
Chatter: A Conversational Learning Speech Interface

Eric ~ y ' and Chris Schmandt
Speech Research Group, MIT Media Laboratory

20 Ames Street, Cambridge MA 021 39
ly @media.mit.edu, geek@media.rnit.edu

ABSTRACT

The proliferation of communication devices has brought
into being a host of media, including the use of voice
over telephones, text in e-mail and images in faxes. As
people become more mobile, they will need portable
devices to access information in a timely way, whether
they are in the office or on the road. The telephone is a
convenient and ubiquitous device which people already
know how to use, and it offers a familiar interface. But,
traditional touchtone-based applications are hard to use.

Chatter is a speech-only application operated over the
telephone for accessing information about members of a
work group, including messages, locations of people,
addresses and phone numbers. It accepts instructions
from the user through a speech recognizer and generates
output with a speech synthesizer. Chatter maintains a
discourse model, making exchanges more natural and
efficient. It develops a model of the user over time,
which it then uses to suggest courses of action and to
alert the user to potentially interesting information.

KEYWORDS

Interface agents, audio input and output, time manage-
ment, interaction styles, discourse, language parsing and
understanding, speech recognition and synthesis.

MOTIVATIONS

Today, people have an increasing need to get timely
information in a variety of settings. The greater mobility
of working people has created the need to stay in touch
with others remotely, spurred by the advent of the tele-
phone and, at the same time, encouraging the develop-
ment of portable computers, pagers and fax machines.
Besides voice, people now also communicate using text

1. The author is currently affiliated with Stanford University
and can also be reached at ly @cs.stanford.edu.

Presented at the AAAI '94 Spring Symposium
on Multi-Media Multi-Modal Systems, Stan-
ford, CA, March 1994.

messages and images. Meanwhile, workstations have
been evolved to handle different forms of media, with
which they can now begin to deal effectively. Text, voice
and images can now be stored cheaply on the desktop,
where it has also become common for keeping personal
information. As important as it is to access information
on the desktop, however, there is an increased need to
access the same information away from the desktop.

Though not immediately obvious, the telephone is an
effective remote interface for accessing such information
for several reasons. People are already accustomed to
using it, and they are available everywhere. Furthermore,
as computational and storage requirements increase,
telephones as interfaces will not encounter the same
scaling problems like portable computers, since they ccm
be connected to arbitrarily powerful back-ends.

Roots of this project grew from an earlier project called
Phoneshell. Phoneshell is a telephone interface which
lets users access text and audio information stored on a
workstation [8, 91. It contains a suite of applications
available through a system of menus, including voice
mail among a local group of users, rolodex, calendar,
dial-by-name, e-mail, and fax and pager management
applications. With the exception of playing and record-
ing audio messages, Phoneshell uses speech synthesis
for output and the telephone's keypad for input. It has
been in actual use by the group for several years and
proves to be a vitals means of communication.

Yet, its user interface leaves more to be desired. While
direct, the use of menus for options and the keypad for
command selection is relatively impoverished. Unlike
graphical interfaces, speech is a time-consuming, serial
medium. Simply listening to a menu of commands takes
time. Phoneshell also groups related commands into
hierarchical menus, and the difficulties encountered with
such a command structure are well-known. Given that
the application is also completely command-driven and
feature-rich, a user was often lost in a sea of choices.

The aim of Chatter is to present these choices in a more

effective way. The telephone domain can accommodate a
more "conversational" approach to interaction, since
people already tend to communicate in this way with
others.

Chatter is an attempt to solve these difficulties in
Phoneshell's user interface. Since people are more
accustomed to speaking than pressing buttons, Chatter
uses a speech recognizer to accept commands instead of
buttons. Natural conversation also employs powerful
context to make communication more expressive and
efficient, so context is a significant consideration in
speech interfaces. Until now, most interfaces have also
been one-sided; if the conversational experience is to be
more natural, then interfaces must become more proac-
tive. They should learn about their users and make sug-
gestions to assist at appropriate times, helping them to
focus on the important aspects of the program. Chatter
uses a combination of discourse theory and machine
learning to make such a conversational interface.

USER INTERFACE

The primary aims of the design of the Chatter user inter-
face are two-fold: (1) the interaction should be as effi-
cient as possible without incurring significant
opportunity for miscommunication; (2) the interface
should be proactive in making appropriate suggestions.
Designing a good conversation requires making the
computer's feedback brief and interruptible to conserve
time and reduce the amount of information the user must
remember [6, 131. Studies of communication over tele-
phones also indicate that speakers alternate turns fie-
quently, and utterances are typically very short [7, 151. If
an interface can also make correct suggestions often,
users only have to agree to them, rather than issuing
complete commands. Because speech recognition will
never be perfect, getting users to choose among fewer
utterances will result in better recognition rates.

Functionality
Rather than having applications, Chatter contains the
abilities to help the user complete a number of tasks:

E-mail and voice mail. The application allows the
user to play text or voice messages [l 11 and multime-
dia messages with text and voice attachments. Text
messages are converted to speech using a speech syn-
thesizer, and voice messages come from the voice mail
system or from voice attachments in multimedia mail.
Users can also send or reply using voice messages,
which are formatted as voice mail or multimedia mail.
Commands for saving messages to files for later view-
ing, deletion or forward are also present.

Phone dialing. Chatter uses telephone numbers found
in the user's rolodex to place calls for the user, a natu-
ral function for telephones. When the user makes a
request to call, Chatter initiates a conference call, dials
the number and patches the third party into the call.

Rolodex access. The application also allows the user
to access the information in his rolodex, which stores
information about people's home, work and e-mail
addresses, home, work and fax numbers, and addi-
tional remarks. While the rolodex is maintained at the
workstation, its data can be obtained remotely.

Activity information. To facilitate real-time commu-
nication, Chatter can also inform the caller of the
whereabouts of others in the work group. Information
about the location of users is collected from active
badges users wear [12].

Sample Dialog
The following session demonstrates many of the ideas of
the Chatter interface. It is annotated with noteworthy
aspects of the interaction. Text not parsed by the recog-
nizer are in italics:

C:Hi. Who's this?
H:It's Eric.
C:Hi Eric! You have two mes-
sages. Hear them?
H:OK.

C:Message 1 is a voice mes-
sage from Lisa

H1 Eric, it's Usa. I have the
references you asked about.
Z'nz at lwnle today and nzay
not get to Lab. If you need
tlienz in a hurry, call me. Bye!
End of message.

H:Where's Lisa?
C:Lisa was last seen about ten
minutes ago on Phoneshell.
Call her?

H:OK. Call her at home.
C:Calling her at home.

Conversation with Lisa takes
place. Eric decides to go to
Lisa's house to go pick up
papers.

The user logs on. Chatter makes
a suggestion about messages to
read, and the user accepts the
suggestion. What the user does
first is remembered by the inter-
face so it can be suggested later.

The interface plays Lisa's
recorded voice mail message.

The user interrupts the current
topic of dialog to ask the location
of Lisa. Since Chatter has loca-
tion information about users, it
can give information about when
Lisa was last seen. Chatter infers
from past situations that the user
is probably interested in calling
her, so it makes the suggestion.

The user affirms the suggestion
and adds additional information
to the command about calling her
at home. Chatter uses the number
stored in the user's rolodex for
dialing.

C:Anythimg else about Lisa?
Ryes, what's her home
address?

C:Her home address: 572
Main Street #118, Cam-
bridge, MA 02139.
H:OK.

C:Message 2 is from Don
Jackson about "a phoneshell
bug". Read it?
H.OK.
C:Eric, this message seems to
be breakphoneshell. Can you
fix it? Thanks. Original mes-
sage from SPOOL@north-
eastem.edu follows:
...
C:End of message. Send a
reply 7
H:No, forward it to Jordan.

C:Record your voice message
to forward to Jordan.
H:Jordan, it's Eric. Can you
see ifyou canJix this bug?
Don is I~aving some trouble
with it. Thanks.
C:Sending your message.

H.Call.
C:Call Don?
H. Yes.
C:Calling Don at work.

No answer from Don.
H:Cancel. Send a voice mes-
sage.
C:Send a voice message to
Don?
H:Yes.
C:OK. Record your message.
H:HI Don, it's Eric. Ifor-
warded your bug to Jordan,
so it should b e j i z d soon.

C:Sending your message. No
more messages to read. OK.
What now?
H:Good-bye.
C:See you later.

After the call finishes, it reminds
the user they've been talking
about Lisa and asks if he would
like to know more about her.

Chatter echoes the important
information back in the next
utterance because speech recog-
nizers often commit mistakes.
The address information is given
by the user's rolodex.

Chatter returns to reading mes-
sages for the user. Unlike the pre-
vious message, Chatter first asks
if this message is to read because
it is potentially long.

The interface has noticed that the
user usually replies to Don's
messages, so it makes a sugges-
tion. The user rejects, and the
new situation is recorded for
future reference.

Chatter knows that Jordan can
receive voice messages, so it
decides that it would be easiest
for the user to record a voice
message.

The user says call, an ambiguous
command because no person is
specified. Because of context
provided by the message being
read, the agent makes a guess as
to who it may be.

Don is not at his phone, so the
user exits from the call and
decides to send a message.

All messages are read, so Chatter
has run out of topics to talk
about. It asks the user what he
would like to do, and the user
signs off.

The above dialog shows how the user can operate in a

fairly natural dialog with the interface. Not unexpect-
edly, spoken dialog is shown to be a meaningful medium
for human-computer interaction because it is more
expressive than commands. It implies that speech inter-
faces have the potential to be even more expressive than
even visual interfaces if they can use powerful context.

Architecture
Because Chatter is meant to operate on real-world data
and events, its information is collected by several sub-
systems, which run asynchronously of the interface.
They are described in greater detail in [4,5].

Of particular importance is the collection of speech and
audio data from the telephone. Input of audio is provided
through a workstation telephone interface. A Sun Sparc-
station handles all call control via an ISDN software and
hardware interface. Telephone audio is captured on the
workstation through an audio server process [I]. A soft-
ware-only speaker-independent, HMM-based speech
recognizer from Texas Instruments [14], operating at
close to real-time, receives audio from the audio server
and performs recognition on the input stream. A DEC-
talk device is used to convert text to speech for output to
telephone audio.

MODELING DISCOURSE

Chatter maintains a discourse model of the human-com-
puter interaction. It is derived from the GroszISidner dis-
course theory, which was first proposed for task-oriented
discourse in which participants are communicating to
perform tasks [2]. According to the model, discourse can
be analyzed into three interrelated components: a lin-
guistic structure, an intentional structure and an atten-
tional state. The linguistic structure is the external
decomposition of the linear sequence of utterances into
nested discourse segments, which serve as convenient
elements for analysis. A particular discourse segment
has an associated intention-the reason a speaker com-
municates it in the first place, say, a necessary step in a
chain of instructions. These intentions are captured in
the intentional structure. The attentional state is a
dynamic internal representation of the objects, properties
and relations salient at each point in the discourse. This
information represents the objects introduced into the
discourse that presumed to be known by the participants;
it forms the basis for the use and resolution of anaphora.

The three components interrelate because a change in
one usually results in a change of the other two. Since
the structures are nested, the current state of the dis-
course can be represented as a data structures on a stack,
known as the focus space stack. The discourse theory

also models interruptions, which are vital to interactive
speech applications. Interruptions are discussed in more
detail in a later section. The following sections discuss
the major issues in designing a discourse model for
Chatter.

Implementation
Implementing a real dialog system involves using
domain-independent (the discourse theory) and domain-
dependent information (the task model). Chatter imple-
ments a general framework for building conversational
systems, on top of which dialog specific to the given task
domain is built. One advantage of this approach is that
the basic framework is general enough that it can be re-
outfitted for other task domains.

The implementation organizes discourse around a set of
data structures representing segments. Since the three
components of discourse interrelate, it is convenient to
construct data structures representing segments of dis-
course and associated focus spaces. The basic approach
is to divide the interaction into a set of dialog segments,
each of which is represented by a data structure that
maintains state of the segment's dialog. Each dialog seg-
ment roughly corresponds to a major task of the applica-
tion. For instance, a segment exists for reading
messages, another one for sending and replying to mes-
sages, and so on. The segments also have computational
capabilities for resolving pronouns, generating user
feedback and subsetting vocabulary for the recognizer.

In this framework, the entity known as the focus space
stack will be called the dialog stack. Elements on this
stack are the previously-named dialog segments. Dialog
segments are slightly different from the theoretic dis-
course segments because they combine both linguistic
and intentional structures into the same entity. The state
of the dialog stack represents both the linguistic nesting
(for purposes-of anaphoric resolution, say) of the dialog
as well as its intentional state (goals of the current tasks).

Dialog segments are implemented as C++ classes, all of
which inherit from a base Dialogsegment class. The
dialog system currently has eight dialog segment classes.

Segment Function

Basesegment Simply asks the user what he would like to
do.

Callsegment Manages the task of calling a person.

ComposeSegment Allows the user to compose an e-mail or
voice mail message.

Exitsegment Becomes active at the end to terminate the
conversation with the user.

Segment Function

Greetsegment Initiates a Chatter session with the user;
helps establish the identity of the user.

Holdsegment Handles the dialog for putting Chatter on
hold.

PersonSegment Responds to user's questions about a per-
son's information, such as his addresses and
phone numbers.

Readsegment Handles the reading of electronic and voice
mail messages.

Speech Frame Dispatch Algorithm
The dialog stack is initially empty. User utterances are
analyzed into semantic speech frames (described in more
detail in [SJ), and segments are pushed on or off the
stack as they are needed to process the user's utterances.
When the user gives an utterance, it is converted into an
event, which is sent to the appropriate segment based on
the following algorithm.

1. Send the speech frame to the top segment on the stack
and see whether it can process the frame. If so, the
segment performs the appropriate execution and
returns a value indicating that it has processed the
frame and the algorithm is finished.

2. If the top segment cannot process the frame, then try
the frame with the next lower segment on the stack.
Continue to do so until the a segment has been found
which can process the frame.

3. If no segment on the stack can process the frame, then
see whether one of the inactive segment classes can
process the frame. Each segment class implements a
method which determines whether the segment can
respond to a given speech frame. The first segment
class which is found to respond to the frame is instan-
tiated and pushed onto the top of the stack.

As a simple execution example, consider the following
scenario where the user speaks read my messages, hears
the first message and says send him a reply. Initially, the
dialog stack contains only BaseSegment.

"Send him a reply."

"Read my messages."

-'TI Segment a

F[
Segment Segment 1

$,...,...., .,......,. o...... P

After receiving a speech frame for the first utterance, the
application realizes that none of the active segments can
process it. It finds that the ReadSegment class can pro-
cess the frame, so it instantiates a new segment and
pushes it onto the stack. At the second utterance, the sys-
tem realizes that neither ReadSegment nor BaseSeg-
ment can respond to the second frame, so it finds that the
ComposeSegment class can respond, instantiates one,
and pushes it onto the stack to handle the frame.

Segment Termination
Determining when a segment should complete and be
popped off the dialog stack depends on whether the pur-
poses of the segment have been fulfilled. With task-ori-
ented discourse, the answer depends on whether the task
at hand has completed. However, there are several subtle
issues which are a challenge to solve: some tasks have
"logical" end point. For instance, it is safe to say that the
ReadSegment does not terminate until after all mes-
sages have been read (or it has been told not to present
more messages), so the interface can be said to "drive"
the completion of this segment. Likewise, a Compose-
Segment does not terminate until a message is delivered.
For other segments, such end points may be less clear, In
the case of a Personsegment, the segment may com-
plete as soon as it receives a speech frame which it can-
not process, assuming the user has changed the topic.

For those tasks having natural breakpoints, the interface
may terminate a segment when such points arise. For the
ambiguous case, deciding when to terminate is an issue
of arbitration between the user and interface. Either the
user or interface can terminate a segment, so the problem
reduces to whether the user or interface is driving the
dialog. Fortunately, some tasks are amenable to being
more user-driven while others are more interface-driven.
Consequently, the user is driving its completion by ask-
ing the questions. (When the arbitration is more arbi-
trary, some learning mechanism can be used to discover
the user's habits and discover plausible stopping points.
This is an area of future work.)

In the implementation of DialogSegments, a segment
decides when it should self-terminate. The decision to
terminate is usually a result of processing the latest
speech frame or some timer expiring. A Dialogsegment
issues a terminate message to itself, and the dialog
mechanism will remove it from the dialog stack at the
end of the event cycle.

Even for segments with natural termination points,
determining when to terminate is not as straightforward
as noted. Often, leaving a segment active on the stack
after the task has completed is necessary because the

user's next request may force an otherwise terminable
segment to remain active. For example, a ComposeSeg-
ment invoked for replying to a message may be consid-
ered terminable when its message is delivered. Yet, the
user may want to continue the topic by saying something
like send the reply to Atty, forcing the segment to remain
active because the reply needs to be resolved. (In gen-
eral, the user may actually want to continue or refer to
focus that is long past in the discourse. In this case, a
more complete history of the discourse needs to be
memorized and algorithms for calculating references.
This is also a topic for future work.)

Interruptions
When handling questions and tasks, segments may pos-
sibly be suspended so that a sub-task can be performed.
Interruptions are disconnected flows of interaction. In
this dialog framework, they are detected when a active
segment responding to a speech frame is not at the top of
the stack. In this case, all segments above it are consid-
ered to be interrupted. An auxiliary stack is created, and
these segments are temporarily stored on the auxiliary
stack. When the interrupted segments are reintroduced,
they are returned to the main stack. Continuing with the
example in the last section, suppose that while the user is
sending a reply, he asks what's the next message? The
ComposeSegment he was using for the reply is inter-
rupted because the lower ReadSegment processes the
command, so the ComposeSegment is placed on an
auxiliary stack. When he reintroduces the topic by say-
ing Bnish that reply, the ComposeSegment is replaced
on the main stack and the auxiliary stack is deleted.

"Send him a reply." "Finish that reply:'

"What's the next message?" Segment

Base- ::

Segment j
. :.... 5

Main Stack Auxiliary Stack

Read-

I r

Time I

At the present time, it is not known whether more than
one auxiliary stack is needed, since it seems reasonable
that an interruption should be interruptible. The system
currently allows multiple interruptions by maintaining a
series of auxiliary stacks. However, in actual practice
people may only rarely interrupt an interruption.

Reintroducing Interrupted Segments
The ability to interrupt segments creates the need for

mechanisms to reintroduce interrupted or unfinished seg-
ments. Reintroducing a topic can occur in two ways.
First, the user may want to return to a segment that was
previously interrupted. The segment to which he is inter-
ested in returning is below the top of the stack or in one
of the auxiliary stacks. For instance, the user is in the
process of replying to a message using a ComposeSeg-
ment. He then asks for the sender's phone number,
invoking a PersonSegment. Then he says, ok, send the
reply to him. The phrase the reply effectively ends the
PersonSegment segment and reintroduces the previous
ComposeSegment by referring to the definite reply.

In the second case, the application may want to reintro-
duce a segment, which occurs when a segment has com-
pleted and is popped off the discourse stack, leaving an
old active segment on top of the stack. One example of
this situation is one where the user has just finished
sending a message with a ComposeSegment. He was
reading mail previously with a ReadSegment, so the
interface may ask him whether he would like to continue
reading messages. This question serves as the reintro-
duction of the unfinished task of reading mail by the
interface.

To accommodate segment reintroduction, the implemen-
tation is modified in two ways: first, the algorithm in 3.2
is changed so that any interrupted segment is allowed the
chance to process a speech frame before the dialog sys-
tem instantiates a new segment. Second, the vocabulary
for reintroducing a segment must remain active in the
recognizer. This vocabulary set may be more restrictive
than the one used when the segment is on top of the main
stack. Some segments have explicit reintroductions
while others have implicit ones. For example, an inter-
rupted ComposeSegment can be reintroduced by Jinish
that message orJinish that reply. For the ReadSegment,
reintroducing an interrupted segment is implicit: the
same command for reading another message while in the
mail reading context can also be used to reintroduce the
task, such as what's the next message?

Repairing Errors
A major problem in using speech recognizers is its accu-
racy; no recognizer will ever be perfect so interaction
techniques must be developed to accommodate the pres-
ence of errors. Chatter provides several mechanisms for
error repair due to recognition errors or changes in user
intention. First, because it is impossible to tell when any
utterance is actually correctly recognized, any informa-
tion given is explicitly or implicitly restated or "echoed"
to the user in the subsequent response. In the case that an
utterance is incorrectly recognized, the user has the
opportunity to correct the accepted information. At any

point, the information given in the last step can be
changed, whether it is as the user intended. The resulting
interaction is still efficient because the information to be
echoed is usually short or can be summarized.

Speech recognizers usually exhibit three types of recog-
nition errors: insertion errors, rejection errors and substi-
tution errors. Chatter handles each in different ways:

* Insertion errors. To prevent the interface from accept-
ing commands which were not spoken, the interface
currently has stop listening and pay attention com-
mands, described above briefly. Upon hearing stop lis-
tening, the interface suspends itself until a pay
attention is heard. These commands allow the user to
"turn off' the interface to stop extraneous insertion
errors. If an insertion error has already occurred, the
user can issue a cancel command to cancel the current
task.

Rejection errors. Such errors cannot be handled satis-
factorily at the moment because the speech recognizer
does not report the fact that something was spoken but
yet unrecognizable. It is expected the recognizer's pro-
grammatic interface will be extended so that such
errors are reported to the application, allowing the it to
query the user again.

Substitution errors. Such errors are the most chal-
lenging of the three to correct; they occur when the
recognizer mistakes what the user has spoken. Con-
sider the dialog:

H: Send e-mail to Barry.
Computer heard send e-mail to Eric.
C: Record your e-mail message for Eric.
H: Send e-mail to Barry.
...

Barry is misrecognized for Eric, so the user repeats the
entire original utterance hoping to clarify his request.
Assuming the recognizer correctly recognizes at this
point, the problem is that the system does not know
whether the user has interrupted the task with a new
one or whether he is trying to make a repair (intonation
information is not available).

To avoid the problem of resolving the discrepancy, the
following convention for repairing information has
been adopted. Whenever a piece of information is mis-
recognized, the user can repair the incorrect informa-
tion but preceding a correction by no. In the above
example, the mistake can be corrected by no, Barry.
This correction is then verified by the response send it
to Barry instead?

More serious errors or misunderstandings can be can-
celled by a scratch that command, which allows the sys-
tem to completely forget all information that was newly
introduced in the most recent utterance. This command
is distinct from a cancel or never mind command, which
has the effect of aborting the active segment.

Dialog Generation
The dialog system uses a relatively simple but powerful
scheme to generate responses and queries based on tem-
plate-matching. Each dialog segment class maintains a
set of templates for generating responses. A template is a
complete utterance with embedded unbounded named
variables. These variables represent information to be
echoed to the user or information to be queried. As a
user's utterance is analyzed, some of these variables and
their associated values are asserted into a database.
When the utterance is completely analyzed and the time
arrives to generate a response, the system searches for a
template in which exactly the same variables have been
asserted into the database, unifies the template, and
speaks the response.

LEARNING ABOUT THE USER

As programs and the information they access become
increasing complex, interfaces must also become more
proactive in alerting the user to the capabilities of the
program at appropriate times during interactions. Simi-
larly, since user interactions are often consistently idio-
syncratic, they are amenable to many levels of
automation by the interface. Interfaces should develop
models of their users through observation and make sug-
gestions about appropriate actions to take.

In Chatter, a machine learning approach is used to pre-
dict information and actions which a user is likely to
want to use. This section describes the machine learning
approach taken to user modeling based on memory-
based reasoning (MBR) algorithms described in depth in
[3, 10,5]. The approach has also been used in an e-mail
agent and a calendar scheduling agent, described in [3].

MBR generally works by representing situations as vec-
tors of features. These features are computed and stored
in a database of situations over time. Part of the recorded
situations are the actions that the user took in them, so
these actions are the source for making suggestions to
the user.

Chatter makes suggestions by looking in the MBR data-
base for a set of situations which are similar to the cur-
rent situation. These previous situations have associated
action values recording the user's past actions. Based on

these values, a confidence level between 0 and 1 is com-
puted based on the similarity of the action values. If the
confidence is above some threshold T, then the interface
makes the most frequently occurring action as a sugges-
tion to the user.

These suggestions must be fitted into the context of the
discourse so that they arise at appropriate times; if the
user is trying to perform a task and the interface contin-
ues to make irrelevant suggestions, such a customizable
interface becomes an annoyance rather than a conve-
nience. A later section addresses these issues in detail.

Unlike other rule induction schemes in which rules are
inferred based on regularities in the data and then used,
MBR works directly off the database. No explicit rules
are pre-computed. This approach was chosen because it
is not only simple but also particularly well-suited to
handling idiosyncratic behavior users exhibit.

Suggesting Information
In this task domain, the information of interest are e-mail
and voice mail messages. The interface can become pro-
active by bringing up interesting information to the user.
Presumably, if the user has nothing to talk about, the
interface can always strike a conversation with a new
topic-in this instance some message to read. A list of
messages sorted from "most interesting" to "least inter-
esting" can be constructed by determining the following
features of messages:

I nPe Features

E-mail Subject
Is it a reply message?
Sender
Recipient
Is the mail is directly address to the user?
Mail domain of sender
Quantized length (5 values)
Interest flag

Voice mail Sender string
Does the call have an associated caller id?
Quantized length (5 values)
Interest flag

These features are computed automatically by the pro-
gram whenever new messages arrive [5]. The choice of
features descends from informal observations of rules
that users in the group used for filtering their mail with a
regular-expression based mail filtering program. The
body of messages are not currently analyzed.

The quantized length feature is an integer value repre-
senting a description of the length of the message. The
actual length is not used because it is relatively meaning-

less in the MBR algorithm. The length property may be
an important feature in the speech domain because there
is a considerable cost to listening to lengthy messages.
The interestjag is not actually a feature of the message
but of the situation during which it was read. The flag is
true when the user has attempted to contact the sender by
mail or phone through the interface. This event is consid-
ered important because presumably, the user is attempt-
ing to communicate with the person, and any messages
from that person may have to do with communicating
with him.

Once the features of messages are represented, the inter-
est level the user gives them must also be represented as
part of the situation. This table presents the four possible
levels and how user actions are translated into one of the
actions:

Interest level How it gets this label

Very interested User listens to message on first pass or interest
flag is on.

Interested User listens to all or part of message on a sub-
sequent pass.

Not interested User does not listen to message body at all.

Ignore Upon hearing sender and subject, user deletes
message without listening to message.

When Chatter presents messages, it does not read mes-
sage bodies by default on the assumption that most mes-
sages will be either uninteresting or too lengthy. The
interface only recites the sender and subject of each mes-
sage. In the table, first pass means that the user chooses
to listen to a message when it is presented to him the first
time. Subsequent pass means he reads the message when
re-scanning the message list.

Statistics are collected at the end of an interactive ses-
sion with Chatter, and the sort for new messages will
occur at two levels. The list is ordered using the four
interest levels. When a new message arrives, its interest
level is predicted using MBR, which places the message
into an interest category. The confidence level of the
message is then used to rank the message inside the cate-
gory. This process is used to generate a sorted list of
messages.

Introducing Message Suggestions
Once message suggestions are collected into a buffer,
they must wait until there is an appropriate point in the
dialog for changing the topic. Messages and other infor-
mation types can arrive asynchronously during an inter-
active session but should be held until the current task is
completed. More importantly, there is also the issue of

whether the user or agent is controlling the initiative and
how it can be arbitrated. Chatter takes the straightfor-
ward approach by implementing the following state
machine:

Waiting
for accept

Start of
Interaction -

Resign
suggestion Initiation

from list behavior

The application maintains a list of interesting topics.
When the user first begins a dialog, Chatter attempts to
take the initiative by making suggestions about interest-
ing messages. This process continues as long as the user
is interested by responding positively to the suggestions.
When the user ignores a suggestion, Chatter goes into a
state where it does not suggest new information of inter-
est until the user asks it to.

Suggesting Actions
Chatter also uses MBR to learn the "paths" that users
take in their interactions with the application. This
approach is inspired by other user interfaces which take
the "guided" approach, in which at the end of every step
or command, the interface suggests the next step. The
intuition is that performing one task might suggest
another task. For example, when someone reads a mes-
sage, the next natural step may be to reply to it.

Chatter takes a different tack on the problem. In other
user interfaces, the "next" step is often at the whim of
the application's designer, whose guesses, though rea-
soned, may not correspond to what users' actually do.
Users may often use an application in unexpected yet
useful ways, and a learning interface can provide the
mechanism for building an emergent task structure.

Initially, the user begins with an application with a
somewhat unstructured task set. As the user uses the
application more and more, the transitions from task to
task are remembered. Connections between tasks are
established, and the interaction becomes more guided,
except that these links are customized to the individual.
The interactive experience becomes more efficient
because the agent can suggest an appropriate course of
action to which the user needs only to answer yes, or

give another choice to proceed. Suggestions may be
given by the segment currently at the top of the stack.

So far, these ideas have been used in Chatter most deeply
in the interactions relating to reading messages. After a
message is read, one or more of the following actions
can be taken on the message:

I Action How It gets this label I
Reply User replies to message.
Forward User forwards message to another user. (In a for-

ward, the recipient is also recorded.)

Save User saves message into mail folder.

Delete User deletes mail after reading it.

None User reads next or previous message.

As an action is taken on an individual message, it, along
with features of the message, are recorded in the MBR
database for use in predicting future actions. The actions
above are not all mutually exclusive; if more than one
action is taken on a message, then the system assumes
that they are all likely candidate actions and asserts
records for each action taken. When the agent has a high
confidence on a suggestion, it asks whether the user
would like to perform the task. If the agent's suggestion
is rejected, the new choice is added to the memory.

Other segments have simpler preference modeling, as
their functionality is more limited. The features used in
representing situkions for segments are given below:

Segment Features Predicted Actions

Basesegment Next segment Most likely invoked
segment?

Callsegment Called party's name Call work or home
number?

Compose- Recipient's name Use what delivery
Segment means?

Action after mail is Action after mail is
sent sent?

Exitsegment None None

Greetsegment None None

Holdsegment None None

PersonSegment Informationrequested Information
(e.g. phone number, requested next?
address)
Action(@ taken on Next action?
person

Readsegment E-mail and voice mail Interest in message?
features given above
Action(s) taken on Action on message?
message

For example, the BaseSegment, which is the active top
segment at the beginning of an interaction, tries to learn
which task the user will most likely perform first after
the user has logged in. It alleviates the user from having
to tell the interface what to do first over time.

General Algorithm for Integrating Learning
An efficient interface means that the user does not have
to say a lot to get the point across. While learning is an
important element for speeding up interactions, it is only
one component toward a more efficient interaction.
Information needed to complete a task may be obtained
from many sources, since the desktop is so rich with
information. In performing tasks which require obtain-
ing information, the interface should generally be imple-
mented using the following interaction algorithm:

1. See if the information is already provided as part of
the instructed command. For example, if the user says
send a message to Don, then the recipient is specified
as part of the utterance.

2. Whenever possible, look in databases for information.
The Chatter domain provides some opportunities for
retrieving information about users from pre-pro-
grammed databases. Some arguments for commands
may be filled in by information from the database
based on already provided values. For example, a
database exists for users of voice mail subscribers. If
the user says send a message to Barry, and Barry is
voice mail subscriber, then suggest sending Barry
voice mail.

3. Determine whether MBR can guess at some of the
unknown features of the situation. A partially instanti-
ated situation provides useful context, which can be
used to predict some of the unknowns of a new situa-
tion. If so, then suggest the most-likely feature value.
The user has a chance to accept or reject it.

4. Engage in a dialog with the user to query for the nec-
essary information. If the interface cannot find the
information anywhere, it can only ask the user to sup-
ply it.

An information-rich environment frees the user from
having to specify commands fully every time.

CONCLUSIONS

The ubiquity of telephones today makes it possible to
access many kinds of information on the graphical work-
station with speech, allowing users to stay in touch with
their information in a timely way. People have developed
rich, extensive conventions for communicating in

speech, yet many computer speech systems today still
analyze utterances without context, not taking advantage
of the rich use of context found in conversation. Chatter
models conversation about a given task domain, result-
ing in a natural and efficient interaction style.

The interaction is guided or agent-oriented rather than
directly manipulated. The interface brings to the user's
attention interesting messages and offers to automate
actions. It also asks questions when it needs more infor-
mation to complete a task.

To model the user, Chatter relies on a machine learning
approach to collect relevant features about situations for
each user and, in future situations, makes suggestions
based on the assumption that the user will make similar
choices.

ACKNOWLEDGMENTS

We would like to thank Charles Hemphill of Texas
Instruments for adapting their recognizer to work with
the server presented in this paper. Our appreciation to
Raja Rajasekaran of Texas Instruments for making it
possible for us to use the recognizer. Thanks to Candy
Sidner and Pattie Maes for supervising this thesis
project. Matthew Marx is assisting in the implementa-
tion of this project.

This work was sponsored by Sun Microsystems, Inc.

REFERENCES

1. B. Arons. Tools for Building Asynchronous Serv-
ers to Support Speech and Audio Applications.
Proceedings of the ACM Symposium on User
Interface Software and Technology, 1992.

2. B. Grosz and C. Sidner. Attention, Intentions, and
the Structure of Discourse. Conzputational Linguis-
tics, l2(3): 175-203, 1986.

3. R. Kozierok and P. Maes. A Learning Interface
Agent for Scheduling Meetings. In Proceedings of
the ACM-SIGCHI International Workshop on
Intelligent User Interfaces, 1993.

4. E. Ly, C. Schmandt and B. Arons. Speech Recogni-
tion Architectures for Multimedia Environments.
In proceedings of American Voice Input/Output
Society, 1993.

6. A. Rudnicky and A. Hauptmann. Models for Eval-
uating Interaction Protocols in Speech Recogni-
tion. In proceedings of CHI '91, pp. 285-291.
ACM, 1991.

7. D. Rutter. Communicating by Telephone. Perga-
mon Press, 1987.

8. C. Schmandt. Caltalk: A Multimedia Calendar. In
proceedings of American Voice Input/Output Soci-
ety, 1990.

9. C. Schmandt. Phoneshell: The Telephone as Com-
puter Terminal. In Proceedings of ACM Multime-
dia '93 Conference, 1993.

10. C. Stanfill and D. Waltz. Toward Memory-Based
Reasoning. Communications of the ACM, 29(12):
1213-1228,1986.

11. L. Stifelman. Not Just Another Voice Mail System.
In proceedings of American Voice Input/Output
Society, pp. 21-26, 1991.

12. R. Want and A. Hopper. Active Badges and Per-
sonal Interactive Computing Objects. IEEE Trans-
actions on Consumer Electronics, 38(1):10-20,
1992.

13. J. Waterworth. Interaction with Machines by Voice:
A Telecommunications Persepctive. Behaviour and
Information Technology, 3(2): 163-177,1984.

14. B. Wheatley, J. Tadlock and C. Hemphill. Auto-
matic Efficiency Improvements for Telecommuni-
cations Application Grammars. Texas Instruments
technical report.

15. C. Wilson and E. Williams. Watergate Words: A
Naturalistic Study of Media and Communications.
Communications Research, 4(2):169-178, 1977.

5. E. Ly. Chatter: a conversational telephone agent.
MIT Masters Thesis, Media Arts and Sciences Pro-
gram, 1993.

