time, rather than completely freezing out
conversation.41 Such changes are not apparent to the conversants.

“Hangover” bridges short silences in speech, and creates fewer, but
longer talkspurts, thus reducing the effects of variable network delays.
Hangover times ≥ 150 ms are recommended, with 200 ms as a typical
value (Gruber 1983). An alternative to the hangover technique, called
“fill-in,” eliminates silences shorter than the fill-in time (Gruber 1982). A
delay equal to the fill-in time is required (often 200 ms), suggesting that
the technique be used for non real-time applications such as voice
response systems. The fill-in technique produces higher speech activity42

than the hangover technique, producing longer average silences and
shorter average talkspurts (figure 4-9).

         
Talkspurts

Talkspurts
with fill-in

Fill-in

Talkspurts
delayed by fill-in

Talkspurts
with hangover

Hangover

Fig. 4-9. Hangover and fill-in (after Gruber 1983).

The loss of the initial portion of a speech spurt is called front-end
clipping (FEC). A FEC duration of 15 ms is approximately the threshold

40The freeze-out fraction is typically designed to be less than 0.5 percent.
41The standard technique is to allocate 7 quantizing bits to the channel instead of the
normal 8, adding 6 dB of quantization noise.
42Speech activity is the ratio of talkspurt time to total time.
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of perceptibility (Gruber 1983).43 FECs of less than 50 ms provide good
quality, but clipping of > 50 ms potentially affects intelligibility.

4.5.1 Short-term Energy Variations: Yatsuzuka

A sensitive speech detector based on energy, zero crossing rates, and sign
bit sequences in the input signal was developed for a DSI environment
(Yatsuzuka 1982). The speech detector is defined by a finite state
machine with states representing speech, silence, hangover, and the
“primary detection” of speech before speech is fully recognized. In
addition to the absolute level of energy, the short-term variation of
energy between adjacent 4 ms frames assists in detecting the silence-to-
speech transition. A periodicity test on the sign bit sequences of the
signal is used when it is difficult to discriminate between speech and
silence.

4.5.2 Use of Speech Envelope: Drago et al.

Speech exhibits great variability in short-time energy, while the
background noise on telephone channels is semi-stationary and has only
slightly variable short-time energy. Good speech detection results have
been obtained by analyzing the short-time energy of the speech channel
(Drago 1978). Magnitude, rather than energy, was used for simplicity
and because the squaring operation reduces the relative effect of small
amplitude signals. This suggests that energy is a better measure than
magnitude as it makes a larger distinction between speech and silence.
The dynamic speech detector relied on the relative variation in the
envelope of the signal. Noise is considered as a random process with
small short-time variations in the envelope, while speech has a highly
variable envelope.

4.5.3 Fast Trigger and Gaussian Noise: Jankowski

Design criteria for a new voice-activated switch for a satellite-based DSI
system included fast threshold adjustment to variable noise, improved
immunity to false detection of noise, and no noticeable clipping of
speech (Jankowski 1976). Three thresholds are used in the system:

1. the noise threshold;
2. the speech threshold (7 quantizing steps above the noise level);
3. a threshold that disables noise adaptation during speech.

43It is recommended that the total amount of speech loss be limited to ≤ 0.5%.
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Only three samples of speech (375 µs) above the first threshold are
needed to trigger the voice switch. The observation window was kept as
short as possible to minimize the front end clipping of a talkspurt. A
delay of 4 ms is inserted in the signal path, so that speech is effectively
turned on 3.625 ms before the switch triggers. Once speech is detected,
there is a 170 ms hangover time.

Telephone noise can be considered as a Gaussian distribution, and a
noise threshold was taken as the 96th percentile point of the noise
distribution. To establish a 10% error criterion for this measurement,
1200 samples (150 ms at 8 kHz sampling) of speech are required to
determine the noise threshold. The noise threshold is adjusted during
150 ms periods of silence so that 4% of the noise samples are above the
threshold. If more than 5% of the samples (60 samples) are above the
threshold, the threshold is raised by one quantizing step. If less than 3.3%
of the samples (40 samples) are below the threshold, it is reduced by one
step.

4.6 Adapting to the User’s Speaking Style

An earlier version of the Schmandt technique was used in the Phone
Slave conversational answering machine (see section 1.4.3). In addition
to adapting to the background noise, the length of the final pause was
also determined adaptively (Schmandt 1984). The final pause was
initialized to 1.25 seconds, but if there were intermediate pauses greater
than 750 ms, the final pause length was gradually increased up to a
maximum of 2 seconds. This adaptive pause length detector prevented
slow talkers who pause a lot from being cut off too soon, yet permitted
fast response for rapid or terse talkers. This type of adaptation was
important to enable the conversational interaction style developed in
Phone Slave.

Using parameters similar to those used in TASI/DSI systems, Watanabe
investigated adapting the speech rate44 of a conversational answering
machine with the speech rate of the user (Watanabe 1990). The speech
activity of the user was found to correlate strongly with the speech
speed—talkers with higher speech activity ratios speak faster. This
metric was used to set the speech activity of a synthesizer to match the
on-off pattern of the talker to realize a smooth information exchange
between the human and machine.

44Measured in syllable-like units per second.
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4.7 Summary

This chapter reviewed literature on detecting speech versus background
noise, focusing on simple techniques that are adaptive and do not require
particular recording characteristics (such as silence at the beginning of a
recording) or manually set thresholds. Two algorithms used within the
Speech Research Group are described, including an improved technique
that can be used to terminate speech recordings under a variety of noise
conditions. This chapter also presents a variety of histograms used as
analysis tools for understanding conversational speech and developing an
appropriate speech detector to be used to automatically segment speech
recordings (see section 5.9.3). Note that some of the techniques presented
in this chapter must run in real time (e.g., speech interpolation), but for
some speech applications, such as skimming recordings, it is feasible to
analyze the whole recording to adapt the speech detection parameters to
the recorded data.
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5 SpeechSkimmer

He would have no opportunity to re-listen, to
add redundancy by repetition, as he can by re-
reading visual displays.… the listener should be
given some control over the output pacing of
auditory displays. A recommended design
solution is to break up the computer output into
spoken sentences or paragraphs so that user
interaction with the system becomes a
transactional sequence.

(Smith 1970, 219)

Previous chapters have outlined the difficulties of skimming recorded
speech, and described some fundamental technologies that can be applied
to the problem. This chapter integrates these and new ideas into a
coherent system for interactive listening.45 A framework is described for
presenting a continuum of time compression and skimming techniques.
For example, this allows a user to quickly skim a speech message to find
portions of interest, then use time compression for efficient browsing of
the recorded information, and then slow down further to listen to detailed
information.

By exploiting properties of spontaneous speech it is possible to
automatically select and present salient audio segments in a time-
efficient manner. This chapter describes pause- and pitch-based
techniques for segmenting recordings and an experimental user interface
for skimming speech. The system incorporates time-compressed speech
and pause removal to reduce the time needed to listen to speech
recordings. This chapter presents a multi-level approach to auditory
skimming, along with user interface techniques for interacting with the
audio and providing feedback. The results of a usability test are also
discussed.

5.1 Introduction

This chapter describes SpeechSkimmer , a user interface for skimming
speech recordings. SpeechSkimmer uses simple speech processing

45Portions of this chapter originally appeared in Arons 1993a.
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techniques to allow a user to hear recorded sounds quickly, and at several
levels of detail. User interaction through a manual input device provides
continuous real-time control over the speed and detail level of the audio
presentation.

SpeechSkimmer explores a new paradigm for interactively skimming and
retrieving information in speech interfaces. This research takes advantage
of knowledge of the speech communication process by exploiting
structure, features, and redundancies inherent in spontaneous speech.
Talkers embed lexical, syntactic, semantic and turn-taking information
into their speech as they have conversations and articulate their ideas
(Levelt 1989). These cues are realized in the speech signal, often as
hesitations or changes in pitch and energy.

Speech also contains redundant information; high-level syntactic and
semantic constraints of English allow us to understand speech when it is
severely degraded by noise, or even if entire words or phrases are
removed. Within words there are other redundancies that allow partial or
entire phonemes to be removed while still retaining intelligibility.

This research attempts to exploit acoustic cues to segment recorded
speech into semantically meaningful chunks. The recordings are then
time-compressed to further remove redundant speech information. While
there are practical limits to time compression, there are compelling
reasons to be able to quickly skim a large speech document. For
skimming, redundant as well as non-redundant segments of speech must
be removed. Ideally, as the skimming speed increases, the segments with
the least information content are eliminated first.

When searching for information visually, we tend to refine our search
over time, looking successively at more detail. For example, we may
glance at a shelf of books to select an appropriate title, flip through the
pages to find a relevant chapter, skim headings to find the right section,
then alternately skim and read the text until we find the desired
information. To skim and browse recorded speech in an analogous
manner the listener must have interactive control over the level of detail,
rate of playback, and style of presentation. SpeechSkimmer allows a user
to control the auditory presentation through a simple interaction
mechanism that changes the granularity, time scale, and style of
presentation of the recording.

This research introduces a new way to think about skimming and finding
information in speech interfaces by combining information from multiple
sources into a system that allows interactive retrieval (figure 5-1).
Skimming, as defined in section 1.1, means automatically selecting and
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presenting short segments of speech under the user’s control. Note that
this form of machine-mediated supervisory control (Sheridan 1992a;
Sheridan 1992b) is significantly different from skimming a scene with
the eyes.
          

Interaction
Supervisory control

Presentation
Audio output

UserInput
Recording

Processing
Segmentation

Time compression

Fig. 5-1. Block diagram of the interaction cycle of the speech skimming system.

5.2 Time compression and Skimming

A variety of speech time compression techniques have been investigated
during the background research for this dissertation (see chapter 3). This
new research incorporates ideas and techniques from conventional time
compression algorithms, and attempts to go beyond the 2x perceptual
barrier typically associated with time compressing speech. These new
skimming techniques are intimately tied to user interaction to provide a
range of audio presentation speeds. Backward variants of the techniques
are also developed to allow audio recordings to be played and skimmed
backward as well as forwards. The range of speeds and corresponding
levels of abstraction are shown in figures 5-2 and 5-3.

1. Normal
2. Time-compressed

Silence removal
Sampling
SOLA
Dichotic sampling
Combined time compression techniques
Backward sampling (for intelligible rewind)

3. Skimming
Isochronous skimming (equal time intervals)
Speech synchronous skimming (pause- or pitch-based)
Backward skimming

Fig. 5-2. Ranges and techniques of time compression and skimming.
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Time compression can be considered as “content lossless” since the goal
is to present all the non-redundant speech information in the signal. The
skimming techniques are designed to be “content lossy,” as large parts of
the speech signal are explicitly removed. This classification is not based
on the traditional engineering concept of lossy versus lossless, but is
based on the intent of the processing. For example, isochronous
skimming selects and presents speech segments based on equal time
intervals. Only the first five seconds of each minute of speech may be
played; this can be considered coarse and lossy sampling. In contrast, a
speech synchronous technique selects important or emphasized words
and phrases based on natural boundaries in the speech so that less content
is lost.

1 2 3 4 5 6 8 10

SOLA + silence removal

silence removal

SOLA

unprocessed

speech synchronous skimming

isochronous skimming

Fig. 5-3. Schematic representation of time compression and skimming ranges.
The horizontal axis is the speed increase factor.

5.3 Skimming Levels

There have been a variety of attempts to present hierarchical or “fisheye”
views of visual information (Furnas 1986; Mackinlay 1991). These
approaches are powerful but inherently rely on a spatial organization.
Temporal video information has been displayed in a similar form (Mills
1992), yet this primarily consists of mapping time-varying spatial
information into the spatial domain. Graphical techniques can be used for
a waveform or similar display of an audio signal, but such a
representation is inappropriate—sounds need to be heard, not viewed.
This research attempts to present a hierarchical (or “fish ear”)
representation of audio information that only  exists temporally.

A continuum of time compression and skimming techniques have been
designed, allowing a user to efficiently skim a speech recording to find
portions of interest, then listen to it time-compressed to allow quick
browsing of the recorded information, and then slow down further to
listen to detailed information. Figure 5-4 presents one possible “fish ear”
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view of this continuum. For example, what may take 60 seconds to listen
to at normal speed may take 30 seconds when time-compressed, and only
five or ten seconds at successively higher levels of skimming. If the
speech segments are chosen appropriately, it is hypothesized that this
mechanism provides a summarizing view of a speech recording.

         

1 Unprocessed

2 Pause shortening

3 Pause-based skimming 

4 Pitch-based skimming

5 Content-based skimming

timeto

Level

Fig. 5-4. The hierarchical “fish ear” time-scale continuum. Each level in the
diagram represents successively larger portions of the levels below it. The curves
represent iso-content lines, i.e., an equivalent time mapping from one level to the
next. The current location in the sound file is represented by to; the speed and
direction of movement of this point depend upon the skimming level.

Four distinct skimming levels have been implemented (figure 5-5).
Within each level the speech signal can also be time-compressed. The
lowest skimming level (level 1) consists of the original speech recording
without any processing, and thus maintains the pace and timing of the
original signal. In level 2 skimming, the pauses are selectively shortened
or removed. Pauses less than 500 ms are removed, and the remaining
pauses are shortened to 500 ms. This technique speeds up listening yet
provides the listener with cognitive processing time and cues to the
important juncture pauses.

                            

a b c d e f g h i

a b c d e f g h i

c d h i

Level 1 Unprocessed

Level 2 Pause shortening

Level 3 Pause-based skimming

c d

Level 4 Pitch-based skimming

Fig. 5-5. Speech and silence segments played at each skimming level. The gray
boxes represent speech; white boxes represent background noise. The pointers
indicate valid segments to go to when jumping or playing backward.

Level 3 is based on the premise that long juncture pauses tend to indicate
either a new topic, some content words, or a new talker. For example,
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filled pauses (i.e., “uhh”) usually indicate that the talker does not want to
be interrupted, while long unfilled pauses (i.e., silences) act as a cue to
the listener to begin speaking (Levelt 1989; O’Shaughnessy 1992). Thus
level 3 skimming attempts to play salient segments based on this simple
heuristic. Only the speech that occurs just after a significant pause in the
original recording is played. For example, after detecting a pause over
750 ms, the subsequent 5 seconds of speech are played (with pauses
removed). Note that this segmentation process is error prone, but these
errors are partially overcome by giving the user interactive control of the
presentation. Sections 5.9.3 and 5.9.4 describe the speech detection and
segmentation algorithms.

Level 4 is similar to level 3 in that it attempts to present segments of
speech that are highlights of the recording. Level 4 segments are chosen
by analyzing the pitch, or intonation, of the recorded speech. For
example, when a talker introduces a new topic there tends to be an
associated increase in pitch range (Hirschberg 1992; Hirschberg 1986;
Silverman 1987).46 Section 5.9.5 details the pitch-based segmentation
algorithm. In practice, either level 3 or level 4 is used as the top
skimming level.

It is somewhat difficult to listen to level 3 or level 4 skimmed speech, as
relatively short unconnected segments are played in rapid succession. It
has been informally found that slowing down the speech is useful when
skimming unfamiliar material. In this skimming level, a short (600 ms)
pure silence is inserted between each of the speech segments. An earlier
version played several hundred milliseconds of the recorded ambient
noise between segments, but this fit in so naturally with the speech that it
was difficult to distinguish between segments.

5.3.1 Skimming Backward

Paul is dead.
Reportedly heard when playing the

Beatles’ Abbey Road album backward.

Besides skimming forward through a recording, it is desirable to play
intelligible speech while interactively searching or “rewinding” through a
digital audio file (Arons 1991b; Elliott 1993). Analog tape systems
provide little useful information about the signal when it is played
completely backward.47 Silences or other non-speech sounds (such as

46Note that “pitch range” is often used to mean the range above the talker’s baseline pitch
(i.e., the talker’s lowest F0 for all speech).
47This is analogous to taking “this is a test” and presenting it as “tset a is siht.”
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beeps or tones) can be easily detected by a listener, and talkers can even
be identified since the spectrum is unchanged, but words remain
unintelligible.

Digital systems allow word- or phrase-sized chunks of speech to be
played forward individually, with the segments themselves presented in
reverse order.48 While the general sense of the recording is reversed and
jumbled, each segment is identifiable and intelligible. It can thus become
practical to browse backward through a recording to find a particular
word or phrase. This method is particularly effective if the segment
boundaries are chosen to correspond to periods of silence. Note that this
technique can also be combined with time-compressed playback,
allowing both backward and forward skimming at high speeds.

In addition to the forward skimming levels, the recorded sounds can also
be skimmed backward. Small segments of sound are each played
normally, but are presented in reverse order. When level 3 skimming is
played backward (considered level –3) the selected segments are played
in reverse order. In figure 5-5, skimming level –3 plays segments h–i,
then segments c–d. When level 1 and level 2 sounds are played backward
(i.e., level –1 and level –2), short segments are selected and played based
upon speech detection. In figure 5-5 level –1 would play segments in this
order: h–i, e–f–g, c–d, a–b. Level –2 is similar, but without the pauses.

5.4 Jumping

Besides controlling the skimming and time compression, it is desirable to
be able to interactively jump between segments within each skimming
level. When the user has determined that the segment being played is not
of interest, it is possible to go on to the next segment without being
forced to listen to each entire segment (see chapter 2 and Resnick 1992a).
For example, in figure 5-5 at level 3, segments c and d would be played,
then a short silence, then segments h and i. At any time while the user is
listening to segment c or d, a jump forward command would immediately
interrupt the current audio output and start playing segment h. While
listening to segment h or i, the user could jump backward, causing
segment c to be played. Valid segments for jumping are indicated with
pointers in figure 5-5.

Recent iterations of the skimming user interface have included a control
that jumps backward one segment and drops into normal play mode
(level 1, no time compression). The intent of this control is to encourage

48This method, for example, could result in a presentation of “test, is a, this.”
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high-speed browsing of time-compressed level 3 or level 4 speech. When
the user hears something of interest, it is easy to back up a bit and hear
the piece of interest at normal speed.

5.5 Interaction Mappings

A variety of interaction devices (i.e., mouse, trackball, joystick, and
touchpad) have been experimented with in SpeechSkimmer. Finding an
appropriate mapping between the input devices and controls for
interacting with the skimmed speech has been difficult, as there are many
independent variables that can be controlled. For this prototype, the
primary variables of interest are time compression and skimming level,
with all others (e.g., pause removal parameters and pause-based
skimming timing parameters) held constant.

Several mappings of user input to time compression and skimming level
have been tried. A two-dimensional controller (e.g., a mouse) allows two
variables to be changed independently. For example, the y-axis is used to
control the amount of time compression while the x-axis controls the
skimming level (figure 5-6). Movement toward the top increases time
compression; movement toward the right increases the skimming level.
The right half is used for skimming forward, the left half for skimming
backward. Moving to the upper right thus presents skimmed speech at
high speed.

         

fast

regular

level 1 level 2 level 3level -1level -2level -3

Skimming level
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Fig. 5-6. Schematic representation of two-dimensional control regions.  Vertical
movement changes the time compression; horizontal movement changes the
skimming level.

The two primary variables can also be set by a one-dimensional control.
For example, as the controller is moved forward, the sound playback
speed is increased using time compression. As it is pushed forward
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further, time compression increases until a boundary into the next level
of skimming is crossed. Pushing forward within each skimming level
similarly increases the time compression (figure 5-7). Pulling backward
has an analogous but reverse effect. Note that using such a scheme with a
2-D controller leaves the other dimension available for setting other
parameters.

One consideration in all these schemes is the continuity of speeds when
transitioning from one skimming level to the next. In figure 5-7, for
example, when moving from fast level 2 skimmed speech to level 3
speech there is a sudden change in speed at the border between the two
skimming levels. Depending upon the details of the implementation, fast
level 2 speech may be effectively faster or slower than regular level 3
speech. This problem also exists with a 2-D control scheme—to increase
effective playback speed currently requires a zigzag motion through
skimming and time compression levels.

                  

level 1

level 2

level 3

level –1

level –2

level –3

fast

regular

fast

regular
fast

regular

regular

fast
regular

fast
regular

fast

Fig. 5-7. Schematic representation of one-dimensional control regions.

5.6 Interaction Devices

The speech skimming software has been used with a mouse, small
trackball, touchpad, and a joystick in both the one- and two-dimensional
control configurations.

A mouse provides accurate control, but as a relative pointing device
(Card 1991) it is difficult to use without a display. A small hand-held
trackball (controlled with the thumb, see figure 5-8) eliminates the desk
space required by the mouse, but is still a relative device and is also
inappropriate for a non-visual task.
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Fig. 5-8. Photograph of the thumb-operated trackball tested with
SpeechSkimmer.

A joystick (figure 5-9) can be used as an absolute position device.
However, if it is spring-loaded (i.e., automatic return to center), it
requires constant physical attention to hold it in position. If the springs
are disabled, a particular position (i.e., time compression and skimming
level) can be automatically maintained when the hand is removed (see
Lipscomb 1993 for a discussion of such physical considerations). The
home (center) position, for example, can be configured to play forward
(level 1) at normal speed. Touching or looking at the joystick’s position
provides feedback to the current settings. However, in either
configuration, an off-the-shelf joystick does not provide any physical
feedback when the user is changing from one discrete skimming level to
another, and it is difficult to jump to an absolute location.

Fig. 5-9. Photograph of the joystick tested with SpeechSkimmer.
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A small touchpad can act as an absolute pointing device and does not
require any effort to maintain the last position selected. A touchpad can
be easily modified to provide a physical indication of the boundaries
between skimming levels. Unfortunately, a touchpad does not provide
any physical indication of the current location once the finger is removed
from the surface.

5.7 Touchpad Configuration

Fig. 5-10. The touchpad with paper guides for tactile feedback.

Currently, the preferred interaction device is a small (7 x 11 cm)
touchpad (Microtouch 1992) with the two-dimensional control scheme.
This provides independent control of the playback speed and skimming
level. Thin strips of paper have been added to the touch-sensitive surface
as tactile guides to indicate the boundaries between skimming regions
(figure 5-10).49

In addition to the six regions representing the different skimming
levels,50 two additional regions were added to enable the user to go to the
beginning and end of the sound file. Four buttons provide jumping and
pausing capabilities (figure 5-11).

49The ability to push down on the surface of the touchpad (to cause a mouse click) has
also been mechanically disabled.
50As noted in section 5.3, either level 3 or level 4 is used as the top skimming level.
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regular

slow

fast

skim endbegin skim no pause normal normal

pause

normal

jump jump jump

no pause 

Fig. 5-11. Template used in the touchpad. The dashed lines indicate the location
of the guide strips.

The time compression control (vertical motion) is not continuous, but
provides a “finger-sized” region around the “regular” mark that plays at
normal speed (figure 5-12). To enable fine-grained control of the time
compression (Stifelman 1992b), a larger region is allocated for speeding
the speech up than for slowing it down. The areas between the tactile
guides form virtual sliders (as in a graphical equalizer) that control the
time compression within a skimming level.51

      

1.0

2.4

0.6slow

regular

fast

Fig. 5-12. Mapping of the touchpad control to the time compression range.

5.8 Non-Speech Audio Feedback

Since SpeechSkimmer is intended to be used without a visual display,
recorded sound effects are used to provide feedback when navigating in
the interface (Buxton 1991; Gaver 1989a). Non-speech audio was
selected to provide terse, yet unobtrusive navigational cues (Stifelman

51In graphical equalizers all the controls are active at once. In this system only one slider
is active at a time.
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1993).52 For example, when the user plays past the end or beginning of a
sound, a cartoon “boing” is played.

When the user transitions to a new skimming level, a short tone is
played. The frequency of the tone increases with the skimming level (i.e.,
level 1 is 400 Hz, level 2 is 600 Hz, etc.). A double beep is played when
the user changes to normal (level 1). This acts as an audio landmark,
clearly distinguishing it from the other tones and skimming levels.

No explicit feedback is provided for changes in time compression. The
speed changes occur with low latency and are readily apparent in the
speech signal itself.

5.9 Acoustically Based Segmentation

Annotating speech or audio recordings by hand can produce high-quality
segmentation, but it is difficult, time consuming, and expensive.
Automatically segmenting the audio and finding its inherent structure
(Hawley 1993) is essential for the success of future speech-based
systems. “Finding the structure” here is used to mean finding important
or emphasized portions of a recording, and locating the equivalent of
paragraphs or new topic boundaries for the sake of creating audio
overviews or outlines.

Speech recordings need to be segmented into manageable pieces before
presentation. Ideally, a hierarchy of perceptually salient segments can be
created that roughly correspond to the spoken equivalents of sentences,
paragraphs, and sections of a written document.

Two non-lexical acoustic cues have been explored for segmenting
speech:

• Pauses can suggest the beginning of a new sentence, thought, or
topic. Studies have shown that pause lengths are correlated with
the type of pause and its importance (see section 3.7.4).

• Pitch is similarly correlated with a talker’s emphasis and new
topic introductions.

Note that none of these techniques are 100% accurate at finding
important boundaries in speech recordings—they all produce incorrect
rejections and false acceptances. While it is important to minimize these
errors, it is perhaps more important to be able to handle errors when they
occur, as no such recognition technology will ever be perfect.  This

52The amount of feedback is user configurable.
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research addresses the issues of using such error-prone cues in the
presentation and user interface to recorded speech. These acoustically
based segmentation methods provide cues that the user can exploit to
navigate in, and interactively prune, an acoustical search space.

5.9.1 Recording Issues

SpeechSkimmer was developed on Apple Macintosh computers that
include an 8-bit digital-to-analog (D/A) converter for sound output. The
hardware supports several sampling rates up to approximately 22 kHz.53

This maximum sampling rate was used to obtain the best possible sound
quality given the hardware limitations. One hour of recorded speech at
this sampling rate requires roughly 80 MB of storage.

For recorded speech, a larger dynamic range (i.e., a 12- or 16-bit D/A)
will produce better speech quality. A coding scheme such as µ-law can
compress approximately 12 bits of dynamic range into 8 bits. Other more
complex coding schemes can produce intelligible speech with much
larger data compression factors (Noll 1993).

Most of the recordings used in this research were directly recorded on a
portable (3 kg) Apple PowerBook computer. Unfortunately, this machine
has automatic gain control (AGC) which causes the volume level to
automatically increase whenever a recording is started or there is a pause
(Keller 1993). AGC is undesirable in these kinds of systems because
recordings are created with different gains, complicating speech
detection and other forms of acoustic processing.

Three different microphone configurations were used. The Apple omni-
directional microphone was used for informal monologues and dialogues.
Two pressure zone microphones (Ballou 1987) and a pre-amplifier were
used to record classroom discussions. A formal lecture was recorded in a
theater by obtaining a feed directly from the main audio mixing board.

5.9.2 Processing Issues

While the intent of this research is to provide real-time interactive
skimming capabilities, the retrieval tasks will occur after the creation of a
recording. It is therefore practical to perform some off-line analyses of
the data. It is not feasible to perform the segmentation on-the-fly in the
interactive skimming application, as the entire recording must first be
analyzed in order for the adaptive algorithms and segmentation to work.

53All sound files contain 8-bit linear samples recorded at 22,254 samples/s.
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It is, however, possible to perform the speech detection and pitch-based
segmentation at the time of recording, rather than as a post-processing
technique.

SpeechSkimmer incorporates several time compression techniques for
experimentation and evaluation purposes. Note that these speech
processing algorithms run on the main processor of the computer and do
not require special signal processing hardware. The current
implementation of the sampling technique produces good quality speech
and permits a wide range of time compression values. These algorithms
run in real time on a Macintosh PowerBook 170 (25 MHz 68030).

An optimized version of the synchronized overlap add technique called
SOLAFS (SOLA with fixed synthesis, see Hejna 1990) is also used in
SpeechSkimmer. This algorithm allows speech to be slowed down as
well as sped up, reduces the acoustical artifacts of the compression
process, and provides improved sound quality over the sampling method.
The cross correlation of the SOLAFS algorithm performs many
multiplications and additions requiring a slightly more powerful machine
to run in real time. A Macintosh Quadra 950 (33 MHz 68040) that has
several times the processing power of a PowerBook 170 is sufficient.

5.9.3 Speech Detection for Segmentation

An adaptive time-domain speech detector (see chapter 4) was developed
for segmenting recordings. The speech detector uses average magnitude
and zero crossing measurements combined with heuristic properties of
speech. Background noise can then be differentiated from speech under a
variety of microphone and noise conditions.

A speech detector based on the work of Lamel et al. (see section 4.4.3)
has been developed for pause removal and to provide data for pause-
based segmentation. Digitized speech files are analyzed in several passes;
the first pass gathers average magnitude and ZCR statistics for 10 ms
frames of audio. Note that for most speech recordings these two
measurements are relatively independent for large energy and zero
crossing values (figure 5-13).
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Fig. 5-13. A 3-D plot of average magnitude and zero crossing rate histogram.
The data is from a 15 minute recording made in a noisy classroom (10 ms
frames).

The background noise level is determined by generating a histogram of
the average magnitude measurements and smoothing it with a three-point
averaging filter (as in figure 4-5). The resulting histogram typically has a
bimodal distribution (figures 5-14 and 5-15); the first peak corresponds
to background noise, the second peak to speech. A value 2 dB above the
first peak is selected as the initial dividing line between speech and
background noise. If it is determined that the overall background noise
level is high, a 4 dB offset is used. Figure 5-15 illustrates a recording
with a high background level; there are no zero or low energy frames
present in the recording, so the speech detector selects the higher offset
value.
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Fig. 5-14. Average magnitude histogram showing a bimodal distribution.  The
first peak represents the background noise; the second peak represents the
speech.
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Fig. 5-15. Histogram of noisy recording. Note that there are no zero or low-
energy entries.

For determining a zero crossing threshold O’Shaughnessy says:

A high ZCR cues unvoiced speech while a low ZCR
corresponds to voiced speech. A reasonable boundary can be
found at 2500 crossings/s, since voiced and unvoiced speech
average about 1400 and 4900 crossings/s respectively, with a
larger standard deviation for the latter. (O’Shaughnessy
1987, 215)

The noise level, as calculated above, and a ZCR threshold of 2500
crossings/s thus provides an initial classification of each frame as speech
or background noise.
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Even when the threshold parameters are carefully chosen, some
classification errors will be made. However, several additional passes
through the sound data are made to refine this estimation based on
heuristics of spontaneous speech. This processing fills in short
(< 100 ms) gaps between speech segments (see section 4.5 and figure 4-
9), removes isolated islands initially classified as speech that are too
short to be words (< 100 ms), and extends the boundaries of speech
segments (by 20 ms) so that they are not inadvertently clipped (Gruber
1982; Gruber 1983). For example, two or three frames (20–30 ms)
initially classified as background noise amid many high-energy frames
identified as speech should be treated as part of that speech, rather than
as a short interposing silence. Similarly, several medium-energy frames
in a large region of silence are too short to be considered speech and are
filtered out to become part of the silence.

This speech detection technique has been found to work well under a
variety of noise conditions. Audio files recorded in an office environment
with computer fan noise and in a lecture hall with over 40 students have
been successfully segmented into speech and background noise. This pre-
processing of a sound file executes in faster than real time on a personal
computer (e.g., it takes roughly 30 seconds to process a 100 second
sound file on a PowerBook 170).

Several changes were made to the speech detector as the skimming
system evolved. Preliminary studies were performed on a Sun
SparcStation using µ-law speech that encodes approximately 12 bits of
dynamic range. It was easy to differentiate the peaks in the bimodal
energy distribution in histograms made with bins 1 dB wide. Note that
averaging the magnitude or energy values over 10 ms frames reduces the
effective dynamic range for the frames. The Macintosh only encodes 8
bits of dynamic range, and with 1 dB wide bins it was sometimes
difficult to distinguish the two modes of the distribution. Using a smaller
bin size for the histogram (i.e., 0.5 dB) made it easier to differentiate the
peaks. For example, note that the modes in figure 5-14 may be hard to
find if the bins were 1 dB wide.

Some of the speech recordings used in this research were created in a
theater through the in-house sound system. The quality of this recording
is very good, but it contains some high frequency noise from the
amplification equipment. This noise resulted in a high zero crossing rate
and hence incorrectly classified background noise as speech. This
recording was low-pass filtered to remove frequency components above
about 5 kHz to eliminate the false triggering of the speech detector. Once
the speech detector has been run, the original unfiltered recording is used
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for playback to produce the best possible sound quality. Note that such
low pass filtering can be blindly applied to all sound files without
affecting the results.

The speech detector outputs an ASCII file containing the starting time,
stopping time, and duration of each segment,54 and a flag indicating if the
segment contains speech or background noise (figure 5-16).

4579 4760 181 0
4760 5000 240 1
5000 5371 371 0
5371 5571 200 1
5571 6122 551 0
6122 6774 652 1

 è  6774 7535 761 0
7535 7716 181 1
7716 7806 90 0
7806 9509 1703 1
9509 9730 221 0
9730 9900 170 1
9900 10161 261 0
10161 10391 230 1
10391 10541 150 0
10541 11423 882 1
11423 11534 111 0
11534 12245 711 1
12245 12395 150 0

Fig. 5-16. Sample speech detector output. Columns are: start time, stop time,
duration of segment, and speech present (1=speech, 0=background noise). Note
the long pause that occurs at 6674 ms. All times are in milliseconds.

5.9.4 Pause-based Segmentation

Even though this software is designed to run on a Macintosh, a UNIX
tools approach is taken in the design of the system to simplify the
software components (Kernighan 1976). Segmentation into salient
segments is run as a second process on the speech detection data shown
in figure 5-16. This modularity allows for experimentation with different
pause-based segmentation algorithms on the raw speech detection data.
See section 5.11 for how these data are used in the interactive system.

54The duration field is not necessary, but has been found useful for visual debugging.
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4760 5370 1 1
5371 5570 2 0
5371 6121 1 0
5622 6121 2 0
6122 6773 2 0
6122 7534 1 0
7035 7534 2 0
7535 7715 2 0

 è  7535 7715 3 1
7535 7805 1 0
7806 9508 2 1
7806 9508 3 0
7806 9729 1 1
9730 9899 2 0
9730 9899 3 0
9730 10160 1 0
10161 10390 2 0
10161 10390 3 0
10161 10540 1 0
10541 11422 2 0
10541 11422 3 0
10541 11533 1 0
11534 12244 2 0
11534 12244 3 0
11534 12394 1 0

Fig. 5-17. Sample segmentation output. Columns are: start time, stop time,
skimming level, and the jump-to flag (1=OK to jump to). Note the correspondence
between these data and figure 5-16. A valid starting segment for level 3
skimming occurs here at 7353 ms, this occurs just after the long (761 ms) silence
in figure 5-16 beginning at 6774 ms.

5.9.5 Pitch-based Emphasis Detection for Segmentation

Pitch55 provides information in speech that is not only important for
comprehension and understanding but can also be exploited for machine-
mediated systems. There are many techniques to extract pitch (Hess
1983; O’Shaughnessy 1987; Keller 1992), but there have been few
attempts to extract high-level information from the speech signal based
on pitch.

Work in detecting emphasis (Chen 1992), locating intonational features
(Hirschberg 1987, Wightman 1992), and finding syntactically significant
hesitations based on pause length and pitch (O’Shaughnessy 1992) has
just begun to be applied to speech segmentation and summarization.
SpeechSkimmer builds upon these ideas and is structured to integrate this
type of information into an interactive interface.

55“Pitch” in this context means the fundamental frequency of voiced speech, and is often
denoted as F0. The terms “pitch,” “fundamental frequency,” and “F0” are used
interchangeably in this document.
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Chen and Withgott (Chen 1992) trained a Hidden Markov Model (HMM,
see Rabiner 1989) to detect emphasis based on hand-marked training data
of the pitch and energy content of conversations. Emphasized portions in
close temporal proximity were found to successfully create summaries of
the recordings. This prosodic approach is promising for extracting high-
level information from speech signals. While HMMs are well understood
in the speech recognition community, they are computationally complex
statistical models that require significant amounts of training data.

While performing some exploratory data analysis on ways to improve on
this HMM-based approach, it became clear that the fundamental
frequency of speech itself contains emphasis information. Rather than
collecting a large amount of training for an HMM, it appeared possible to
create a much simpler emphasis or structure detector by directly looking
for patterns in the pitch.

For example, it is well known in the speech and linguistics communities
that there are changes in pitch under different speaking conditions
(Hirschberg 1992; Hirschberg 1986; Silverman 1987). The introduction
of a new topic often corresponds with an increased pitch range. There is a
“final lowering,” or general declination of pitch during the production of
a sentence. Sub-topics and parenthetical comments are often associated
with a compression of pitch range. Such pitch features are reasonably
robust within and across native speakers of American English.56

These are general rules of thumb, however, automatically finding these
features in a speech signal is difficult as the actual pitch data tends to be
noisy. Several techniques were investigated to directly find such features
in a speech signal (e.g., fitting the pitch data to a curve or differencing
the endpoints of contiguous segments); however the pitch data was noisy
and the features of interest were difficult to find in a general manner.

Several experiments were performed by visually correlating areas of
activity in an F0 plot with a hand-marked log of a recording. Areas of
high pitch variability were strongly correlated with new topic
introductions and emphasized portions of the log. Visually it is easy to
locate areas of significant pitch activity (figure 5-18); however, if we
could write a program to extract features that are easy to see with our
visual system, we would have been able to solve the much larger and
more difficult problem of image understanding.

Figure 5-18 shows the F0 for 40 seconds of a recorded monologue. There
are several clearly identifiable areas of increased pitch activity. Figure 5-

56Pitch is used differently in other languages, particularly “tone languages” where pitch
is used phonemically (i.e., to distinguish words).
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19 is a close-up of several seconds of the same data. Note that the pitch
track is not continuous; pitch can only be calculated for vowels and
voiced consonants (e.g., “v,” “z”); consonants such as “s,” “f,” “p” are
not voiced. Also note that pitch extraction is difficult (Hess 1983; Keller
1992), the resulting data is noisy, and contains anomalous points.

A variety of statistics were generated and manually correlated with the
hand-marked log. The statistics were gathered over one second windows
of the pitch data (100 frames of 10 ms). One second was chosen to
aggregate a reasonable number of pitch values, and to correspond with
the length of several words. The metrics evaluated include the mean,
standard deviation, minimum, maximum, range, number of frames above
a threshold, and number of local peaks, across the one second window.

The range, maximum, standard deviation, and number of frames above a
threshold were most highly correlated with the hand-marked data. The
standard deviation and number of frames above a threshold appear the
most promising for emphasis detection and summarization. Note that all
these metrics essentially measure the same thing: significant activity and
variability in F0 (figure 5-21).
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Fig. 5-18. F0 plot of a monologue from a male talker. Note that the area near 30
seconds appears (and sounds) emphasized. The F0 value is calculated every
10 ms.

Since the range and baseline pitch vary considerably between talkers, it is
necessary to analyze the data to find an appropriate threshold for a
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particular talker. A histogram of the F0 data is used, and a threshold is
chosen to select the top 1% of the pitch frames (figure 5-20).57
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Fig. 5-19. Close-up of F0 plot in figure 5-18.
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Fig. 5-20. Pitch histogram for 40 seconds of a monologue from a male talker.
The bottom portion of the figure shows a greatly expanded vertical scale
illustrating the occurrence of pitch frames above 200 Hz.

57This threshold was chosen as a practical starting point. The threshold can be changed to
find a larger or smaller number of emphasized segments.
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Fig. 5-21. Comparison of three F0 metrics.

The number of frames in each one second window that are above the
threshold are counted as a measure of “pitch activity.” The scores of
nearby windows (within an eight second range) are then combined. For
example, a speech activity of four in window 101 (i.e., four frames above
the threshold) would be added to a speech activity of three in frame 106
to indicate there is a pitch activity of seven for the region of 101–108
seconds. This method is used instead of analyzing eight second windows
so that the start of the pitch activity can be found at a finer (one second)
granularity.

5.10 Usability Testing

The goal of this test was to find usability problems as well as areas of
success in the SpeechSkimmer system.58 The style of usability test
performed is primarily an observational “thinking out loud” study
(Ericsson 1984) that is intended to quickly find major problems in the
user interface to an interactive system (Nielsen 1993a).

58This test was conducted under the guidelines of, and approved by, the M.I.T.
Committee on the Use of Humans as Experimental Subjects (application number 2132).
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5.10.1 Method

5.10.1.1 Subjects

Twelve volunteer subjects between the ages of 21 and 40 were selected
from the Media Laboratory environment.59 None of the subjects were
familiar with the SpeechSkimmer system, but all had experience using
computers. Six of the subjects were graduate students and six were
administrative staff; eight were female and four were male. Test subjects
were not paid, but were offered snacks and beverages to compensate for
their time.

5.10.1.2 Procedure

The tests were performed in an acoustically isolated room with a subject,
an interviewer, and an observer.60 The sessions were video taped and
later analyzed by both the interviewer and observer. A testing session
took approximately 60 minutes and consisted of five parts:

1. A background interview to collect demographic information and to
determine what experience subjects had with recorded speech and audio.
The questions were tailored to the subject’s experiences. For example,
someone who regularly recorded lectures would be asked in detail about
their use of the recordings, how they located specific pieces of
information in the recordings, etc.

2. A first look at the touchpad. Subjects were given the touchpad (figure
5-10) and asked to describe their first intuitions about the device. This
was done without the interviewer revealing anything about how the
system worked or what it is intended to do, other than “it is used for
skimming speech recordings.” Everything subjects did in the test was
exploratory, they were not given any instructions or guidance.61 The
subjects were asked what they thought the different regions of the device
did, how they expected the system to behave, what they thought
backward did, etc.

3. Listening to a trial speech recording with the SpeechSkimmer system.
The subjects were encouraged to explore and “play” with the device to
confirm, or discover, how the system operated. While investigating the
device, the interviewer encouraged the subjects to “think aloud,” to

59One subject was a student visiting the lab, another was a temporary office worker.
60L. Stifelman conducted the test, the system designer (Arons) observed.
61However, if a subject said something like “I wish it did X,” and the system did perform
that function, the feature was revealed to them by the interviewer through directed
questions (e.g., Do you think this device can do that? If so, how do you think you could
get it to do it? What do you think that button does?).
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describe what they were doing, and to say if the device was behaving as
they had expected.

4. A skimming comparison and exercise. This portion of the test
compared two different skimming techniques. A recording of a 40
minute lecture was divided into two 20 minute parts. 62 Each subject
listened to both halves of the recording; one part was segmented based on
pitch (section 5.9.5) and one that was segmented isochronously (at equal
time intervals). The test was counterbalanced for effects of presentation
order and portion of the recording (figure 5-22).

# of subjects first presentation second presentation
3 pitch-based part 1 isochronous part 2
3 isochronous part 1 pitch-based part 2
3 isochronous part 2 pitch-based part 1
3 pitch-based part 2 isochronous part 1

Fig. 5-22. Counterbalancing of experimental conditions.

When skimming, both of the techniques provided a 12:1 compression for
this recording (i.e., on average five seconds out of each minute were
presented). Note that these figures are for normal speed (1.0x), by using
time compression the subjects could achieve over a 25:1 time savings.

The subjects first skimmed the entire recording at whatever speed they
felt most comfortable. The subjects were asked to judge (on a 7-point
scale) how well they thought the skimming technique did at providing an
overview of the recording and selecting indexes into major points in the
recording. The subjects were then given a printed list of three questions
that could be answered by listening to the recording. The subjects were
asked locate the answer to any of the questions in the recording, and to
describe their auditory search strategy. This process was repeated for the
second presentation condition.

5. The test concluded with follow-up questions regarding the subject’s
overall experience with the interaction device and the SpeechSkimmer
system, including what features they disliked and liked most.

5.10.2 Results and Discussion

This section summarizes the features of the SpeechSkimmer system that
were frequently used or liked the most by the subjects of the usability
test, as well as areas for improvement in the user interface design.

62The recording is of Nicholas Negroponte’s “Perspectives Speaker Series” talk titled
Conflusion: Media in the Next Millennium  presented on October 19, 1993.
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5.10.2.1 Background Interviews

All the subjects had some experience in searching for recorded audio
information on compact discs, audio cassettes, or video tape. Subjects’
experience included transcribing lectures and interviews, taking personal
notes on a microcassette recorder, searching for favorite songs on tape or
CD, editing video documentaries, and receiving up to 25 voice mail
messages per day. Almost all the subjects referred to the process of
searching as time consuming, one subject added that it takes “more time
than you want to spend.”

5.10.2.2 First Intuitions

Most of the users found the interface intuitive and easy to use, and were
able to use the device without any training. This ability to quickly
understand how the device works is partially based on the fact that the
touchpad controls are labeled in a similar manner as consumer devices
(such as compact disc players and video cassette recorders). While this
familiarity allowed the subjects to initially feel comfortable with the
device, and enabled rapid acclimatization to the interface, it also caused
some confusion since a few of the functions behaved differently than on
the consumer devices.

Level 2 on the skimming template is labeled “no pause” but most of the
subjects did not have any initial intuitions about what it meant. The label
baffled most of the subjects since current consumer devices do not have
pause removal or similar functionality. Some of the subjects thought that
once they started playing in “no pause” they would not be able to stop or
pause the playback. Similarly, the function of the “jump and play normal
button” was not obvious. Also, the backward play levels were sometimes
intuitively equated with traditional (unintelligible) rewind.

5.10.2.3 Warm-up Task

The recording used in the trial task consisted of a loose free-form
discussion, and most of the subjects had trouble following the
conversation. Most said that they would have been able to learn the
device in less time if the trial recording was more coherent, or if they
were already familiar with the recording. However, subjects still felt the
device was easy to learn quickly.

Subjects were not sure how far the jumps took them. Several subjects
thought that the system jumped to the next utterance of the male talker
when exploring the interface in the trial task (the first few segments
selected for jumping in this recording do occur at a change of talker).
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5.10.2.4 Skimming

Most subjects thought, or found, that the pitch-based skimming was
effective at extracting interesting points to listen to, and for finding
information. One user who does video editing described it as “grabbing
sound bite material.” When comparing pitch-based skimming to
isochronous skimming a subject said “it is like using a rifle versus a
shotgun” (i.e., high accuracy instead of dispersed coverage). Other
subjects said that the pitch-based segments “felt like the beginning of
phrase … [were] more summary oriented” and there was “a lot more
content or keyword searching going on” than in the isochronous
segmentation.

A few of the subjects requested that longer segments be played (perhaps
until the next pause), or that the length of the segments could be
controllable. One subject said “I felt like I was missing a lot of his main
ideas, since it would start to say one, and then jump.”

The subjects were asked to rank the skimming performance under the
different segmentation conditions. A score of 7 indicates the best
possible summary of high-level ideas, a score of 1 indicates very poorly
selected segments. The mean score for the pitch-based segmentation was
M = 4.5 (SD = 1.7, N = 12); the mean score for the isochronous
segmentation was M = 2.7 (SD = 1.4, N = 12). The pitch-based skimming
was rated better than isochronous skimming with a statistical significance
of p < .01 (using a t  test for paired samples). No statistically significant
difference was found on how subjects rated the first versus the second
part of the talk, or on how subjects rated the first versus second sound
presented.

Most of the subjects, including the few that did not think the pitch-based
skimming gave a good summary, used the skimming level to navigate
through the recording. When asked to find the answer to a specific
question, most started off by saying something like “I’ll go the beginning
and skim till I get to the right topic area in the recording,” or in some
cases “I think its near the end, so I’ll jump to the end and skim
backward.”

5.10.2.5 No Pause

While there was some initial confusion regarding the “no pause” level, if
a subject discovered its function, it often became a preferred way to
quickly listen and search for information. One subject that does video
editing said “that’s nice … I like the no pause function.… it kills dead
time between people talking … this would be really nice for interviews
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[since you normally have to] remember when he said [the point of
interest], then you can’t find where it was, and must do a binary search of
the audio track … For interviews it is all audio—you want to get the
sound bite.”

5.10.2.6 Jumping

The function of the “jump and play normal” button was not always
obvious, but subjects who did not initially understand what the button did
found ways to navigate and perform the same function using the basic
controls. This button is a short-cut: a combination of jumping backward
and then playing level 1 speech at regular speed.

One subject had a moment of inspiration while skimming along at a high
speed, and tried the button after passing the point of interest. After using
this button the subject said in a confirming tone “I liked that, OK.” The
subject proceeded to use the button several times after that and said “now
that I figured out how to do that jump normal thing … that’s very cool. I
like that.” It is important to note that after discovering the “jump and play
normal” button this subject felt more comfortable skimming at faster
speeds. Another subject said “that’s the most important button if I want
to find information.”

While most of the subjects used, and liked, the jump buttons, the size or
granularity of jumps was not obvious. Subjects assumed that jumping
always brought them to the next sentence or topic.63 While using the
jump button and “backward no pause” one subject noted “oh, I see the
difference … I can re-listen using the jump key.”

5.10.2.7 Backward

Most of the subjects figured out the backward controls during the trial
test, but tended to avoid using them. This is partially attributable to the
subject’s initial mental models that associate backward with
“unintelligible” rewind. Some of the subjects, however, did find the
backward levels useful in locating particular words or phrases that had
just been heard.

While listening to the recording played backward, one subject noted “it’s
taking units of conversation—and goes backwards.” Another subject said
that “it’s interesting that it is so seamless” for playing intelligible
segments and that “compared to a tape where you’re constantly shuffling
back and forth, going backward and finding something was much easier

63In the current system design the amount of the jumps depends on the current level
(normal, no pause, or skimming).
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since [while] playing backwards you can still hear the words.” One
subject suggested providing feedback to indicate when sounds were
being played backward, to make it easily distinguishable from forwards.

5.10.2.8 Time Compression

Some of the users thought there were only three discrete speeds and did
not initially realize that there was a continuum of playback speeds. A few
of the subjects also did not initially realize that the ability to change
speeds extended across all the skimming levels. These problems can be
attributed to the three speeds marked on the template (slow, regular, and
fast, see figure 5-11). One subject noted that the tactile strips on the
surface break the continuity of the horizontal “speed” lines, and made it
less clear that the speeds work at all skimming levels.64

Several of the subjects thought there was a major improvement when
listening over the headphones, one subject was “really amazed” at how
much better the dichotic time-compressed speech was for comprehension
than the speech presented over the loudspeaker. Another subject said
“it’s really interesting—you can hear it a lot better.”

5.10.2.9 Buttons

The buttons were generally intuitive, but there were some problems of
interpretation and accidental use. The “begin” and “end” regions were
initially added next to the level 3 and –3 skimming regions on the
template to provide a continuum of playback granularity (i.e., normal, no
pause, skim, jump to end). Several subjects thought that the begin button
should seek to the beginning of the recording and then start playing.65

One subject additionally thought the speed of playback could be changed
by touching at the top or bottom of the begin button.

One subject wanted to skim backward to re-hear the last segment played,
but accidentally hit the adjacent begin button instead. This frustrated the
subject, since the system jumped to the beginning of the recording and
hence lost the location of interest.

It should also be noted that along with these conceptual and mechanical
problems, the words “begin” and “start” are overloaded and could mean
“begin playing” as well as “seek to the beginning of the recording.”

64Two of the subjects suggested using colors to denote the continuum of playback speeds
and that the speed labels extend across all the skimming levels.
65The system seeks to the beginning of the recording and then pauses.



SpeechSkimmer 125

By far the biggest problem encountered during the usability test was
“bounce” on the jump and pause buttons.66 This was particularly
aggravating when it occurred with the pause button, as the subject would
want to stop the playback, but the system would temporarily pause, then
moments later un-pause. The bounce problem was partially exacerbated
by the subject’s use of their thumbs to touch the buttons. While the
touchpad and template were designed to be operated with a single finger
for maximum dexterity and accuracy (as in figure 5-10), most of the
subjects held the touchpad by the right and left sides and touched the
surface with their thumbs during the test.67

5.10.2.10 Non-Speech Feedback

The non-speech audio was successful at unobtrusively providing
feedback. One subject, commenting on the effectiveness and subtlety of
the sounds said “after using it for a while, it would be annoying to get a
lot of feedback.” Another subject said that the non-speech audio “helps
because there is no visual feedback.” None of the subjects noted that the
frequency of the feedback tone changes with skimming level; most did
not even notice the existence of the tones. However, when subsequently
asked about the device many noted that the tones were useful feedback to
what was going on. The cartoon “boings” at the beginning and ending
were good indicators of the end points (one subject said “it sounds like
you hit the edge”), and the other sounds were useful in conveying that
something was going on. The boing sounds were noticed most often,
probably because the speech playback stops when the sound effect is
played.

5.10.2.11 Search Strategies

Several different navigation and search strategies were used to find
answers to specific questions within the recordings. Most of the subjects
skimmed the recording to find the general topic area of interest, then
changed to level 1 playing or level 2 with pauses removed, usually with
time compression. One subject started searching by playing normally (no
time compression) from the beginning of the recording to “get a flavor”
for the talk before attempting to skim or play it at a faster rate. One
subject used a combination of skimming and jumping to quickly navigate
through a recording and efficiently find the answers to specific questions.

66Button “bounce” is traditionally associated with mechanical switches that would make
several temporary contact closures before settling to a quiescent state. The difficulties
here are associated with the way in which the touchpad is configured.
67This was partially attributable to the arrangement of the subject and the experimenters
during the test. There was no table on which to place the touchpad, and subjects had to
hold the device.
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5.10.2.12 Follow-up Questions

Most of the subjects thought that the system was easy to use since they
made effective use of the skimming system without any training or
instructions. Subjects rated the ease of use of the system on a 7-point
scale where 1 is difficult to use, 4 is neutral, and 7 is very easy to use.
The mean score for ease of use was M = 5.4 (SD = 0.97, N = 10).68

Most subjects liked the ability to quickly skim between major points in a
presentation, and to jump on demand within a recording. Subjects liked
the time compression range, particularly the interactive control of the
playback speed. A few of the subjects were enamored with other specific
features of the system including the “fast-forward no pause” level, the
“jump and play normal” button, and the dichotic presentation.

One subject commented “I really like the way it is laid out. It’s easier to
use than a mouse.” Another subject (who did not realize the speeds were
continuous) experimented with turning the touchpad 90 degrees so that
moving a finger horizontally rather than vertically changed the playback
speed.

Most of the subjects said they could envision using the device while
doing other things, such as walking around, but few thought they would
want to use it while driving an automobile. Most of the subjects said they
would like to use such a device, and many of them were enthusiastic
about the SpeechSkimmer system.

5.10.2.13 Desired Functionality

In the follow-up portion of the test, the subjects were asked what other
features might be helpful for the speech skimming system. For the most
part these items were obtained through probing the test subject, and were
not spontaneously mentioned by the subjects.

Some subjects were interested in marking points in the recording that
were of interest to them, for the purpose of going back later and to access
those points. A few of the subjects called these “bookmarks.”

Some subjects wanted to be able to jump to a particular place in a
recording, or have a graphical indicator of their current location. There is
a desire, for example, to access a thought discussed “about three-quarters
the way through the lecture” through using a “time line” for jumping
within a recording.

68Two of the subjects did not answer the question.
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5.10.3 Thoughts for Redesign

After establishing the basic system functionality, the touchpad template
evolved quickly—figure 5-23 shows three prototype templates as well as
the current design. It is important to note again that this usability test was
performed without any instruction or coaching of the subjects. It may be
easy to fix some, or most, of these problems through a small amount of
instruction, or by modifying the touchpad template.

A revised template can alleviate some of the usability problems
encountered and incorporate the new features requested. The “sketch” in
figure 5-24 shows a prototype of a new design. The labels and icons are
modified to be more consistent and familiar. Notably, “play” has
replaced “normal,” and “pauses removed” has replaced the confusing “no
pause.”

The speed labels are moved, renamed, and accompanied by tick marks to
indicate a continuum of playback rates. The shaded background is as an
additional cue to the speed continuum that extends across all levels.
Colors, however, may be more effective than of shading. For example,
the slow-to-normal range could fade from blue to white, while the
normal-to-fastest range could go from white to red, suggesting a cool-to-
hot transition.

First prototype Second prototype

 
Third prototype Current design

 

regular

slow

fast

skim endbegin skim no pause normal normal

pause

normal

jump jump jump

no pause 

Fig. 5-23. Evolution of SpeechSkimmer templates.
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Fig. 5-24. Sketch of a revised skimming template.

Bookmarks, as requested by the subjects, can be implemented in a
variety of ways, but are perhaps best thought of as yet another level of
skimming. In this case, however, the user interactively selects the speech
segments on-the-fly. In this prototype a “create mark” button is added
along with new regions for playing forward and backward between the
user defined marks.

A time line is added to directly access time points within a recording. It
is located at the top of the template where subjects pointed when talking
about the feature. The time line also naturally incorporates the begin and
end controls, removing them from the main portion of the template and
out of the way from accidental activation.

There is room for improvement in the layout and graphic design of this
template, it is somewhat cluttered, and the “jump and play normal”
button remains problematic. However, the intuitiveness of this prototype,
or alternative designs, could be quickly tested by asking a few subjects
for their initial impressions.

One of the subjects commented that a physical control (such as real
buttons and sliders) would be easier to use than the touchpad. A slightly
different approach to changing the physical interface to the skimming
system is to use a jog and shuttle control, as is often found in video
editing systems (figure 5-25). Alternatively, a foot pedal could be used in
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situations where the hands are busy, such as when transcribing or taking
notes.

Fig. 5-25. A jog and shuttle input device.

5.10.4 Comments on Usability Testing

Informal heuristic evaluation of the interface (Nielsen 1990; Nielsen
1991; Jeffries 1991) was performed throughout the system design. In
addition, the test described in section 5.10 was very helpful in finding
usability problems. The test was performed relatively late in the
SpeechSkimmer design cycle, and, in retrospect, a preliminary test
should have been performed much earlier in the design process. Most of
the problems in the template layout could have been uncovered earlier,
with only a few subjects. This could have led to a more intuitive
interface, while focusing on features that are most desired by users.

Note that while twelve subjects were tested here, only a few are needed
to get helpful results. Nielsen has shown that maximum cost-benefit ratio
for a usability project occurs with around three to four test subjects, and
that even running a single test subject is beneficial (Nielsen 1993b).

5.11 Software Architecture

The software implementation consists of three primary modules: the
main event loop, the segment player, and the sound library (figure 5-26).
The skimming user interface is separated from the underlying mechanism
that presents the skimmed and time-compressed speech. This
modularization allows for the rapid prototyping of new interfaces using a
variety of interaction devices. SpeechSkimmer is implemented using
objects in THINK C 5.0, a subset of C++.69

69Think C 5.0 provides the object-oriented features of C++, but does not include other
extensions to C such as operator overloading, in-line macros, etc.
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The main event loop gathers raw data from the user and maps it onto the
appropriate time compression and skimming ranges for the particular
input device. This module sends simple requests to the segment player to
set the time compression and skimming level, start and stop playback,
and jump to the next segment.

         

Sound library
Time compression

Main event loop
Input mapping

User input (e.g., 
touch pad, joystick)

Segment player Segmentation data
Sound file

Fig. 5-26. Software architecture of the skimming system.

The segment player is the core software module; it combines user input
with the segmentation data to select the appropriate portion of the sound
to play. When the end of a segment is reached, the next segment is
selected and played. Audio data is read from the sound file and passed to
the sound library. The size of these audio data buffers is kept to a
minimum to reduce the latency between user input and the corresponding
sound output.

The sound library provides a high-level interface to the audio playback
hardware (based on the functional interface described in Arons 1992c).
The time compression algorithms (Fairbanks sampling, dichotic
sampling, SOLAFS) are built into the sound library.

5.12 Use of SpeechSkimmer with BBC Radio Recordings

A related project in the Speech Research Group at the Media Laboratory
is concerned with the structuring and presentation of news stories
collected from broadcast radio. News broadcasts, at least those produced
by National Public Radio and the BBC, are much more structured than
the recordings of spontaneous speech discussed in this document. For
example, BBC News Hour broadcasts contain summaries of the main
points of the news at the beginning and end of the broadcast, there is
often a change of announcer between story segments, and it is possible to
find certain story boundaries by looking for musical segues (Hawley
1993). A careful analysis of such broadcasts has enabled the design of a
BBC-specific segmenter that finds story boundaries based on the length
and location of pauses in a typical broadcast.
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Data collected from this application has been integrated into the
SpeechSkimmer framework. A recording of the BBC News Hour is
processed by both the BBC-specific segmenter and the pause-based
segmenter described in section 5.9.4. The BBC-specific segmentation
data is used in place of the level 3 segments. This scheme allows one to
interactively listen and skim between news stories using the
SpeechSkimmer system.

In the process of integrating the BBC-specific data into the speech
skimming system, a fellow graduate student manually segmented a ten
minute BBC recording. This effort provides anecdotal evidence to
support the effectiveness of the pause-based segmentation system
developed in this dissertation. The student spent roughly 45 minutes with
a graphical sound editor attempting to find the story boundaries. The
recording was then processed by the software described in section 5.9.4.
According to the student there was “a very close correspondence between
the manual and automatic segmentation” and the segmentation software
“did a great job of finding the story boundaries.”

5.13 Summary

The SpeechSkimmer system is designed around the premise that
navigating in time is critical in speech systems. This chapter has
presented a system that integrates time compression, selective pause
removal, and perceptually salient segmentation into an interactive
interface for presenting and skimming recorded speech.

The system demonstrates that simple heuristics can be powerful for
segmenting and listening to recorded speech. For example, the speech
that occurs after long pauses can be used as an indicator of structural
information conveyed by the talker. Pitch information can provide a
more powerful cue to the structure and semantic content of our speech.
This chapter describes methods to extract these types of information
through simple and efficient measures. Automatic recognition of these
structural features may fail by missing things that are important and
finding things that are not. However, the interface to the system allows
the user to navigate around and through these types of errors.
SpeechSkimmer allows intelligent filtering and presentation of recorded
audio—the intelligence is provided by the interactive control of the user.
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6 Conclusion

This final chapter presents areas for continued research and some
concluding thoughts on interactively skimming speech recordings.

6.1 Evaluation of the Segmentation

Early in the design process of the speech skimming system, a variety of
speech data were segmented based on pauses. These data included a five
minute conversation recorded in an office environment, several 20
minute portions of a classroom discussion recorded in a relatively noisy
lecture hall, and many test monologues recorded in an acoustically
isolated room. Most of these recordings were made with a low-cost
microphone designed for use with the Macintosh. After an unsatisfactory
initial test using a single microphone, the classroom lectures were
ultimately recorded with two pressure zone microphones (see section
5.9.1 for further details on the recording process).

SpeechSkimmer was demonstrated and tested informally using these
recordings. The pause-based segmentation was effective at providing an
index into important points in the recordings (also see section 5.12). In
both the recorded conversation and the classroom discussions, for
example, many of the automatically selected segments corresponded to
new topics and talker changes. Some uninteresting, or seemingly random
segments, were mixed in with these segments, but these were easy to skip
over by using the interactive interface.

The initial investigation of pitch-based segmentation was made on higher
quality recordings that were created during an “off-site” workshop.
Approximately fifteen talkers introduced themselves, and presented a
10–15 minute summary of their background and interests. These
monologues were recorded with a lavaliere microphone on a digital audio
tape recorder (2 channels of 16-bit data sampled at 48 kHz).70

The first half of one of the monologues (of a male talker) was analyzed
while developing the pitch-based segmentation. This entire recording

70A “shotgun” microphone was used to record comments and questions from the
audience on the other audio channel.
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along with two of the other monologues (one male and one female talker)
were then segmented using the technique described in section 5.9.5. The
portions selected from the second half of the recording were highly
correlated with topic introductions, emphasized phrases, and paragraph
boundaries in an annotated transcript of the recording.71

The four highest scoring segments (i.e., the most pitch activity above the
threshold) of each of these recordings were then informally evaluated.
People that hear these selected segments generally agree that they are
emphasized points or introductions of new topics. The four highest
ranking segments72 for one of the talkers are:

OK, so the network that we’re building is [pause]. Well this
[diagram] is more the VuStation, but the network …

OK, the second thing I wanted to mention was, the
multimedia toolkit. And currently this pretty much
something runs on a …

Currently I’m interested in [pause] computer vision, because
I think …

And then, the third program which is something my group is
very interested in and we haven’t worked on a lot, is the idea
of a news parser …

Along with the stated topic introductions, note the inclusion of the
linguistic cue phrases “OK” and “so” that are often associated with new
topics (Hirschberg 1987).

The pitch-based segmentation technique was applied to a 40 minute
lecture for the usability test (section 5.10).73 The majority of the
automatically selected segments were interesting and, as described in
section 5.10.2.12, subjects rated the performance of the pitch-based
segmentation higher than the isochronous segmentation. Seven of the
twelve subjects (58%) gave the pitch-based skimming a rating of 5 or
greater for how well it summarized and provided important points in the
recording.

From these experiments and evaluations it is believed that both the
pause-based and pitch-based techniques are effective at finding relevant
segments in speech recordings. The pitch-based technique is currently
favored for more effectively selecting salient segments. While some
errors are made (selecting unimportant portions, and missing important

71The transcript and annotations were independently created by an experienced linguist.
72These segments represent eight seconds of the original recording.
73Note that many of the selected segments of this recording also contain linguistic cue
phrases.
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ones), they are easily navigated around and through using the interactive
interface, letting the user find, and listen to, things they are interested in.

6.2 Future Research

While graphical user interfaces are concerned with issues of “look and
feel,” speech interfaces often have a much different flavor. The “sound
and feel” of SpeechSkimmer appear promising enough to warrant
continued research and development in a variety of areas including
evaluation, integration with graphical interfaces, and application of other
technologies for segmentation (also see section 1.7.2 for a discussion of
spatial audio and auditory streaming techniques).

6.3 Evaluation of Segmentation Techniques

Automatically segmenting speech recordings based on features of
conversational speech is a powerful and important step toward making it
more efficient to listen to recorded speech. The techniques described in
earlier chapters are successful at extracting information from recordings.
Along with informal evaluations, such as those described in sections 5.12
and 6.1, it is necessary to develop more formalized measurement
methods to extend and refine these speech processing techniques.

Part of the problem of evaluation is in precisely defining the information
that one wants to extract from the speech signal. Finding the “major
points” in a speech recording is a subjective measure based on high-level
semantic and pragmatic information in the mind of the listener. Creating
software that can automatically locate acoustic correlates of these
features is difficult.

Automatically locating “emphasized” or “stressed” (O’Shaughnessy
1987) portions of a recording is easier, but emphasis is not always
correlated with major topics. A talker, for example, may use emphasis for
humor rather than as an indication of a new or important point. Some
talkers also tend to emphasize just about everything they say, making it
hard to identify important segments.

Perhaps the best way to evaluate such a system is to have a large
database of appropriately labeled speech data. This labeling is a time
consuming manual process. A variety of speech databases are
available,74 but much of the existing labeling has been oriented toward

74Such as through the Linguistic Data Consortium at the University of Pennsylvania.
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speech recognition systems rather than high-level information based on
the prosody of spontaneous speech.

In a study of automatically detecting emphasis and creating summaries
(Chen 1992) several methods were used to obtain time-aligned emphasis
labels. Subjects listened to speech recordings (in real time) and rated
regions of the recordings on three levels of emphasis; other subjects
listened to the same material and selected portions to create a summary.
In another portion of the work, subjects identified emphasized words
from short (2–5 second) phrases extracted from telephone
conversations.75 The hand-labeled summary data was used to develop an
emphasis detection system and to evaluate the summaries that were
created automatically.

Another method of evaluating the segments selected from a recording is
to have subjects compare the results of different segmentation
techniques. In the usability test (section 5.10) this type of evaluation was
used to rate pitch-based versus isochronous segmentation methods. This
style of comparison is useful for obtaining relative measures of perceived
effectiveness. Note that in this portion of the test the touchpad interface
was not used; subjects rated only the segmentation, not the interactive
user interface for accessing the segments.

6.3.1 Combining SpeechSkimmer with a Graphical Interface

While this research has focused on non-visual interfaces, the techniques
developed can be combined with graphical or other visual interfaces.

A visual component could be added to SpeechSkimmer in a variety of
ways. The most basic change would be to make the skimming template
active, so there is a graphical indication of the current speed, skimming
level, and location within the recording (i.e., a time line display). The
system could also be integrated into a full workstation-based graphical
user interface. Besides mapping the fundamental SpeechSkimmer
controls to a mouse-based system, it is possible to add a variety of visual
cues, such as a real-time version of figure 5-5, to aid in the skimming
process. Note that one must be careful not to overload the visual system
since the user’s eye may be busy (e.g., watching video images).

Existing graphical interfaces for manipulating temporal media that
contain speech can be enhanced with SpeechSkimmer technology. For
example, the video streamer (Elliott 1993) and Media Streams (Davis
1993) systems make primary use of the visual channel for annotating,

75Subjects were not required to perform this task in real time.
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logging, editing, and visualizing the structure of video. These kinds of
systems have concentrated on visual tools and techniques for navigating
in video, and could be enhanced by adding the speech skimming
techniques explored in this dissertation.

These video-based interfaces can be tied to the speech skimming
interface and vice versa. For example, when quickly flipping through a
set of video images, only the related high-level segments of speech could
be played, rather than playing the random snippets of audio associated
with the displayed frames. Similarly, the SpeechSkimmer interface (or
perhaps a mouse-based version of it) can be used to skim through the
audio track while the related video images are synchronously displayed.

6.3.2 Segmentation by Speaker Identification

Acoustically based speaker identification can provide a powerful cue for
segmentation and information retrieval in speech systems. For example,
when searching for a piece of information within a recording, the search
space can be greatly reduced if individual talkers can be identified (e.g.,
“play only things Marc said”).

The SpeechSkimmer system has been used with speaker identification-
based segmentation. A two person conversation was analyzed with
speaker identification software (Reynolds 1993) that determined when
each talker was active. These data were translated into SpeechSkimmer
format such that level 1 represented the entire conversation; jumping
took the listener to the next turn change in the conversation. Level 2
played only the speech from one talker, while level 3 played the speech
from the other. Jumping within these levels brought the listener to start of
that talker’s next conversational turn.

6.3.3 Segmentation by Word Spotting

Keyword spotting can also be used for segmentation, and incorporated
into the speech skimming system. Keywords found in recorded
utterances can be used as text tags to allow for flexible information
retrieval. Higher-level summarization or content-based retrieval methods,
however, such as the gisting techniques described in section 1.4.2, will
ultimately prove more useful. Such gisting systems may become
common as recognition technology continues to evolve, but may be most
useful for information access when combined with the skimming ideas
presented here.
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6.4 Summary

Speech is naturally slow to listen to, and difficult to skim. This research
attempts to transcend these limitations, making it easier and more
efficient to consume recorded speech through interaction and processing
techniques. By combining segmentation techniques that extract structural
information from spontaneous speech with a hierarchical representation
and an interactive listener control, it is possible to overcome the time
bottleneck in speech-based systems. The systems presented here provide
“intelligent” filtering of recorded speech; the intelligence is provided by
the interactive control of the human, in combination with the speech
segmentation techniques.

An effort has been made to present this research clearly and simply.
Many of the techniques and systems described herein may seem obvious
in retrospect, but these solutions were untried and unknown when this
research began. Initial system prototypes were more complex, and
therefore more difficult to use and describe. In simplicity there is
elegance.

The Hyperspeech exploration system was compelling to use, or listen to,
for many reasons. First, interacting with a computer by speech is very
powerful, particularly when the same modality is used for both input and
output. Second, speech is a very rich communications medium, layers of
meaning can be embedded in intonation that cannot be adequately
captured by text alone. Third, listening to speech is “easier” than reading
text—it takes less effort to listen to a lecture than to read a paper on the
same subject. Finally, it is not desirable, or necessary, to look at a screen
during an interaction. The bulk of the Hyperspeech user interface was
debugged by conversing with the system while wandering around the
room and looking out the window. In speech-only systems, the hands,
eyes, and body are free.

Just as it is necessary to go beyond the “keyword barrier” to partially
understanding text in advanced information retrieval systems (Mauldin
1989), we must go beyond the “time compression barrier” to understand
the content of speech recordings in new audio retrieval systems.
SpeechSkimmer is an important advance in this direction through the
synergy of segmentation and interface techniques. When asked if the
system was useful, one test subject commented “Yes, definitely. It’s
quite nice, I would use it to listen to talks or lectures that I missed … it
would be super, I would do it all the time. I don’t do it now since it
would require me to sit through the duration of the two hour
[presentations] …”
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This dissertation presents a framework for thinking about and designing
speech skimming systems. The fundamental mechanisms presented here
allow other types of segmentation or new interface techniques to be
easily plugged in. Note also that SpeechSkimmer is not only intended to
be an application in itself, but rather a technology to be incorporated into
any interface that uses recorded speech. Skimming techniques, such as
those developed here, enable speech to be readily accessed in a range of
applications and devices, empowering a new generation of user interfaces
that use speech. When discussing the SpeechSkimmer system, one of the
usability test subjects put it cogently: “it is a concept, not a box.”

This research provides insight into making one’s ears an alternative to
one’s eyes as a means for accessing stored information. Tufte said
“Unlike speech, visual displays are simultaneously a wideband and a
perceiver-controllable channel” (Tufte 1990, 31). This dissertation
attempts to overcome these conventional notions, increasing the
information bandwidth of the speech channel and allowing the perceiver
to interactively control access to speech information. Speech is a
powerful medium, and its use in computer-based systems will expand in
unforeseen ways as tools and techniques, such as those described here,
allow a user to interactively skim, and efficiently listen to, recorded
speech.
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Glossary

cm centimeter
CSCW computer supported cooperative work
dB decibel
dichotic a different signal is presented to each ear
diotic the same signal is presented to both ears
DSI Digital Speech Interpolation
F0 fundamental frequency of voicing
HMM Hidden Markov Model
Hz frequency in Hertz (cycles per second)
isochronous recurring at regular intervals
I/O input/output
kg kilogram
kHz kilohertz
LPC linear predictive coding
monotic a signal is presented to only one ear
ms milliseconds, 1/1000 of a second (e.g., 250 ms = 1/4 s)
pitch see F0
RMS root mean square
s second
SNR signal to noise ratio
SOLA synchronized overlap add method of time compression
TASI Time Assigned Speech Interpolation
wpm words per minute
ZCR zero crossing rate (crossings per second)
µs microseconds, 1/1000000 of a second
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