
Putting People First:
Specifying Proper Names in Speech Interfaces

 Matt Marx Chris Schmandt
 marx@media.mit.edu geek@media.mit.edu

 +1 617 253 9848 +1 617 253 5156
Speech Research Group
MIT Media Laboratory

20 Ames St.
Cambridge, MA 02139

ABSTRACT
Communication is about people, not machines. But as
firms and families alike spread out geographically, we rely
increasingly on telecommunications tools to keep us
“connected.” The challenge of such systems is to enable
conversation between individuals without computational
infrastructure getting in the way. This paper compares two
speech-based communication systems, Phoneshell and
Chatter, in how they deal with the keys to communication:
proper names. Chatter, a conversational system using
speech-recognition, improves upon the hierarchical nature
of the touch-tone based Phoneshell by maintaining context
and enabling use of anaphora. Proper names can present
particular problems for speech recognizers, so an interface
algorithm for reliable name specification by spelling is
offered. Since individual letter recognition is non-robust,
Chatter implicitly disambiguates strings of letters based on
context. We hypothesize that the right interface can make
faulty speech recognition as usable as TouchTones – even
more so.

KEYWORDS: speech recognition, error-repair, user
interface, conversational systems.

INTRODUCTION
A familiar puzzle goes like this: “If a tree falls in a forest
but no one hears it, does it make a sound?” Philosophical
considerations aside, the point is that the person makes the
event meaningful. What makes communication meaningful
is the interaction of two people who share ideas in order to
maintain a common reality. To recast that puzzle in the
context of communications, “If a message is sent but no
one receives it, does it mean anything?”

Names as protocols
We establish contact in face-to-face communication by
saying someone’s name. Names are, in effect, the
addressing protocol of conversation. When technology

facilitates communication, however, we must employ
different addressing protocols such as phone numbers or
email addresses which may bear little or no resemblance to
the person’s name. Since these data are only pointers,
remembering them is often difficult. Looking up someone’s
phone number or email address can be tedious: hence the
proliferation of “quick dial” buttons on telephones and
“alias” features on email programs. We want to refer to
people by their names, not by their numbers or handles: I
don’t say “call 6172539848” but “give Matt a call”;
likewise, I’ll say “I got email from Don” rather than “I just
received a message from 1194822.345@compuserve.com.”

There is perhaps a deeper reason that these
telecommunications pointers can be so bothersome.
Emmon Bach points out [1] that names are rigid designators
-- that their referents do not and cannot change. A name is
part of an identity, part of who we are. Telephone numbers,
by contrast, are reassigned as customers relocate; thus they
are “flexible designators” at best (again, to use Bach’s
terminology). An email address, too, may have a limited
life span. Focusing on the number or address instead of the
name, as is inevitable with telephone or email usage,
complicates communication.

Speech: a control channel for communications
As personal communication services become ubiquitous, so
do their accompanying computational tools. The
proliferation of laptop computers and Personal Digital
Assistants (PDAs) indicate a desire for on-demand personal
information. A parallel phenomenon is telephone access to
everything from bank account balances to movie schedules
via TouchTones.

Both telephones and PDAs suffer from impoverished
interfaces, however. The shrinking screens and chiclet
keyboards of PDAs limit the use of eyes and hands; any
fingernail-biter who has worn a calculator wristwatch can
attest to the difficulty of jabbing at tiny keys. Even worse
is the standard telephone, with no display and only twelve
keys.

Speech offers rich interaction with minimal space
requirements. We speak faster than we can type, and the

words we speak can describe an infinity of concepts. Speech
has been shown to be an interactive and expressive medium
due to the various linguistic and auditory cues available. [2]
There is little learning curve since we are all acquainted
with conversation beginning with our earliest years.
Further, the hardware required to facilitate voice control is
minimal. A remote device captures audio for processing at a
workstation elsewhere; as computing power becomes more
compact, voice-controlled PDAs may shrink to the size of a
microphone.

If speech is a powerful interaction modality for personal
communication services, and if proper names are so crucial
to communication, then it follows that speech user
interfaces must deal with names efficiently. The remainder
of the paper concerns the question of handling proper names
in telephone-based speech interfaces for communication
systems. Phoneshell demonstrates name specification in
conventional touch-tone-based interactive voice response
(IVR) systems, but its necessarily hierarchical interface
interferes with the ability to deal with multiple
applications. Improvements offered by the speech-
recognition-based system Chatter are discussed along with
the consequences of error-prone recognition. Finally, the
problem of faulty proper name recognition is compensated
for by an algorithm for reliably spelling names letter-by-
letter (despite poor letter recognition).

NAMES IN A TOUCHTONE INTERFACE:
PHONESHELL
Phoneshell is a touch-tone interface to personal
communication services including email, voice mail,
rolodex, calendar, news, and phone dialing. [6] During a
single phone call, the user can listen to a message (email or
voice) inviting him to lunch, check and update his calendar
with the new appointment, and call a third party to invite
her along. The continued use of Phoneshell -- it handles
upwards of 25 calls a day from the dozen members of the
Media Lab speech group -- demonstrates the utility of
speech interfaces for personal communication systems.

Keypad-based name specification
Since the user must likely deal with more names than there
are keys on the telephone, and since waiting to hear the
desired name a long list is tedious, the only sensible way to
specify a name using TouchTones is to spell it out. But
touch-tone spelling is tricky due to the mapping of letters
to the telephone keypad. Three letters are assigned to each
of the keys 2-9 as is printed on most telephone keypads; the
missing ‘q’ and ‘z’ are assigned to 8 and 9 respectively.
Thus the system must disambiguate the keys typed by the
user. The user enters a number of keys and Phoneshell
attempts to ferret out the intended name; if there are
multiple matches, it asks the user to choose between them.
In the example below, we want to specify the name
Edwards, which on the keypad is spelled 3-3-8-2-7-3-7.

Significant is the fact that not all six letters have to be
entered for the system to figure out which name the user
intended. By intelligently whittling down the list to only

the relevant choices, the user is spared unnecessary work in
typing keys which are not needed in order to uniquely
specify a name.

The success of keypad disambiguation depends on several
factors including the size of the database and the length of

NAMES KEYPAD LETTERS
Bennett
Davis
Dennison
Deveraux
Edwards
Ellison
Franklin
Nelson
Smith
Smithson
Thomas

3 d, e, f

Davis
Dennison
Deveraux
Edwards
Ellison
Franklin

3 d, e, f

Dennison
Deveraux
Edwards

8 w, x, y

Deveraux
Edwards

2 a, b, c
Edwards

Figure 1: implicit disambiguation of successive keys
narrow the list of possible names to one.

the names in that database. A study of disambiguation [3]
showed the chances of different names mapping to the same
touch tone keys to be no worse than the likelihood of
finding multiple individuals with identical last names; in
either case, user effort is required to identify the desired
name from the two or three duplicates/matches. From our
experience with Phoneshell, most names in a rolodex of
approximately 100 people can be specified with four keys
or less. The process of specifying a name in Phoneshell is
reliable and rather expedient.

Hierarchical interaction model
Any touch-tone application with more commands than
available keys must be segmented. Like most IVR
systems, Phoneshell presents the user with a menu, each
option leading to another menu, and so on until the actual
command can be invoked. As each keypress drops the user
into a lower level of the hierarchy, an escape key ‘#’ is
provided to let the user step one level back up the hierarchy.
This hierarchical structure forces the user to navigate out of
one set of choices and then into another set with a series of
keypresses.

Although Phoneshell supports multiple applications, it
maintains no context between them. In this respect it is

like running multiple applications in a window system and
mousing across windows. Yet the visual paradigm of the
window system is absent from the speech-only interface,
placing a greater cognitive burden on the user to keep track
of state. Losing one’s place is of far greater concern.

Now, it is conceivable that Phoneshell could keep track of
some context between applications, remembering the last
name specified. But how would one recall that name?
Designating a special “use the most recently specified
name” key is not an option since in every Phoneshell
application, each key already has a function assigned to it.

KEY ACTION
5 enter email reader
2 read message from Jeff
exit message
exit email reader
2 enter rolodex
jef* find Jeff
9 enter call mode
2 select home number
cancel call (line busy)
exit rolodex
1 enter voice mail
2 send message
jef* send message to Jeff
<record
message>
3 confirm sending

Figure 2: in a hierarchical touch-tone interface, the
name “Jeff” must be specified twice, once for each
of two consecutive tasks.

The anaphoric reference could only be done in the same way
as normal specification -- that is, by specifying out an
anaphoric “word”. For instances, one could type “11*” --
which doesn’t spell anything normally, and even if ‘q’ and
‘z’ are assigned to the ‘1’ key spells only QQ, QZ, ZQ or
ZZ, very unlikely names -- could recall the last name the
same way that “him” or “her” recalls the last person in the
discourse. Yet a special code like this is unnatural and may
lead to more confusion than it alleviates. Further, the
hierarchical structure renders context-keeping unnatural: a
user, consciously exiting one application and entering
another, may simply not expect the system to have kept
track of the last name specified.

Since Phoneshell does not maintain context between tasks,
a name must be re-specified for each new task. For instance,
to log in, read email from Jeff, attempt to call him at
home, and then send him a voice message requires several
steps.

The user has to specify Jeff’s name twice in order to
perform two tasks relating to him. The navigation and re-
specification necessitated by the hierarchical structure and
the lack of memory require the user to invest a significant
amount of effort in the mechanics of the application.

Focusing attention on such “application overhead” draws
the user away from the task at hand: communicating with
people. The user wants to deal with Jeff, not a suite of
applications.

NAMES IN A CONVERSATIONAL INTERFACE:
CHATTER
Chatter improves upon Phoneshell by refocusing the user’s
attention on people. Although the functionality of Chatter
parallels that of Phoneshell, offering access to voice mail,
email, rolodex and phone dialing, its interface is vastly
different. Using real-time speaker-independent speech
recognition, Chatter carries on a conversation with the user
to accomplish the desired tasks.

Keeping track of context
Any tolerable conversationalist has an idea of who and what
is being talked about. Chatter keeps track of the
conversation by means of a discourse model, an
implementation of the Grosz/Sidner discourse theory. [4]
The basic notion is that any utterance has a structure, a
purpose, and a state, and that each of these need to be
captured in order to facilitate conversation. For instance, the
utterance “send Jeff a voice message” has the structure of
[VERB PERSON DET ADJ NOUN], the purpose of
starting a sequence of recording a voice message and then
delivering it, and the state of making Jeff the topic of
discourse.

Chatter captures each of these three aspects in a set of
dialog segments, which are C++ classes with methods for
deducing the purpose described by the structure and then
executing it, and with variables to keep state. In the above
example, for example, the utterance is processed by a
ComposeSegment. The structure is interpreted by the
segment’s parsing method as a command to record a voice
message, so the method for recording a message is executed.
At the same time, when the person is specified, Chatter sets
a state variable in a PersonSegment to indicate that Jeff is
the most recent person specified. [5]

Segments exist for logging in to the system, reading
messages, composing messages, placing calls, accessing
the rolodex, and hanging up. At a given time, one or more
of the segments may be available to process the user’s
utterance; the user can issue a desired command without
having to navigate menus or explicitly switch applications.
In the middle of reading the day’s email messages, for
instance, the user can ask, “Where’s Chris? What’s his
work phone number?”, call him and then return to reading
the email messages where he left off. There is no
distinction between applications in Chatter; instead, the
different functions the user can perform are tasks which can
be performed or interrupted and returned to later. The user
need not exert effort to keep track of his place in the dialog;
Chatter does that automatically.

Anaphora
The discourse model keeps track of names in the
conversation. Since Chatter keeps state, it knows who is

being talked about. In conversation, we use a pronoun or
anaphor to refer to a person who has already come up in
conversation: “I saw Jennifer at the party over the weekend
and talked to her there, and then I met her at work on
Monday, where I gave her the paper I promised.” This is
more concise than “I saw Jennifer at the party over the
weekend and talked to Jennifer there, and then I met Jennifer
at work on Monday, where I gave Jennifer the paper I
promised.” Anaphoric reference helps to speed conversation
and make it less tiresome. Imagine speaking an entire day
without using anaphors!

Anaphors minimize the problem of name specification.
Once a person has been specified, a PersonSegment is
initiated and its state variable set to that person’s name.
Any anaphors which follow are then resolved to that person
until a new person is specified, at which time a new
segment is introduced and the old one deleted.

A name can be specified explicitly or implicitly. Explicit
specification occurs when the user introduces a person to
the conversation, usually by giving a command containing
someone’s name: “Send Jeff a voice message.” A new
PersonSegment is introduced and its state variable set to
‘Jeff’. Implicit specification occurs when a person is
introduced into the conversation by the system, as when the
user receives either email or voice mail. (The assumption is
that the user will want to respond, and if not, another name
will be specified anyway.) In order to introduce a new
segment for the message sender, the address of the email or
phone number from which the voice mail came must be
matched against the rolodex to find the appropriate name.

Let’s reexamine the interaction described for Phoneshell in
Chatter’s conversational interface. In addition to the

Chatter: Hello. Who’s this?
User: It’s Matt.
C: Hi Matt! You have some messages. Hear them?
U: Sure.
C: Message one is from Jeff about class tomorrow. Read
it?
U: Yes. <computer reads message>
C: What do you want to do with this message?
U: Call him at home.
C: Calling Jeff at home. <no answer>
U: Send him voice mail.
C: Record your voice mail message for Jeff. <message
is recorded>
C: Go ahead and deliver it?
U: Yes.

Figure 3: the name “Jeff” need not be explicitly
specified in a conversational interface as it is inferred
from the context of receiving a message and then
later referenced by anaphora.

conveniences afforded by speaking rather than using
TouchTones, the process of name specification is simplified
by implicit inference and anaphoric reference.

As the dialog shows, the name “Jeff” is implicitly specified
by Chatter when his email arrived. After that point, the
anaphor “him” is twice resolved to “Jeff”. Thus the problem
of redundant explicit specification in Phoneshell is solved
by supporting anaphora in Chatter’s discourse model. The
interaction scheme is neither hierarchical or modal. The user
can receive an email message from someone, check their
phone number, dial it, and if there is no answer then send a
voice message -- all without “changing applications” or
navigating menus.

WHY NAME RECOGNITION IS HARD
In the last section we focused on the utility of anaphora and
implicit specification in minimizing explicit name
specification. Yet explicit specification is a large part of the
interaction, and explicit specification involves name
recognition. Proper names present a particular problem for
speech recognizers.

Speaker-dependent recognition: the training
problem
The user has to train a speaker-dependent recognizer on each
word by saying it several times so that the recognizer can
build an acoustic model to use for pattern-matching. Given
an utterance, it checks to see which model makes the best
match and returns that word as having been recognized.
Thus the recognizer works only for the person who trained
it and only on the words which were trained.

A long list of words, such as the names contained in a
rolodex, might require substantial training. Even if the user
is willing to perform the initial round of training, the job is
never completely done: as new people are added to the
rolodex, their names must be trained as well. The user
experience includes not just usage but set-up and
maintenance as well, and if those overhead costs are high
the user may abandon the system.

Speaker-independent: the transcription problem
Speaker-independent recognizers, by contrast, are not tuned
for a specific voice. Instead of building models of words,
they use precomputed models of phonemes, the smallest
lexically significant elements of speech. (E.g., the word
“chat” contains three phonemes: ‘ch’, ‘a’, and ‘t’.) The
phoneme models are based on data from a large number of
speakers, and the words to be recognized are entered as
strings of phonemes in the lexicon.

Because speaker-independent recognition is difficult, the
space of possibilities is constrained with a grammar, a
syntactic representation of well-formed utterances. The
grammar specifies which words to listen for and how they
may be sequenced. For instance, the grammar defined below
specifies a list of names that the recognizer should listen
for. The count of possible options for the recognizer to
match the utterance against at any time is called the
measure of perplexity. The grammar below has perplexity
of 10 since there are ten names.

Given an utterance, the recognizer charts a path through the
space of possibilities based on the probability of one

Start(name).
name ---> Bennett
name ---> Davis
name ---> Dennison
name ---> Deveraux
name ---> Edwards
name ---> Franklin
name ---> Nelson
name ---> Smith
name ---> Smithson
name ---> Thomas

Figure 4: A grammar for name recognition. Each
name in the grammar is represented as a series of
phonemes in the lexicon (see figure 5).

phoneme following another. The “most likely” path, which
will correspond to one of the utterances defined in the
grammar, is then returned as having been recognized.

A speaker-independent recognizer cannot function without
an accurate lexicon, for if the strings of phonemes for some
word do not correspond to its actual pronunciation, the
recognizer will most surely fail. Most proper names,
however, are not included in the lexicon. It has been
estimated [7] that there are over 1.5 million surnames in the
United States, with approximately 1/3 of those unique.
It is possible to augment the dictionary with user-defined
pronunciations, but this presupposes a working knowledge
of phonetics as well as the notational conventions of the
recognizer. Even if one has the requisite skills, the process
is tedious. Furthermore, as in the case of training a speaker-
dependent recognizer, whenever a name is added to the
rolodex it must be added to the lexicon, as well.

The alternative is to automatically generate pronunciations
for proper names not found in the dictionary, but this is
difficult. Although language-specific rules exist for
converting words into phonetic representations, names
come from a variety of languages, each with its unique set
of pronunciation rules. Identifying the linguistic roots of a
particular name is nontrivial, though an algorithm is offered
by Vitale [8]. Even if the nationality can be determined,
some international names have been Anglicized and are thus
pronounced differently than in their mother country. Hence
an automatically generated phonemic representation of a
name is likely incorrect. With the dictionary full of
incorrect representations, the recognizer is doomed. For
example, the first syllable of the name Sidner “side-ner”
will likely be incorrectly transcribed as “sid” instead of
“side”, so when the recognizer attempts to match the
phonemes in the dictionary for Sidner against the user’s
pronunciation, it will may confuse it with another name.

Continuous spelling
Given the inevitability of faulty name recognition, a natural
fallback mechanism is to spell out the name. We define a

grammar in which each name is represented as the series of
letters of which it consists. In spelling out the name, the
recognizer treats the series of letters like a string of words.

Start(name).
name ---> B E N N E T T
name ---> D A V I S
name ---> D E N N I S O N
name ---> D E V E R A U X
name ---> E D W A R D S
name ---> F R A N K L I N
name ---> N E L S O N
name ---> S M I T H
name ---> S M I T H S O N
name ---> T H O M A S

Figure 5: A grammar for spelling names. Each word
is represented as a series of letters, each of which
has a phonetic representation of its own. (e.g., the
letter ‘s’ consists of the phonemes /eh/ and /s/).

Continuous spelling works rather well, but it is not
foolproof. Since the user speaks all the letters in a
continuous string without any space between letters, the
recognizer does not know how many letters to listen for.
And since each letter is itself represented by a series of
phonemes, the coarticulation of these phonemes may result
in confusion as to how many letters were spoken. If, for
instance, my rolodex contained by people with the last
name “Marx” and “Marks”, the recognizer may confuse the
spelling. The series of phonemes for “M A R X” is /eh m
ey ar eh k s/ and for “M A R K S” is /eh m ey ar k ey eh
s/. Especially when spoken quickly, these phoneme strings
are potentially confusable.

Another problem is the rate at which people spell names. If
we could agree to spell at an identical, constant rate,
spelling out a name might be a viable alternative. Yet
people spell at different rates depending on a number of
factors. If you ask me to spell my own last name, I’ll very
quickly say “M-A-R-X”. Ask me to spell the name of the
former Soviet leader, and it takes a little more time: “G-O-
R.....B-A-CHEV”. But a pause after the R can be fatal; as
many recognizers automatically endpoint speech (as
opposed to using a push-to-talk interface), the recognizer
will assume that the user was finished spelling if the pause
after the ‘R’ is long enough.. The lack of length constraints
often means failure for continuous spelling.

Letter-by-letter spelling
Another alternative is spelling the name one letter at a
time, processing one letter and then prompting for the next
one. Letter-by-letter spelling avoids two shortcomings of
continuous spelling: 1) since each letter is processed
individually, the recognizer can use the count of how many
letters have been spoken as an additional constraint in
matching names, and 2) since each letter is prompted for
and recorded separately, the rate at which people spell names
is irrelevant.

Obviously it takes longer to spell a name letter-by-letter
than to spell it continuously, but then again it takes longer
to spell a name continuously than to speak it as a word.
The tradeoff here is speed versus accuracy. If letter-by-letter
spelling is more reliable than continuous spelling, it can
provide a useful fallback mechanism when continuous
spelling fails.

Reliable letter-by-letter spelling is nontrivial because
recognition of individual letters is poor. Anyone who has
spelled their name and address over the phone is familiar
with techniques used to disambiguate similar-sounding
letters: “Is that ‘b’ as is ‘boy’ or ‘p’ as in ‘Paul’?”
Although the perplexity is only 26, many of the letters in
the alphabet are easily mistaken for each other. The
members of the “e-set” are dominated by a high front
vowel: /b/, /c/, /d/, /e/, /g/, /p/, /t/, /v/, /z/. Sets for other
vowels exist as well, including the “a-set” (/a/, /h/, /j/, /k/),
the “i-set” (/i/, /y/) and the “u-set” (/u/, /q/). Letters can also
be confused for characteristics other than vowels; for
instance, /s/, and /x/ are all dominated by a voiceless
fricative: “ssss”. One cannot rely on the recognizer to
correctly identify all letters correctly.

There are at least two approaches to overcoming faulty
letter recognition. One is to replace the letters with words
beginning with those letters -- words that are sufficiently
acoustically distinct so as not to be confused by a
recognizer. This is the military-style “alpha” “bravo”
“charlie” method of spelling. We reject this as too user-
hostile.

Our approach is to figure out what letter the user might
have meant by using considering the mistakes the
recognizer is likely to make as well as what letters are
relevant for the set of names in the application. To this end,
we construct a confusability matrix for a recognizer and
then work backwards to discern which letter the user must
have meant in order for the string of letters to match a name
in the list. This requires no extra knowledge on the part of
the user; indeed, the process of disambiguation should be
implicit and transparent. Details of the relevant algorithm
are given in the next section.

SPECIFYING NAMES
Since the user will need to explicitly specify names at
many points in the discourse, Chatter needs a reliable
mechanism for specifying a name from a large number of
choices. The following algorithm gives a three-step process
for reliably specifying a name.

1. Name recognition. If the user says a name, as
when trying to specify someone to look up in the
rolodex, the recognizer will do its best to match the
utterance against a name that it knows. Since the cost
of dealing with the wrong person may be very high (as
in sending a voice message to the wrong person) the
system parrots back the name for explicit yes/no
verification.

2. Continuous spel l ing. Failing name
recognition, the user may try to spell out a name all at
once, as in “P-A-T S-M-I-T-H”. The system then
pieces together the various letters into a name and
repeats it for verification.

3. Letter-by-letter spelling. Failing continuous
spelling, Chatter prompts for letters one at a time.
When enough letters have been gathered to uniquely
specify a name, Chatter returns the name.

The previous section discussed the unreliability of name
recognition and continuous spelling, and thus the need for
letter-by-letter spelling. Gathering letters one by one to
uniquely specify a name is a process of carving
impossibilities away from the list, similar to Phoneshell’s
implicit disambiguation of telephone keypresses. Chatter
performs a similar process of disambiguation, but the
disambiguation is based on how the individual recognizer
misinterprets letters rather on the universal three-letters-to-
one-number mapping of the telephone keypad. The
following letter-by-letter spelling algorithm uses several
techniques to guarantee that the correct name can be
specified even when individual letter recognition is
unreliable.

Subsetting letters
The previous section discussed the problems of letter
recognition. The perplexity of the alphabet is 26, and so if
we can reduce that perplexity our chances of success will
increase. Now, given a list of names we need only listen for
the relevant letters. We list the first letter of each name,

names subset recognized
Bennett
Davis
Dennison
Deveraux
Edwards
Ellison
Franklin
Nelson
Smith
Smithson
Thomas

b, d, e,
f, n, s,
t

e

Edwards
Ellison

d, l d
Edwards

Figure 6: Chatter only listens for the relevant letters,
(marked in boldface), simplifying recognition.

remove redundancies, and then subset to that list of letters
instead of the whole alphabet. The size of this list depends
on the number of names and their distribution among the
letters of the alphabet. The chances of recognizing the
correct letter are improved since the recognizer has fewer
letters to confuse. We repeat the process for the second

letter, third letter, and so on. The further along we get, the
higher the likelihood that fewer choices will remain.

The lower perplexity which results from subsetting to only
the relevant letters increases recognition performance. Thus
the recognizer will never return a letter which could not
show up at that letter position in the name.

Second-guessing the recognizer
Even if we subset to a small number of letters, the
recognizer may still identify letters incorrectly. We
construct a confusability matrix for the recognizer based on
many trials of each letter. Any letter that is returned
mistakenly for another is considered part of that letter’s
confusability set. Since we are working with a speaker-

a<-- ah n<-- anrs
b<-- abdepvz o<-- lo
c<-- ctz p<-- cdepvz
d<-- cdvz q<-- qu
e<-- e r<-- iry
f<-- fx s<-- fs
g<-- gt t<-- dept
h<-- h u<-- qu
i<-- iy v<-- bdepvz
j<-- adgjktz w<-- fmnw
k<-- adjkq x<-- sx
l<-- l y<-- y
m<-- mn z<-- defnstvxz

Figure 7: Confusability matrix for Dagger, a speaker-
independent, continuous-speech recognizer. A
letter returned by the recognizer might have
been mistaken for a letter spoken by the user.

independent recognizer, we want a speaker-independent
confusability matrix; ideally the confusability matrix
should be constructed using the same subjects whose
utterances were used to build the phoneme models.

From the table, if the recognizer returns the letter /d/,
chances are the user said one of the following: /c/, /d/, /v/,
or /z/. It is clear that some letters like /l/ are (nearly) always
correct: if the recognizer returns that letter then certainly
that’s the one the user said. The arrows point to the left in
order to reflect the chronological ordering: that is, if the
user says the letter /c/, /d/, /v/, or /z/, then the recognizer
could return the letter /d/.

Now, for each letter returned by the recognizer, we consult
that letter’s confusability set. We then consider any letter in
that set to be a valid match for that letter, and thus use all
of those letters in the confusability set to whittle down the
list of possible names.

Shown below is an example of how Chatter converges on a
name given imperfect letter recognition by consulting the
confusability matrix. The task is the same as for
Phoneshell: finding the name “Edwards” among a list of ten
names. The columns “SUB” and “RET” list the letters
subset to and the letter returned by the recognizer,

respectively. The column “CONFUSABLE” represents the
confusability set for the letter returned by the recognizer.

names sub ret confusable
Bennett
Davis
Dennison
Deveraux
Edwards
Ellison
Franklin
Nelson
Smith
Smithson
Thomas

b,
d,
e,
f,
n,
s,
t

t d, e,
p, t

Davis
Dennison
Deveraux
Edwards
Ellison
Thomas

a,
e,
d,
l ,
h

d c, d,
v, z

Edwards

Figure 8: Letters spoken by the user, though
misrecognized, are implicitly resolved to match the
desired name.

The algorithm converges on the name Edwards with only
two letters, only one of which was recognized correctly.
Indeed, the recognizer will converge on the correct name
even if the wrong letter is returned every time (assuming
the confusability matrix is accurate).

Adding the constraint of length
What happens, though, when the user has said all the
letters, but more than one name matches that which was
specified? There are two cases. In the first, Chatter
converges on two or more names of the same length -- were
one shorter it would have been eliminated previously --
which match the letters in the confusability matrix for each
of the letters returned. The system stops asking for new
letters, parrots back each of the possibilities, and asks the
user to choose between them as in Phoneshell.

In the second case, the desired name is a prefix of another
name in the last. So even though the user has said all of the
letters in the name, the recognizer continues to ask for more
letters since it thinks there are more matches to be had.
Chatter allows the user to terminate the letter-specification
procedure by saying “that’s all”. At this point, Chatter
evaluates its list of potential matches. If there is a name
with as exactly the number of letters that have been
collected so far, then it returns that one as the correct
choice. Thus the user is allowed to constrain the list by
signaling that the maximum number of letters has already
been entered -- a shortcoming of continuous spelling. Since
Smithson is also in the list, the system finds them both

legitimate matches until the user ends with “that’s all.”
Then it returns Smith as the only appropriate match given

names sub ret confusable
Bennett
Davis
Dennison
Deveraux
Edwards
Ellison
Franklin
Nelson
Smith
Smithson
Thomas

b,
d,
e,
f,
n,
s,
t

s f, s

Smith
Smithson

m m m, n

Smith
Smithson

i i i, r
Smith
Smithson

t t d, e,
p, t

Smith
Smithson

h h a, h
Smith
Smithson

“that’s
all”

Smith

Figure 9: Multiple names that match are handled by
saying “that’s all”, which gives the added constraint
of length. Chatter infers that the shorter name was
intended.

the constraint of length. This added constraint makes letter-
by-letter recognition more reliable than continuous
spelling.

EVALUATION
Both Phoneshell and Chatter use implicit disambiguation of
user input in spelling names. With TouchTones, each letter
is confusable with the two others which share its key,
whereas with speech recognition, the confusability set for
each letter can be different. In the confusability matrix
computed for the TI recognizer, the average confusability
set-per-letter is 3.3, suggesting that implicit
disambiguation of spoken letters should be almost as robust
as that of TouchTones.

Yet the question “are names best handled with TouchTones
or speech recognition” is not answered by the simple metric
of how quickly names can be spelled. One must consider
the entire interaction involved in dealing with names.

In Phoneshell, specifying a name always involves spelling
it out with TouchTones, so specification takes a constant
amount of time. Using speech recognition, Chatter might

get the right name the first time, which certainly takes less
time than spelling it out with TouchTones. If it fails,
however, then spelling it out will add up to more time than
it would have taken to spell it with TouchTones. It is thus
difficult to rank the methods by the amount of time taken.
Name recognition is faster if it works but takes longer if it
fails and the name has to be spelled out; hence, it is unclear
which method is optimal for the initial specification of a
name.

Re-specifying a name, as in calling the person after you’ve
read email from them, is easier with Chatter since anaphora
can be used. Saying “him” or “her” (which should be
recognized robustly) is faster than spelling out a name each
time with TouchTones. Actions which involve several
steps for a single person are likely more efficient with
Chatter.

The familiarity of speech is significant, as well. People
have been spelling words verbally for most of their lives,
whereas entering letters on a telephone keypad is an
unfamiliar process. For users of rotary-dial telephones, who
continue to constitute a significant percentage of the
population (especially in Europe), TouchTones are not even
an option. Admittedly, talking to a speech recognizer is not
as natural as talking to a person, but the process does not
require an entirely new protocol.

CONCLUSIONS
Both TouchTones and speech recognition can deliver
interfaces which enable users to manipulate names in
speech interfaces to communication systems. The
impoverished 12-key input channel of touch-tone-based
applications such as Phoneshell forces the user to spell
names in order to specify them, and the necessarily
hierarchical structure make it difficult to handle re-
specification of names. The conversational interface of
Chatter, made possible by speech recognition, breaks down
barriers between applications, making direct specification
potentially easier (just saying the name) and re-specification
simpler still.

Unlike touch-tone recognition, which is robust, speech
recognition is poor, especially of proper names which may
not have professionally-tooled pronunciations to work with.
Thus a system for spelling names with speech recognition,
implicitly disambiguating the recognized letters to figure
out which name the user was trying to spell, is necessary to
preserve the integrity of the interface. Armed with this
reliable fallback method, the Chatter interface can deliver on
its promised benefits. And as speech synthesis becomes
more realistic and recognition more reliable, intelligently
structured discourse like Chatter may occasionally leave
users wondering whether a computer or a human is on the
other end of the line.

Computers and their addressing protocols are like
stagehands which no one wishes to see in the spotlight.
Phoneshell took a strong step towards this goal by offering
an interface that shielded the user from the addressing

protocols of telephone and computer communication.
Chatter improves further by hiding much of the
computational infrastructure, allowing user to focus on
people rather than on applications.

ACKNOWLEDGMENTS
The various elements of the Chatter infrastructure as well as
most of the interactional details were designed and
implemented by Eric Ly. Charles Hemphill provided almost
daily assistance with Texas Instruments’ Dagger recognizer.
Special thanks to Raja Rajasekharan at Texas Instruments
for making it possible for us to use Dagger. This work was
sponsored by Sun Microsystems Laboratories.

REFERENCES
1. Bach, E. Informal Lectures on Formal Semantics, State

University of New York Press, p. 97.

2. Chalfonte, B., Fish, R., and Kraut, R. “Expressive
Richness: A comparison of Speech and Text as Media
for Revision” in proceedings of ACM conference on
Computer-Human Interaction, May 1991.

3. Davis, J. “Let Your Fingers Do the Spelling: Implicit
disambiguation of words spelled with the telephone

keypad” in proceedings of the American Voice
Input/Output Society, 1990.

4. Grosz, B., and Sidner, C. “Attention, Intentions, and
the Structure of Discourse.” C o m p u t a t i o n a l
Linguistics, 12(3):175-203, 1986.

5. Ly, E. “Chatter: A Conversational Learning Speech
Interface” in proceedings of AAAI Spring Symposium
on Intelligent Multi-Media Multi-Modal Systems,
March 1994.

6. Schmandt, C. “Phoneshell: the Telephone as Computer
Terminal” in proceedings of ACM Multimedia
Conference, August 1993.

7. Spiegel, M. “Pronouncing Surnames Automatically”,
In Proceedings of the 1985 Conference. San Jose, CA:
American Voice I/O Society, September 1985.

8. Vitale, T. “An Algorithm for High Accuracy Name
Pronunciation by Parametric Speech Synthesizer”, in
Journal of Computational Linguistics, 17(1), pp. 257-
276.

