
An Asynchronous Audio 
Server 

Chris Schmandt and Jordan M. Slott 

Speech Research Group, Media Laboratory 
Massachusetts Institute of Technology 
Building E15,20 Ames Street, Cambridge, MA 02139 



This document may not be duplicated without the specific permission of the 
authors. 

The authors may be found at the following address: 

Chris Schmandt (geekomedia-1ab.rnit.edu) 
E15-356 
20 Ames Street 
Cambridge, MA 021 39 

Jordan M. Slott (hordackomedia-1ab.mit.edu 
E15-344 
20 Ames Street 
Cambridge, MA 02139 

Chris Schmandt is a Principal Research Scientist and Head of the Speech 
Research Group at the MIT Media Laboratory. 

Jordan M. Slott is an Undergraduate student in the Department of Electrical 
Engineering and Computer Science at MIT. 

Copyright (c) 1994 Massachusetts Institute of Technology 

All rights reserved. 

ISBN 0-000-000000-0 



Contents 

CHAPTER I 

CHAPTER 2 

Introduction 11 
Requirements for an Audio Environment 12 

The Existing Sun Audio Interface 13 
Opening a Connection to the Audio Device 14 
Reading Data From and Writing Data To the Audio Device 15 
Audio Device Progress and Audio Processing 15 

An Audio Server Solution 16 
A Multi-Client Audio Server 17 
An Asynchronous Audio Server I7 

A Sample Audio Sewer Client 19 
Audio Server Include Files 20 

Establishing a Connection to the Audio Server 20 

Defining And Registering Asynchronous Callbacks 21 
Requesting the Audio Server to Play an Audio File 23 
Entering the Audio Server Main Loop 23 

C 

An Asynchronous Audio Sewer iii 



Contents 
i 

Complete Code Listing for P1ay.c 25 

CHAPTER 3 

CHAPTER 4 

CHAPTER 5 

Audio Server Events 27 

Fundamental Concepts of Playing and Recording 29 
Conceptual Model Behind Playing and Recording 29 

Files and Devices 30 
Digital Audio Filters 30 

Setting an Alternative Play and Record Device 31 
Setting the Device at Audio Server Start-up Time 31 
Setting the Device within the Client Application 32 

File vs. Buffer Operations 32 
What is a File? 32 
API Request for File Operatiorzs 33 
What is a Buffer? 33 
API Requests for Buffer Operations 33 

Obtaining PlayIRecord Status 34 

Playing Digital Audio 35 

Changing the Playing Device 35 
Changing the Default Audio Port 36 
Playing from Files versus Playing from Buffers 36 
Playing from Files 37 

Setting the File Name 37 
Setting the Starting and Stopping Times of the Play 37 
Starting and Halting a Play 38 
Putting Playing from Files All Together 39 
Using The s-play() Convenience Request 40 
Summary of Requests for Playing from Files 40 

Playing Audio Data From Buffers 41 
The s-asyncjday-buf() and s-asyrzcglay-~zew-buf() requests 41 
Using the bsm-bytes structure 41 
Receiving S-PLAY-BUF-EV events 42 
Signalling the End of the Audio Data 42 
Setting the Audio Format for Playing from Buffer 42 

iv An Asynchronous Audio Server 



Contents 

CHAPTER 6 

CHAPTER 7 

The Requests for Playing from Buffers 43 
An Example of Playing from BufSers 43 

Preprocessing the Audio Data 44 
Summary of Preprocessing Requests 44 

Recording Digital Audio 45 

Primary Recording 45 

Recording to Files 46 
Summary of Requests for Recording to Files 46 

Recording to Buffers 46 
Summary of Requests for Recording to Buffers 46 

Receiving Energy Events 46 
Summary of Requests for Energy Events 47 

Postprocessing the Audio Data 47 
Summary of Postprocessing Requests 47 

Multi-Client Operation and Audio Device Resource 
Management 49 

Audio Device Resource Management 49 
Client Priority 50 

Resource Management for the Playing Device 50 
Resource Management for the Recording Device 51 

Registering Interest In Audio Server Activity 52 
What is this all About? 52 
Interests 53 
lntents 54 
Data and Event Interests In Practice 54 
Examples 54 

Unregistering Interests 55 
Multi-Client Requests 55 

CHAPTER 8 The Sound File Directory 57 

The Default Sound Directory 57 

Great Events of the Twentieth Century V 



Contents 

Utility Routines for Managing Directories 59 
Utility Routines For Managing Audio Files 60 

vi An Asynchronous Audio Sewer 



Figures 

FIGURE 1. Clients interact with the Sun audio device. 14 
FIGURE 2. The Audio Server Environment. 16 
FIGURE 3. Model for Playing and Recording 30 

An Asynchronous Audio Server vii 



Contents 

-- 

viii An Asynchronous Audio Sewer 



Tables 

TABLE 1. 
TABLE 2. 
TABLE 3. 
TABLE 4. 

TABLE 5. 
TABLE 6. 
TABLE 7. 
TABLE 8. 
TABLE 9. 
TABLE 10. 
TABLE 11. 
TABLE 12. 

TABLE 13. 
TABLE 14. 
TABLE 15. 
TABLE 16. 
TABLE 17. 
TABLE 18. 

Audio Server Include Files 20 

Opening a Connection to the Audio Server 20 
Defining Asynchronous Event Callbacks 22 
Registering Asynchronous Event Callbacks 22 
The s-play() convienence function 23 
Playing an Audio File 23 
The Main Loop 24 
Complete Code Listing for p1ay.c 25 
Command Line Arguments 32 
The s-set-device() Request 32 
Requests for Obtaining PlayIRecord Status 34 
The s-output-port() request 36 
Various s-name() commands. 37 
Examples of s-start() and s-stop() 38 
Examples of s-prepare-play() and s-continue-play() 39 

The s-halt-play() request 39 
Playing from Files 39 
The s-play() macro 40 

An Asynchronous Audio Sewer ix 



Contents 

TABLE 19. 
TABLE 20. 
TABLE 2 1. 
TABLE 22. 

TABLE 23. 
TABLE 24. 
TABLE 25. 

TABLE 26. 
TABLE 27. 
TABLE 28. 
TABLE 29. 
TABLE 30. 
TABLE 31. 

TABLE 32. 

TABLE 33. 
TABLE 34. 

TABLE 35. 
TABLE 36. 
TABLE 37. 
TABLE 38. 

Requests for Playing From Files 40 
The bsm-bytes structure definition 41 
The S-PLAY-BUF-EV event 42 
Requests for Playing from Buffers 43 
Example of Playing From Buffers 43 

Summary of Preprocessing Requests 44 
The s-record-duration() Request 45 
Requests for Recording to Files 46 
Requests for Recording to Buffers 46 
Request for Energy Events 47 
Postprocessing Requests 47 
Registering Event and Data Interests 52 
Audio Server Interests 53 

Examples of Data Interests 54 

Multi-Client Requests 55 
Setting the SOUND environment variable 58 
Changing the current user 58 
Description of the s-user request 58 
Directory managment Requests 60 

File Management Requests 6 1 

x An Asynchronous Audio Server 



CHAPTER 1 Introduction 

The document describes the Audio Server project done by the Speech Research 
Group at the M.I.T. Media Laboratory. The primary goal of the document is to pro- 
vide a reference for application developers who incorporate audio into their appli- 
cation and want to use the Audio Server environment as a framework. As a 
consequence, the majority of the chapters contained within will be an application 
programmatic interface (API) specification--a well-defined guideline on taking 
advantage of the Audio Server's capabilities. 

Before an interface specification is provided, it is useful if the application developer 
understands the reasons behind the Audio Server project as well as it's design prin- 
ciple and goals. This introduction will provide this background, and should be read 
thoroughly. In many respects, once an application developer understands these con- 
cepts, the Audio Server API is straightforward and intuitive. 

An Asynchronous Audio Server 



Introduction 

Requirements,for an Audio Environment 

The Speech Group is composed of a dozen or so Sun SPARCstations (ranging from 
SPARCstation 1's through SPARCstation 10's) on a local area network. 
~a~h~fi&~e~v&from a central server. Each SPARCstation is quipped standard 
with an audio "device." On the older machines, only 8 Khz "1 U- aw data is available; 
multiple sampling rates and encodings are available on the newer machines. 

"I a d 4w -Pi l- 
Through the work performed by the group, the following requirementsm4be audio 
capabilities of a workstation were deemed critical: 

f,,, @ f  /',/t'iy 
Standardized and simple API to playing and recording digital audio data. 

Multiple applications can access the audio device at once. That is, several cli- 
ents can request to play and record audio at once, with resource management 
and arbitration by the server. 
Asynchronous operation and notification of events and the ability to delegate 
real-time operations to the server. 

Access, via the local-area network, to the audio resources of a remote worksta- 
tion, i.e. network transparent. 
Standardization of audio file management. 

Availability of various real-time, pre- and post- audio processing capabilities, 
such as time-scale and gain modification, DTMF detection, and silence detec- 
tion. 

The first stated requirement is true of any 
developemuse,A simple audio API allows for the quick incorporation of audio into 
an application. A standardized interface allows changes and improvements to the 
audio environment to propagate to each client transparently. In an informal sense, 
all of the audio-capable applications developed by the Speech Group wil~'400k 
d&'" in terms of the audio interface. ha\!? ff ' ; t ;~,~f@ C f p ~ ~ ' ' y . f ~ j  C I  

e,a-ct th& ,+ 
dio clients running on a workstation are: a graphical voice-mail 
ng vu-meter, a digital sound editor, a speech-recognition based 

window focus application, and an hourly chimes application. These applications 
should all run on a single workstation and share the audio resources in some well 
defined manner. For example, a vu-meter 
only should do so when another client is c ~ ~ ~ ~ ~ - ~ ~ ~ ~ g ~ ~ -  - kw3& 

(*g" 3R;4 1 
tion system should always be listening for 
should be able to record at the same time an ap 
ognition. A digital sound editor both plays and 

I 

I 
An Asynchronous Audio Sewer 



The Existing Sun Audio Interface 

chimes application plays an audio file periodically, and should be able to co-exist 
and operate normally if, say, the voice-mail player is currently playing a voice mes- 
sage. 

Audio is inherently asynchronous. Audio data can be played and recorded while 
other activities are occurring, such as graphical user interface input. An application 
which uses an asychronous audio management scheme does not have to sit in a 
tight loop while processing audio data; it is free to go about other activities. The 
reverse is true as w the audio management operates asynchronously from the 
application, it is not subject to synchronous delays inside the application. 

In an audio rich environment, various centralized services may exist, including 
text-to-speech conversion, speech recognition, and teleservices. These services 
may be limited to a particular workstation because of the computing resources or 
special hardware available only on that workstation. In this situation, these central- 
ized services may need access to audio from another workstation. A common 
example is a speech recognition server running on a remote machine operating on 
speech from a user's local microphone. Another example is remote listening to a 
radio tuner connected to a different workstation. It is these reasons why audio must 
be available over the local-area network. 

The final two requirements remove some of the programming burden on applica- 
tions into a more centralized location. The numerous audio-capable applications on 
a workstation should be able to share audio files. The ability to time-scale audio 

data or perform D&M.F,$p~~-to~~>$~~e,~ti,gp provides con- 
venience and functionality to afl clients. s 

The Existing Sun Audio Interface 

hk~r c @ Although all Sun SPARCstations come with an audio codec as standard equipment, 
i X - L  i ,  - i * c l l n i i i i h  

i f$ lx they have onlygb~ude interface to audio. The interface to the Sun audio "device" is 
a special file on each workstation's local disk called~ldevlaudio~'. For file manage- 
ment, a demo library, libaudio;isym~ded-whhieh provides basic routines for read- 
ing and writing audio files using a particular file format. 

An Asynchronous Audio Sewer 13 



-- -- -- 

Introduction 

t 

Opening a Connection to the Audio Device 

Clients may open Idevlaudio much like any other file. Using the standard UNIX 
file operations, the open() system call returns a file descriptor. The particular char- 
acteristic about the Sun audio device is that only a single client may open the audio 
device for playing or recording. All other clients wishing to open an already opened 
device will be unable to do so. 

Client I1 (7 
Client I 

recording 

SunOs/Solaris Operating System Kernel 

d 00 
FIGURE 1. clien$ interact wlth the Sun audio device. 

The Figure above shows a typical Sun workstation. The audio device is considered 
part of the operating system kernel, which is separated by a line in the diagram 
from the user's process space. Client I has Idevlaudio opened for writing (i.e. play- 
ing) and Client 111 has Idevlaudio opened for reading (i.e. recording). Client 11 
attempts to open the audio device for playing, but is unable to do so. As a result, 
Client 11 must therefore manually attempt to re-open the audio device at a later 
time, 

Herein lies one of the major problq~s  with the Sun audio, $&e$ ce. The types of dc \ w  l *  
applications which need to run in Bn environment s u ~ h - a d e ,  S E eech Research 
Group could not survive using the Sun audio interface alone. Multiple applications 
which require record audio data at the same would be unable to do so. Each appli- 
cation would fight for the total resources (i.e. total in terms of playing and recording 
separately) of the workstation. A misbehaving audio-capable application might 

14 An Asynchronous Audio Server 



The Existing Sun Audio Interface 

Another limitation of the Sun audio device is the lack of remote accessibility. Since 
/dev/audio is a device on the local file system, only a client running on the local 
workstation may open() it. Therefore, audio data may not be shared in any easy 
way across the network. This limits a user to running only those audio-capable 
applications which are able to run on the local workstation, and do not rely on a 
remote audio-based server. 

Reading DEt2%Er,orn and Writing Data To the Audio Device 

Once a client has s ccessfully opened the audio device, it plays audio data out the & workstation speakmg by writing the digital audio data to the device. Similarly, a cli- 
ent can record digital audio data by reading from the device. This can be accom- 
plished via the standard UNIX read() and write() system calls. If the client wishes 
to play audio data from a disk file, for example, it ~uskmanuaUy manage the read- 
ing of the data from disk and writing to the devicehhjsjnf@ad allows the precise 
control and acknowledgment of how much data was sent td, t,he evice and visa 
versa. P ,A 1 *, & '3 

f lu$ @ k- rbn d m  -bill it 

P uJ 

Thia interface suffers from two flaws. First, clients which use this interface to play 
and record must perform their own memory management. This often entails allo- 
cating the proper amount of memory and keeping track of the number of bytes 
either read or written. Not only can this method be prone to bugs, but it is also 
sloppy and should not be {he clie 

The second flaw is on versus/ asynchronous opera- 
tion. More advanced applications make use lo while engaging in other activi- 
ties simultaneously. Each client must sit in a loop readinglwriting audio data; it is 
difficult to side-track to other tasks without causing the resulting audio to become 
choppy. Some multi-threaded libraries have appeared which solve this synchronos- 
ity problem. However, writing multi-threaded code is difficult to debug and lacks 
the ability to operate over a network. 

Audio Device Progress and Audio Processing 

Because the Sun audio interface is inherently synchronous and audio inherently 
asynchronous, several audio operations become awkward. For example, a synchro- 
nous call is needed to find out how much audio data has actually been played. If an 
application wants to know when a particular landmark amount has been played, it 

An Asynchronous Audio Sewer 115 



Introduction 

must continuously query the device. Since an application might be busy doing other 
tasks, it may miss this landmark. Also, to know when the audio device has truly fin- 
ished playing a sound, the client must again query the device for this information. A 
more natural interaction would be for the client to be asynchronously notified of the 
finish of a playing. ~4 

*d~=w&%--*-waa--- 

face provides no audio processing. It does, however, allow 
desired sampling rate and encoding, if the workstation's h 

ware is capable. All other audio processing such as time-scale modification and 
silence detection must be performed by the client. 

An Audio Sewer Solution 

In consideration on the requirements of an audio environment and the limitations of 
the existing Sun audio interface, the Speech Research Group developed an asyn- 
chronous Audio Server.' The figure below diagrams the basic functio 
Audio Server. 

I Audio Server I 

SunOsISolaris Operating System Kernel 

FIGURE 2. The Audio Server Environment. 

_____I. The Audio Server project is an ongoing one. It began roughly in 1983 and is still under 
development in the fall of 1994. 



An Audio Server Solution 

In the Audio Server environment, individual clients no longer communicate with 
the Sun audio device (Idevlaudio) directly. Each client communicates via a custom 
IPC (Interprocess Communication) protocol. The Audio Server is responsible for 
the management of the audio device, opening and closing the device, and reading 
and writing from the device. This IPC mechanism allows clients to communicate 
with an Audio Server running on a remote workstation. The Audio Server is 
unaware of whether a client is running locally or remotely. 

A Multi-Client Audio Server 

The Audio Server can accept an unlimited number of clients. Although a given 
Audio Server can have any number of clients, its performance as the number of cli- 
ents gets large (i.e. greater than 10 active clients) may decrease. Which client(s) are 
permitted to play 8 r record audio data from a device at a particular time is deter- 
mined by a rule-based mechanism inside the Audio Server. Themhmk process of 
deciding which Audio Server clients are permitted to perform a task is called audio 
resource management. This will be discussed extensively in Chapte 

An Asynchronous Audio Server 

In accordance with the requirements of the Speech Group, the Audio Server is 
asynchronous in its operation. From the perspective of a client, it is free to go about 

r is playing or recording audio data. A client may 
he Audio Server's state, for example, when play- 
client is also told when a client-caused error 
d file name, invalid parameter, etc.) 

An Asynchronous Audio Sewer 17 



, Introduction 

3 

> 

'1 

18 An Asynchronous Audio Server \ 



CHAPTER 2 A Sample Audio Server 
Client 

The purpose of this chapter is to introduce the Audio Server API by providing a 
simple example, p1ay.c. P1ay.c requests that the Audio Server plays an audio file 
located on disk. It also defines several event callbacks for notification of the 
progress of the play request. 

This example code is meant to be a skeleton for more advanced Audio Server cli- 
ents. More advanced features of the Audio Server are described in Chapter x. 

The example code covers the following topics: 

Audio Server include files 
Establishing a Connection to the Audio Server 

Defining and Registering Asynchronous Event Callbacks 

Requesting the Audio Server to Play an audio file. 

Entering the Audio Server main loop 

An Asynchronous Audio Sewer 



A Sample Audio Server Client 

Audio Server Include Files 

The following include files must be present in every Audio Server client: 

TABLE 1. Audio Server Include Files 

#include <s-service.h> 

The file s-service.h has definitions pertaining to all of the available Audio Server 
request functions, while the file s-app.h has definitions pertaining to the available 
Audio Server event callback functions. sparc-s0und.h contains miscellaneous 
constant defniitions and bsm.h contains definitions for the Audio Server RPC 
mechanism. 

Establishing a Connection to the Audio Sewer 

Before a client can issue requests and receive events from the Audio Server, it must 
open a connection to it. This is typically done once in a client towards the begin- 
ning. Opening a connection to the Audio Server does not tie up any resources or 
interfere with other clients who wish to open a connection to the same Audio 
Server. 

TABLE 2. Opening a Connection to the Audio Server 

#define AUDIO-SERVICE "s-server" 

#define AUDIO-HOST "" 

int audiofd; 

if ((audiofd = s-open-server(AUDI0-SERVICE, AUDIO-HOST)) < 0) { 

fprintf(stderr, "Fatal Error: Cannot Open a Connection to Audio Server.\nn); 

exit(-1); 

An Asynchronous Audio Sewwer 



Defining And Registering Asynchronous Callbacks 

The function s-open-server() has two arguments: a service name and a host. In 
mostly all cases, the service name is "s-server." [See Chapter x about the Audio 
Server Status Service for more information] The host argument is the name of a 
valid machine to which connect. This functionality allows a client to access the 
audio resources of a remote workstation. In the case of play.c, the host is set to the 
empty string (""), which requests a connection to the Audio Server on the client's 
host. 

The return value of s-open-server() is an integer file descriptor. A return value of - 
1 indicates that a connection to the specified audio server has failed. This file 
descriptor is most often the first argument to all future Audio Server calls. In some 
advanced clients, connection to audio servers on different hosts are kept open at one 
time. These file descriptors are used to differentiate to which Audio Server each 
request is sent. 

Defining And Registering Asynchronous Callbacks 

The Audio Server can notify clients about various events results associated with 
their requests. The client p1ay.c asks to be notified when the playing of the audio file 
begins and when the playing ends. Since all requests to the Audio Server are asyn- 
chronous, these event callbacks provide valuable information to the client as to the 

An Asynchronous Audio Sewer 21 



A Sample Audio Server Client 

success of its requests. Also, these events allow the client to provide real-time 
information to the user about Audio Server activity. 

TABLE 3. Defining Asynchronous Event Callbacks 

play-begin(int audiofd, char "clientdata, int handle) 

{ 

fprintf(stderr, "Playing has begun on connection=%d, client data=%s, handle=%d\nm, 
audiofd, clientdata, handle); 

1 

play-done(int audiofd, char *clientdata, int termination, int handle, int position) 

{ 

fprintf(stderr, "Playing has finished on connection=%s, client data=%s, termina- 
tion=%d, handle=%d, position=%d\nW, audiofd, clientdata, termination, handle, posi- 
tion); 

I 

Note the definitions of play-begin() and play-done(). The first argument of each 
of these callbacks is the connection file descriptor, the same descriptor returned by 
s-open-server(). The second argument is always user-supplied client data of the 
type char *. This client data is supplied in the callback register function, as 
described below. The remaining arguments to each of the event callbacks are 
described in detail in Chapter x. 

TABLE 4. Registering Asynchronous Event Callbacks 

s-register-callback(S-PLAY-BEGIN-EV, play-begin, (char *)NULL); 

s-register-callback(S-PLAY-DONE-EY play-done, (char *)NULL); 

The Audio Server reqeust s-register-callback() allows clients to register a defined 
function to be called when a certain event inside the Audio Server occurs. s-regis- 
ter-callback() is one of the few Audio Server request which does not require the 
connection file descriptor as an argument. 

The first argument to s-register-callback() is the name of the event for which the 
function is registered. In play.c, the event name for when a play starts is S-PLAY-- 

An Asynchronous Audio Sewrver 



Requesting the Audio Server to Play an Audio File 

BEGIN-EV, and S-PLAY-DONE-EV is the event name for when a play request 
finishes. A complete description of all Audio Server event names can be found in 
Chapter x. The second argument is the function pointer of the desired callback and 
the third argument is the user-supplied client data. This client data, as described 
earlier, is passed to the callback function as its second argument. 

Requesting the Audio Server to Play an Audio File 

The sqlay() request is a convenience function, asking the Audio Server to play a 
specified audio file: 

TABLE 5. The s-play() convienence function 

sglay(audiofd, "/sound/hordack/hello~world.snd"); 

The s-play() request takes two arguments: the first is the connection fd, and the 
second is the path name of a valid Sun audio file. This function actually translates 
to several audio server requests. In more advanced Audio Server clients, these sep- 
arate requests may be used instead of the one convenience function: 

TABLE 6. Playing an Audio File 

s-name(audiofd, "/sound/hordack/hello~word.snd"); 

s-prepare-play (audiofd); 

s-continue-play (audiofd); 

Entering the Audio Server Main Loop 

Since all Audio Server clients are asynchronous, each must invoke an event main 
loop--much like the X Window System event loop. If the Audio Server main loop is 
not called, the client will never be notified of any Audio Server events. 

An Asynchronous Audio Sewer 23 



A Sample Audio Server Client 

I 

TABLE 7. The Main Loop 

The function s-main-loop() has no arguments nor return values. Unless an unex- 
pected fatal error ocurrs, s-main-loop() should never return. 

24 An Asynchronous Audio Sewwer 



Complete Code Listing for P1ay.c 

Complete Code Listing, for P1ay.c 

The  following is a complete code listing for  p1ay.c: 

TABLE 8. Complete Code Listing for p1ay.c 

void play-begin(int audiofd, char "clientdata, int handle) 

I 
fprintf(stderr, "Playing has begun.\n"); 

1 

void play-done(int audiofd, char *clientdata, int termination, int handle, int position) 

I 
fprintf(stderr, "Playing has finished.\nV); 

1 

main() 

I 
int audiofd; 

if ((audiofd = s-open-server(AUDI0-SERVICE, AUDIO-HOST)) < 0) { 

fprintf(stderr, "Fatal Error: Cannot Connect to Audio Server.\n"); 

exit(- 1); 

1 

s-register-callback(S-PLAY-BEGIN-EV, play-begin, (char *)NULL); 

s-register-callback(S-PLAY-DONE-EV, play-done, (char *)NULL); 

s-play(audiofd, "/sound/hordack/hello~world.snd"); 

s-main-loop() 

1 

An Asynchronous Audio Server 25 



A Sample Audio Server Client 

An Asynchronous Audio Sewrver 



CHAPTER 3 Audio Sewer Events 

The following is a list of all of the events the Audio Server may generate and the 
declaration of their respective callbacks. To register a callback for an event, use the 
s-register-callback() request. 

Events 

S-PLAY-BEGIN-EV 

S-PLAY-DON-V 

S-PLAYB W-EV 

Description 

A play has begun. 

A play has finished 

The Audio Server needs more play data (when 
playing from buffers). 

A record has begun. 

A record has finished. 

New record data is available to the client. 

A client request has been interrupted by 
another client. 

A client request has resumed after being inter- 
rupted by another client request. 

A client data interest is interrupted because of 
a mismatching audio format (to go away!) 

An Asynchronous Audio Sewer 27 



- - - - -  

Audio Server Events 

Events 

S-INTEREST-ABLE-EV 

Description 

A client's data interest is resumed after being 
interrupted because of a mismatching audio 
format (to go away soon!) 

Record data, requested by a client as an inter- 
est, is available. 

A registered data interest has begun. 

A registered data interest has ended. 

A touch tone has been detected. 

An energy calculation is available to the client. 

A registered interest activity has begun. 

A registered interest activity has ended. 

void s-play-begin-ev(int sfd, char WientData, int handle); 

void s-play-done-ev(int sfd, char *clientData, int done, int handle, int position); 

void s-play-buf-ev(int sfd, char *clientData); 

void s-record-begin-ev(int sfd, char *clientData, int handle); 

void s-record-done-ev(int sfd, char *clientData, int done, int handle, int position); 

void s-record-buf-ev(int sfd, char *clientData, bsm-bytes "buffer); 

void s-preempted-ev(int sfd, char *clientData, int cause); 

void s-continue-ev(int sfd, char *clientData, int cause); 

void s-interest-unable-ev(int sfd, char *clientData); 

void s-interest-able-ev(int sfd, char *clientData); 

void s-interest-data-ev(int sfd, char "clientData, bsm-bytes *buffer); 

void s-interest-data-begin-ev(int sfd, char *clientData, int interest); 

void s-interest-data-done-ev(int sfd, char *clientData, int interest); 

void s-dtmf-ev(int sfd, char *clientData, int tone); 

void s-energy-ev(int sfd, char *clientData, int channel, int packetsize, int avgmag, int 
peak, int rmsenergy); 

sjnterest-event-begin-ev(int sfd, char *clientData, int interest); 

s-interest-event-done-ev(int sfd, char *clientData, int interest); 

- - - 

An Asynchronous Audio Sewer 



CHAPTER 4 Fundamental Concepts 
of Playing and Recording 

This chapter introduces the general ideas involved when a client wants to play or 
record digital audio data. There is much in common between playing and recording, 
and this chapter exists to provide an explanation of these common ideas and con- 
cepts once. Later, in the following two Chapters, the specifics of playing and 
recording are discussed in turn. 

This chapter covers the following material: 

Conceptual process of playing and recording 

Setting a new play or record device. 

Buffered operations versus file operations. 

MI requests for file and buffer operations. 

Obtaining status on a play or a record. 

Conceptual Model Behind Playing and Recording 

Before using the Audio Server to play or record sound, it is important to understand 
the conceptual model on which the Audio Server performs these tasks. The Audio 
Server API is designed around this model. Understanding the model allows the 
application developer to better understand the API. 

An Asynchronous Audio Sewer 29 



Fundamental Concepts of Playing and Recording 

i 

Playing and recording are essentially complementary processes. The main differ- 
ence is which way the digital audio flows. In playing, audio data originates from a 
source and is played out an output (write) audio device. In recording, audio data 
originates from a read device and flows to a destination. The figure below illustrates 
this process: 

Audio File '7 
Read Device &I 1 

( Audio BufSer ) 

I 

Write Device 

FIGURE 3. Model for Playing and Recording 

Files and Devices 

All data flows from a device to aJile. Note, however, that these classifications are 
historic mostly, and their true meaning is much broader than specifically a device 
and specifically a file. Typically allowable devices are audio device, named pipes, 
memory buffers, and even disk files. Files can also be named pipes and memory 
buffers as well. The Audio Server avoids labelling these as sources as syncs in gen- 
eral. 

Digital Audio Filters 

When digital audio is being played or recorded, it may pass through one or many 
audio filters. Audio filters may perform any or all of the following: modify the 
audio data, observer characteristics from the audio data, or alter the current activity 
based on the audio data. 

In the case of playing digital audio, two common filters server as examples. First, 
time-scale modification of the data either slows down or speeds up the playing of 

An Asynchronous Audio Sewer 



-- 

Setting an Alternative Play and Record Device 

the audio data. Gain modification either softens or loudens the digital audio. For 
recording, two possible filters are DTMF (touch-tone) detection, which calculates 
the telephony key pressed when it hears a touch tone, and silence detection, which 
determines when a pause occurs in the audio data. The two recording examples also 
interrupt recordings under certain conditions. The available filters in the Audio 
Server are explained further in Chapters x and x. 

Setting an Alternative Play and Record Device 

In most instances, applications use the default audio device on the workstation: the 
microphone and built-in speaker. Some other applications require a more advanced 
usage of the audio server and might need to use a different play or record audio 
device. For example, the voice mail application asks the audio server to play and 
record from the telephone device. Other applications might want the digital audio 
to be readlwritten to a named pipe. This sub-section describes how to set an alterna- 
tive play and record device. 

The Audio Server maintains the notion that the play and record device are each sep- 
arate. Each is opened and closed independently of one another. Also, each can be 
changes independently of the other. This means that although the recording device 
was set to a named pipe, the playing device can still be the workstation's speaker. 

Also, a current disadvantage of the Audio Server is that when a client changes a 
device, all clients use that new device. This is the wrong behavior because a client 
can have its device changed without its knowledge. In the future, the Audio Server, 
will implement a per-client device control policy, where changing the device in one 
client does not affect another client. 

Setting the Device at Audio Server Start-up Time 

A simple way to change the read or write device in the audio server is by a com- 
mand line argument when the Audio Server is initially started. 

There are three command line arguments: '-a <device name>' which sets both the 
and reading and writing device. This is used, for example, when you want to use 
another audio-like device on the workstation. One example is an ISDN telephone 
line voice channel, i.e. '-a /dev/isdn/bO'. To set only the reading device (and not 
alter the writing device), use the 'r <device name>' option, and to set only the writ- 

An Asynchronous Audio Server 31 



Fundamental Concepts of Playing and Recording 

ing device, use the '-w <device name>' option. The table below summarizes the 
command line options available to modify the audio devices used: 

TABLE 9. Command Line Arguments 
- - - -- 

Command Line Argument Description 

-a <device name> Sets both the reading and writing device. 

-r <device name> Sets the reading device. 

-w <device name> Sets the writing device. 

Setting the Device within the Client Application 

A client may set change the Audio Server device via the request s-set-device(). 
The s-set-device() request takes three arguments. The first is the usual connection 
fd. The second is the name of the new read device while the third is the name of the 
new write device. Note that at the present, there are no separate commands for the 
read and write device. The table below summarizes the s-set-device() request: 

TABLE 10. The s-set-device() Request 

Request Description 

void s-set-device(int fd, char Sets the new read device to read and the new write 
*read, char "write); device to write. 

File vs. BufSer Operations 

The Audio Server allows clients to play from or record to disk files or memory 
buffers. In Figure 3 above, the playing is being done from a file, while the recording 
is being done into a memory buffer. There are two distinct sets of requests within 
the API specific to whether the operation (i.e. playing or recording) is being done 
with files or with buffers. 

What is a File? 

A file, obviously, is a collection of bytes on some disk. There are several variations 
of files, which are enumerated here. In the future, the term$le may refer to all of 
these: character (normal) file, block (device) file, and a named pipe (fifo). Audio 
and other audio-like devices are block files. 

32 An Asynchronous Audio Server 



File vs. Buffer Operations 

API Request for File Operations 

The sub-section is meant to only briefly introduce the API associated with file oper- 
ations. These requests will be discussed in more detail in the following chapters. 

The primary request for all file operation is the s-name() request. This request 
informs the Audio Server of the name of the file which is to be played from or 
recorded to. 

The s-name() request is followed by the s-prepare-play()/s-continue-play() and 
the s-prepare-record()/s-continue-record() command to begin the actual action. 

What is a Buffer? 

A buffer is an allocated portion of the workstation's volatile memory which stores 
digital audio data. Applications use buffered operations if they wish to handle the 
actual audio data. This is often useful when the application sends the audio data to a 
remote host. During playing, applications supply the Audio Server with memory 
buffers via requests. They are notified when the Audio Server needs more data via 
an asynchronous callback. During recording, when audio data become available, 
the Audio Server sends this data to the application via asynchronous callbacks. 

API Requests for Buffer Operations 

The following requests will be described in greater detail in future chapters. 

To record into a memory buffer, an application invokes the s-async-record-buf() 
request. [To start actually recording, it must also call s-continue-record(). This is 
a strange thing to do, and probably will be changed in the near future.] Digital audio 
is made available to the client via the asynchronous event S-RECORDBUF-EV. 

To play from a memory buffer, an application calls s-async-playbufo. When the 
Audio Server need more audio data, it sends the asynchronous event S-PLAY-- 
BUF-EV. To send additional audio data to the server, the application subsequently 
calls s-async-play-newbuf(). [Note: in the future they may be only a single 
s-async-play-buf() request serving both purposes.] 

An Asynchronous Audio Sewer 33 



Fundamental Concepts of Playing and Recording 

Obtaining Play/Record Status 

There are two API requests which allow the application to obtain information about 
the activity currently associated with that client synchronously. There are sdone() 
and s-where-is-sound(). 

The sdone() request returns an integer code representing the current state of the 
activity. Often, when an activity completes, the sdone() command reports to the 
client the reason for the termination of the most recent activity. Although s-done() 
returns a number of codes, it returns a value equivalent to a boolean FALSE if an 
activity is currently running and TRUE is it has completed. A table describing the 
s-done() request and all of its return values is found at the end of this section. 

The s-where-is-sound() request returns the amount of audio data that has been 
either played or recorded. This amount is in milliseconds. If there is currently no 
activity going on, s-where-is-sound() returns 0. 

The table below summarizes these two requests: 

TABLE 11. Requests for Obtaining PlayIRecord Status 

Request 
int s-done(int sfd); 

Return Codes: 

S-NOT-DONE 

S-INTR 

S-TONE 

S-MAXD 

S-NO-SND 

S-PAUSE 

S-P-EOF 

SBUFFER-FULL 

SBUFFER-EMPTY 

int s-where-is-sound(int sfd); 

Description 

Returns the status of the current activities. 

The activity is currently ongoing. 

The activity was interrupted by the client. 

The activity was halted by the presence of a 
touch tone. 

The maximum duration was exceeded. 

Pause exceeded initial pause limit 

Pause exceeded final pause limit 

An EOF was reached on a file 

Buffer full recording. 

Buffer empty playing. 

Returns the number of milliseconds that have been 
playedrecorded. Returns 0 if no activity exists. 

34 An Asynchronous Audio Sewer 



CHAPTER 5 Playing Digital Audio 

In Chapter 2, the example client p1ay.c used the Audio Server request s-play() to 
play an entire audio file out the workstation speaker. In some instances, this is all 
the functionality need, but in many more cases, a client needs greater control of 
what, where, and how a sound is played. This Chapter covers the entire functional- 
ity for playing digital audio data using the Audio Server, including the following 
topics: 

Setting an alternative playing device 

Changing the default Sun audio device output port 

Specifying the name of a file to play from. 

Setting the starting and stopping times of the play 

Starting and Halting a play 

Perform pre-processing on the audio data: time-scale modification and gain 
modification. 

Changing the Playing Device 

As discused in Chapter 4, the Audio Server maintains a single playing device for all 
clients connected to the Audio Server. A client may change the global playing (i.e. 
writing) device by either of two methods. The playing device may be set upon 

An Asynchronous Audio Server 35 



Playing Digital Audio 

Audio Server start up time via command line options. Also, a client may invoke the 
s-set-device() request once connected to the Audio Server. This is discussed in 
more detail in the previous chapter. 

Changing the Default Audio Port 

The Sun default audio device, /dev/audio, has two different output ports. Audio can 
either be played out of the speaker port. The speaker port is connected to an internal 
speaker within the workstation. The headphone port is an RCA jack located at the 
back of the workstation, into which any amplifying device may be placed. Most 
commonly, this port is used for headphones. 

The s-output-port() request changes which output port to use. Note that this 
change is server wide and affect all clients. Also, the speaker versus headphone port 
setting is only relevant if the playing device is the Sun default audio device. The 
s-output-port() request has two arguments: the Audio Server connection file 
descriptor, and which port to use. A client specifies which port to use by either of 
the two predefined constants, AUDIO-SPEAKER and AUDIO-HEADPHONE. 

The s-output-port() request is summarized in the table below: 

TABLE 12. The s-output-port() request 

Request Description 

void s-output-port(int fd, int Sets the output port for the default audio playing 
port); device. The argument port may either be AUDI- 

O-SPEAKER or AUDIO-HEADPHONE. 

Playing from Files versus Playing from BufSers 

As described in Chapter 4, playing audio data can take two forms, playing from 
files and playing from memory buffers. The following sections describe, in depth, 
the API associated with each. 

36 An Asynchronous Audio Sewer 



Playing from Files 

Playing.from Files 

The following sub-section describes the API assocaited with playing from files. It 
describes how to specify which file to play from, how to set the starting and stop- 
ping locations for playing, and how to halt the playing immediately. 

Setting the File Name 

When playing from files, it is neccessary to tell the audio server from what file you 
want to get the audio data. The s-name() requests inform the audio server of this 
file name. The most recent s-name() request issued by the client takes precedence. 
As mentioned in Chapter 3, if a full path name is not provided, the Audio Server 
assumes the given path name to exist under the current working sound directory. 

The first example sets the name of the file to play as "lhomelhordacWfoo" while the 
second sets the name of the file to "/soundlhordacWfoo", assuming the current 
working sound directory is "Isoundlhordack." Note that the first example is an 

TABLE 13. Various s-name() commands. 

s-name(sfd, "lhomelhordacklfoo"); 

s-name(sfd, "foo"); 

absoulte path name which the second is not. The s-name() request has no return 
values, any error on the specified file is reported when the play is actually begun. 

Audio files may be of various formats, i.e. different encodings and sampling rates. 
This information is stored in the standard Sun Audio File header description. The 
Audio Server automatically detects the format of the data stored in the file and 
reconfigures the playing audio device automatically. Those audio files without Sun 
audio file headers, i.e. a file only containing audio data, will be assumed tocontain 8 
KHz, Ulaw encoded data. 

Setting the Starting and Stopping Times of the Play 

Without further information, the audio server assumes the client wishes to play the 
audio file in its entirety. Clients, however, may only want to play a certain chunk of 
the audio data within the file. The s-start() and s-stop() requests allow the client to 
provide the Audio Server with this information. 

The s-start() and s-stop() requests each have two arguments. The second argu- 
ment is an offset into the file of type long, given in milliseconds (tstaa and tStop). 

An Asynchronous Audio Sewer 37 



Playing Digital Audio 

The Audio Server translates both of these values into byte count offsets internally. 
The time values given to s-start() and s-stop() are constrained to be greater than or 
equal to zero (0) milliseconds and less than or equal to the total millisecond length 
of the file. (To find out the length of a file in milliseconds, see the s-length() 
request). The Audio Server places the additional contratins that tst,, must be less 
than or equal to tstop. 

A client may specify tst, andlor tStop or neither. The default value for t,,, is 0 mil- 
liseconds and the default value for tSmp is the length of the file, in milliseconds. The 
following several examples illustrated the many uses of s-start() and s-stop(). 

TABLE 14. Examples of s-start() and s-stop() 

I* Plays the first 5 seconds of the file *I 

s-stop(sfd, 5000); 

I* Plays the last 5 seconds of the file *I 

length = s-length(sfd, fname); 

s-start(sfd, length - 5000); 

I* Plays from the third millisecond to the seventh millisecond *I 

s-start(sfd, 3); 

s-stop(sfd, 7); 

Starting and Halting a Play 

Once a client provided a file name and optional starting and st oping information, it 
may start and stop the play. To start playing, a client first issues a s-prepare-play() 
request and then an s-continue-play() request. The s-prepare-play() request asks 
the Audio Server to ready itself to begin the playing. The purpose is to allow the 
Audio Server some time to get ready before it is asked to play in order to reduce the 
latency between the time the Audio Server is asked to begin playing and when it 
actually can. While the s-prepare-play() request is still required, its usefull is 
diminished in modern workstation which have quick file systems and cached mem- 
ory. 

The s-prepare-play() and s-continue-play() take a single argument, the connec- 
tion file descriptor and have no return values. The only constraint is that an s-con- 
tinue-play() must be immediately preceded (i.e. no other Audio Server requests) 

38 An Asynchronous Audio Server 



Playing from Files 

by an s-prepare-play() request. The s-continue-play() requests generates an 
S-PLAY-BEGIN-EV event if the play has begun successfully. 

TABLE 15. Examples of s-prepare-play() a n d  s-continue-play() 

s-prepare-play (sfd); 

s-continue-play(sfd); 

The client may halt the playing at any time using the s-halt-play() command. This 
command executes immediately, flushing an existing audio data inside the audio 
device which has not been played. This requests generates an S-PLAY-DONE-EV 
event. Note that this does not pause the playing, but stops it entirely. If a client 
wants to play again, it must reissue the s-prepare-play() and s-continue-play() 
requests. 

The s-halt-play() request is called as follows: 

TABLE 16. The  s-halt-play() request 

s-halt-play(sfd); 

Putting Playing from Files All Together 

The following several examples show the sequence of commands used to play 
varous files. For a complete example of a client which plays from files, see p1ay.c in 
Chapter 2: A Sample Audio Sewer Client. 

TABLE 17. Playing f rom Files 

I* Plays "lhomelhordack~foo" from the first second to the fourth second *I 

s-name(sfd, "/homelhordack/foo"); 

s-start(sfd, 1000); 

s-stop(sfd, 4000); 

s-prepare-play(sfd); 

s-continue-play(sfd); 

I* Plays "lsound/geek/calendarlmonday" in its entirert *I 

s-name(sfd, "calendarlmonday"); 

s-prepare-play (sfd); 

s-continue-play(sfd); 

An Asynchronous Audio Sewer 39 



Playing Digital Audio 

Using The s-play() Convenience Request 

The s g l a y ( )  request is a quick way to play an audio file. The s-play() request has 
two arguments. Its second argument is the name of the audio file. The s-play() 
requests expands into the following three requests issued consecutively: 

TABLE 18. The s-play() macro  

/* The sglay macro *I 

s-play(sfd, fname); 

I* ... and its equivalent *I 

s-name(sfd, fname); 

s-start(sfd, 0); 

s-prepare-play (sfd); 

s-continue-play(sfd); 

Summary of Requests for Playing from Files 

The chart below summarizes the usage of the requests used for playing digital audio 
data from disk files. 

TABLE 19. Requests fo r  Playing F r o m  Files 

Requests 

void s-name(int sfd, char 
"fname); 

void s-start(int sfd, int tstart); 

void s-stop(int sfd, int tstop); 

void s-prepare-play(int sfd); 

void s-continue-play(int sfd); 

void s-halt-play(int sfd); 

void s-play(int sfd, char 
*fname); 

Description 

Sets the name of the file to play. 

Provides a starting time, in milliseconds, into the 
file. 

Provides a stopping time, in milliseconds, into the 
file. 

Prepares the Audio Server to play a file. 

Requeusts that the Audio Server begin playing a 
file. 

Immediately stops the current play. 

Plays an audio file from its beginning. 

40 An Asynchronous Audio Sewer 



Playing Audio Data From Buffers 

Playing Audio Data From Bufhers 

In some cases, the source of the audio data to be played by a client does not come 
from a disk file, but rather the client itself. It may wish to do its own file manage- 
ment or generate the audio data synthetically. The Audio Server names this "play- 
ing from buffers." The Audio Server API provides two requests for playing from 
buffers, s-async-play-buf() and s-async-play-new-buf(). 

The s-async-play-buf0 and  s-async-pIay-new-buf0 requests 

The s-async-play-buf() is used to first begin playing. The s-async-play-new-- 
buf() is called to provide the Audio Server with additional audio data once the play- 
ing is underway. Both requests take two arguments. Their second arguments are 
pointers for a structure of type bsm-bytes. 

Using the bsm-bytes structure 

Clients sends audio data to the Audio Server over the interprocess communication 
protocol using the bsm-bytes structure. The definition of the bsm-bytes structure 
(found in bsm.h, which must be included in all clients) is: 

TABLE 20. The bsm-bytes structure definition 

typedef struct ( 

int maxlen; 

int currlen; 

char *data;; 

} bsm-bytes; 

All three fields must be set by the client before sending it to the Audio Server. The 
maxLen field tells the RPC mechanism the absolute maximum about of bytes which 
can be apart of the structure. The currLen field is the number of bytes currently 
stored in the data field. The data field, subsequently, is a pointer of type char * to 
the audio data. 

An Asynchronous Audio Server 41 



Playing Digital Audio 

Receiving S-PLAY-BUF-EV events 

The Audio Server informs the client when it needs more audio data via the 
S-PLAY-BUF-EV events. As with other Audio Server events, the client must reg- 
ister a callback for this event. The code belows gives the prototype definition for 
the event and its registration. 

TABLE 21. The S-PLAY-BUF-EV event 

void s-play-buf-handler(int sfd, char *clientData); 

I 
I 

s-register-callback(S-PLAY-BUF-EV, s-play-buf-handler, NULL); 

Typically, a client registers a callback for the S-PLAY-BULEV events and issues 
an initial s-async-play-buf() request. Whenever its callback get invoked, it sends 
the Audio Server more data with an s-async-play-new-buf() request. Although a 
client does not have to wait for this event notification and send a series of s-asyn- 
c-play-new-buf() requests to the server, the RPC mechanism might become 
bogged down because of the many requests it must queue up. 

Signalling the End of the Audio Data 

When playing audio from files, the Audio Server knows it has reached the end of 
the file upon receiving an EOF (end-of-file) indication. When playing from buffers, 
the client niust specifically provide this end-of-file notification. 

To tell the Audio Server that it has received all of the audio data for a particular 
play, the client issues an s-async-play-new-buf() request, However, the currLen 
field in the bsm-bytes structure it is passed must be set to zero (0). 

Note that the s-halt-play() request may be issued when playing from buffers, how- 
ever this immediately stops the playing. If an EOF packet is sent to the Audio 
Server, the remaining audio data is still played. 

Setting the Audio Format for Playing from Buffer 

[the s-async-play-rate() request to tell the server the format of the data you are giv- 
ing it!] 

42 An Asynchronous Audio Sewer 



Playing Audio Data From Buffers 

The Requests for Playing from Buffers 

The following chart describes the requests for playing from buffer. 

TABLE 22. Requests for Playing from Buffers 

Requests Description 

void s-async-play-buf(int sfd, Plays the first packet in a buffered play. 
bsm-bytes *b); 

void s-async-play-new-- Plays subsequent packets in a buffered play. 
buf(int sfd, bsm-bytes *b); 

An Example of Playing from Buffers 

The following code is a skeleton of a client which plays audio from buffers. 

TABLE 23. Example of Playing From Buffers 

static char buffer[3000]; 

void sqlay-buf-handler(int sfd, char *clientdata); 

{ 

bsm-bytes b; 

b.maxLen = b.currLen = 3000; 

b.data = (char *)buffer; 

s-asyncglay-new-buf(sfd, &b); 

} 

main() 

I 
int sfd; 

bsm-bytes b; 

sfd = s-open-server("s-server", ""); 

s-register-callback(S-PLAY-BUFEV, s-play-buf-handler, NULL); 

b.maxLen = b.currLen = 3000; 

b.data = (char *)buffer; 

s-asyncqlay-buf(sfd, &b); 

s-main-loop(); 

1 

An Asynchronous Audio Sewer 43 



Playing Digital Audio 

i 

Preprocessing the Audio Data 

One advantage of digital audio data is that is can be easily modified before it is 
played. This sections describes the various processing done on audio data before it 
is played. A client may request that time-scale modification or gain scaling be per- 
formed on the data before it is played. Simple, time-scale modification make the 
sound play faster or slower, and gain scaling make the sound play louder or softer. 
These processing methods can be done whether from playing from files or from 
buffers. 

Summary of Preprocessing Requests 

The chart below provides the usage for all preprocessing requests. 

TABLE 24. Summary of Preprocessing Requests 

Requests Description 

void s-tsms-ratio(int sfd, dou- Sets the current time-scaling ratio. 
ble r); 

void s_get-tsms-Ratio(sfd, Returns the current time-scaling ration in ratio. 
double *ratio); 

void s-play-gain(int sfd, dou- Sets the current play gain. 
ble gain); 

void s_get-play_gain(int sfd, Returns the current play gain in gain. 
double *gain); 

44 An Asynchronous Audio Server 



C H A P T E R  6 Recording Digital Audio 

Primary Recording 

TABLE 25. The s-record-duration() Request 

Request Description 

s-record-duration(int sfd, long Sets the desired maximum duration of the record to 
duration); duration milliseconds. 

void s-set-record-rate(int sfd, Specifies the desired audio format for recording. 
int rate); 

int s_get-record-rate(int sfd); Returns the current recording audio format. 

An Asynchronous Audio Sewer 45 



Recording Digital Audio 
I 

Recording to Files 

Summary of Requests for Recording to Files 

TABLE 26. Requests for Recording to Files 

Requests Description 

void sname(int sfd, char Sets the name of the file to record to. 
*fname); 

void s-prepare-record(int sfd); Prepares the Audio Server to record to a file. 

void s-continue-record(int Requests that the Audio Server begin recording. 
sfd); 

void s-halt-record(int sfd); Immediately stops the current record. 

void s-record(int sfd, char Records to an audio file. 
*fname); 

Recording to BufSers 

Summary of Requests for Recording to Buffers 

TABLE 27. Requests for Recording to Buffers 

Requests Description 

void s-async-record-buf(int Prepares the Audio Server to record into buffers. 
sfd); 

void s-continue-record(int Requests that the Audio Server begins recording. 
sfd); 

Receiving Energy Events 

46 An Asynchronous Audio Sewer 



Postprocessing the Audio Data 

Summary of Requests for Energy Events 

TABLE 28. Request for Energy Events 

Requests Description 

void s-set-energy-interval(int Tell the Audio Server to send energy events every 
sfd, int time); time milliseconds. 

int s_get-energy-interval(int Returns the current energy interval. 
sfd); 

Postprocessing the Audio Data 

Summary of Postprocessing Requests 

TABLE 29. Postprocessing Requests 

Requests 

void s-record_gain(int sfd, 
double val); 

void s_get-record_gain(int 
sfd, double *val); 

void s-pause-initial(int sfd, int 
time); 

void s-pause-final(int sfd, int 
time); 

void s-pause-detect(int sfd, int 
set); 

void s-set-dtmf-detect(int sfd, 
int set); 

void s-set-dtmf-termination(- 
int sfd, int set); 

Description 

Sets the current record volume to val. 

Returns the current record volume. 

Sets the maximum initial pause to time millisec- 
onds. 

Sets the maximum final pause to time milliseconds. 

Sets pause detection and record termination on if 
set equals 1, otherwise off. 

Turns touch-tone detect on if set equals 1, other- 
wise off. 

Terminates the recording when a touch-tone is 
heard, if set equal 1. 

An Asynchronous Audio Sewer 47 



Recording Digital Audio 

An Asynchronous Audio Sewer 



CHAPTER 7 Multi-Client Operation 
and Audio Device 
Resource Management 

Throughout the past couple of chapters, an assumption was made: only a single cli- 
ent would be either playing or recording at one time. In truth, this was only a sim- 
plifying assumption. This assumption is now removed--this chapter discusses how 
the Audio Server mediates between multiple clients wishes to play and/or record at 
a single time. The ability of an Audio Server to acknowledge requests from a num- 
ber of separate clients is a main argument of an Audio Server versus a client-side 
only library. 

Audio Device Resource Management 

Central to the ability of handling requests from multiple clients, is how to multiplex 
or prevent clients from using the audio device. The series of rules which govern 
how the audio device is appropriated is called audio resource management. Here, 
the single audio device is a resource which is in demand by more than one client. 
These rules may decide that a particular client may play audio while another has to 
wait. It also decides when client may receive recorded audio data and when they 
may not. 

An Asynchronous Audio Sewer 49 



- ppppp 

Multi-Client Operation and Audio Device Resource Management 

1 

Client Priority 

Not all clients' requests can be serviced at once; some client may have to wait until 
the Audio Server completes the requests of other clients. While a first-come, first- 
served scheme is easy to implement, it may not represent the true ordering of each 
requests' importance. A first-come, first-served scheme is combined with a client 
priority scheme in order to determine the order in which requests are serviced. 

Each client may declare itself either a low, medium, or high priority client. While a 
mis-behaving client may declare itself as the highest priority, the Audio Server 
relies on clients accurately declaring their priorities. The request s-set-client-pri- 
orityo is used to inform the Audio Server of a client's priority. It takes two argu- 
ments, the first is the connection file descriptor. the second is the clients priority, 
chosen from the following: S-PRIORITY-LOW, S-PRIORITY-MEDIUM, 
S-PRIORITY-HIGH. All clients who do not declare a priority default to S-PRI- 
ORITY-MEDIUM. Clients may change their priority at any time while connected 
to the Audio Server. 

With respect to playing, the intention of the high/medium/low priority scheme is 
clients which need to play audio urgently will declare their priority to be high. 
Examples of high priority sounds include those which the user must here as soon as 
possible, such as an incoming phone call indication. Medium priority sounds are 
those which are normally and most commonly played on the workstation, such as 
voice mail. Low priority sounds typically originate from background audio applica- 
tions, such as an audio email notification or an hourly chime. 

This three level priority scheme is also available for primary recordings as well (see 
the previous Chapter). In practice, recording tends to assume more of a bi-level, 
foreground and background, priority structure. Specifying a client priority when 
performing recording is uncommon. 

Resource Management for the Playing Device 

When multiple clients request to play digital audio data, the Audio Server services 
one play request at a time. It maintains a queue of requests, sorted first by decreas- 
ing order of priority, and then sorted on a first-come, first-served basis. The follow- 
ing algorithm outlines the policy the Audio Server uses to determine which request 
to service: 

50 An Asynchronous Audio Sewer 



- -- 

Client Priority 

When finishing a play request, the Audio Server services the request at the head 
of the queue. That is, the highest priority request is played next. If there are mul- 
tiple requests of the same, highest priority, the first one requested in served. 

If a play request is received or higher priority than a current play request under- 
way, the current play request is interrupted and placed on the queue. The new 
play request is immediately serviced. 

In comparison to a first-come, first-served only scheme, the Audio Server allows 
newer, high priority requests to be serviced immediately. Those clients which have 
play requests interrupted received an S-PLAY-INTERRUPTED-EV event, and an 
S-PLAY-CONTINUE-EV event which their request is eventually resumed. When 
a play is interrupted, the Audio Server attempts to restart the playing a couple of 
seconds earlier than it had been interrupted. This makes it easier for the listener to 
readjust to the previous context when the playing is resumed. Note that this backup 
feature is only done when playing from$les. If a client does not wish for its request 
to resume after an interruption, it can issue an s-halt-play() request when it 
receives the S-PLAY-INTERRUPTED-EV event. 

The following example illustrates the interaction among various clients which issue 
play requests in the sequence below: 

Client A issues a play request at medium priority. The Audio Server services 
Client A's request. 

Client B issues a play request at medium priority. The Audio Server places Cli- 
ent B's request at the head of the request queue. 

Client C issues a play request at high priority. The Audio Server interrupts Cli- 
ent A and places it at the head of the request queue. Client C's request is ser- 
viced. 
Client C's request completes. Client A's request is continued. 

0 Client D issues a play request at low priority. Its request is placed at the end of 
the queue. 
Client A's request completes, Client B's request is serviced. 

Client B's request completes, Client D's request is serviced. 

Resource Management for the Recording Device 

Managing client's record requests is nearly identical to managing play requests. 
(Note that only primary record requests are managed in this fashion; primary 
recording was described in the previous chapter. Background recording is dealt 
with below.) The single difference between playing and recording is that when a 

An Asynchronous Audio Sewer 5 3 



Multi-Client Operation and Audio Device Resource Management 

record request is interrupted, it is halted rather than just interrupted. In other words, 
these record request are not placed on a queue and therefore, are not continued later. 
Instead of receiving an S-INTERUPTED-EV event, the client receives and S-RE- 
CORD-DONKEV event. 

Registering Interest In Audio Server Activity 

Cerlain clients may wish to perform duties when other clients use the Audio Server 
for a specific purpose. For example, a VU Meter only wants to indicate the record- 
ing level when a recording is actually taking place. Clients may issue a request 
which allows them to be notified of various audio server activities, including 
receiving record data while these activities are underway. This is sometimes known 
as background recording, but it will be referred to as data and event interests. 

When a client registers an event interest, it received events when the activity it is 
interested in both begins and ends. A client which registers a data interest received 
record data from the workstation's microphone while the activity is taking place. In 
particular, for registered event interests, the client receives S-INTEREST-- 
EVENT-BEGIN-EV and S-INTERESTEND-EV events. For registered data 
interests, the client receives S-INTEREST-DATA-BEGIN-EV, S-INTEREST-- 
DATA-END-EV, and S-INTEREST-DATA-EV events. 

The sregisterevent-interest() and s-register-data-interest() request allows 
client to register event and data interests. The prototypes of these requests are found 
below. 

TABLE 30. Registering Event and Data Interests 

void s-register-event-interest(int sfd, int interest); 

void s-register-data-interest(int sfd, int bufsize, int intent, int interest); 

What is this all About? 

Clients use recorded audio data for many different purposes. Some example are: 
storage, dtmf (touch-tone) detection, speech recognition, and a vu meter display. 
Different clients, however, may want recorded audio data only under certain cir- 
cumstances. Hence, they have a particular interest in what other clients are doing. 
As mentioned before, a vu meter client is interested in data when other clients are 
recording audio data for storage. 

52 An Asynchronous Audio Server 



Registering Interest In Audio Server Activity 

Suppose a client wants recorded audio data only when another client is perEorming 
speech recognition. How does the Audio Server know that a client is performing 
speech recognition? Each client must declare its intent, or what is plans to do with 
the audio data. Therefore, the Audio Server provides recorded audio data to clients 
based on their interests. These interests are satisfied by examining the declared 
intents of other clients which currently have active requests. In other words, the 
intents of some clients are used to determine if the interests of other clients are sat- 
isfied. 

Interests 

The second argument to s-register-event-interest() and the fourth argument to 
s-register-data-interest() is an interest. An interest is a mask of one or many 
Audio Server activities. The client will receive events or data, respectively, if any 
one of these activities are underway in the Audio Server. The following chart 
explains the possible interests a client may have: 

TABLE 31. Audio Server Interests 

Interests 

S-INTEREST-NONE 

S-INTEREST-RECORD 

SJNTEREST-DTMF 

S-INTEREST-ENERGY 

S-INTEREST-VUMETER 

S-INTEREST-RECOGNITION 

S-INTEREST-PLAYING 

S-INTEREST-CONNECTION 

S-INTEREST-LOCKED 

S-INTEREST-ALWAY S 

Descriptions 

Interest when there is no activity underway 

Interest when a client is recording audio data 

Interest when a client is performing touch tone 
detection on recorded data. 

Interest when a client is performing energy cal- 
culations on recorded data. 

Interest when a client is acting as a VU Meter 
on recorded data. 

Interest when a client is performing speech rec- 
ognition on recorded data. 

Interest when a client is playing audio data. 

Interest when a new client makes a connection 
(event registration only) 

Interest when a client locks the audio server 
(event registration only) 

A client is always interested in receiving 
recorded data. 

An Asynchronous Audio Server 



-- - 

Multi-Client Operation and Audio Device Resource Management 

The client may specify multiple interest by ORing these definition together. For 
example, if a client wants to register and interest when a client is either recording of 
performing speech recognition, is provides S-INTEREST-RECORD I S-INTERE- 
ST-RECOGNITION as the interest. 

Intents 

The third argument to the s-register-data-interest() request is an intent. This 
intent is a declaration by the client of its purpose for receiving recorded audio data. 
The possible intents are: S-INTENT-NONE, S-INTENT-RECORD, S-IN- 
TENTDTMF, S-INTENT-ENERGY, S-INTENT-VUMETER, and S-INTEN- 
TRECOGNITION. 

Data and Event Interests In Practice 

Although the Audio Server allows clients to receive recorded audio data under 
complicated circumstances based on their interests, only very few of the interests 
are used in practice. For example, S-INTEREST-RECORD and SJNTER- 
ESTALWAYS are most commonly used. These client either want recorded data 
only when other clients are receiving data for recording, or these clients want data 
all of the time. It is very rare that a client would want to obtain record data when 
another client is acting as a VU Meter, for example. 

Examples 

The following are examples of code which make interest requests for various pur- 
poses: 

TABLE 32. Examples of Data Interests 

I* A VU Meter client only wants to display the record level when another client is 
recording *I 

s-register-data-interest(sfd, 10, S-INTENT-VUMETER, S-INTEREST-RECORD); 

/" A client to record all noise in an office all of the time *I 

s-register-data-interest(sfd, 4000, SINTENT-RECORD, S-INTEREST-ALWAYS); 

- -  - 

54 An Asynchronous Audio Sewer 



Unregistering Interests 

Unregistering Interests 

When a client no longer has an interested in an Audio Server activity, it may unreg- 
ister that interest with the s-unregister-event-interest() and s-unregister-- 
data-interest() requests. These requests take two arguments. The second argument 
is an interest. A client must unregister the interests in which it had originally regis- 
tered an interest. It may, however, unregister only some of the interests. 

Multi-Client Requests 

The following chart summarizes the requests available for multi-client operation 
purposes: 

TABLE 33. Multi-Client Requests 

Requests 

void s-set-client-priority(int 
sfd, int priority) 

void s-register-event-inter- 
est(int sfd, int interest); 

void s-register-data-inter- 
est(int sfd, int bufsize, int 
intent, int interest); 

void s-unregister-event-inter- 
est(int sfd, int interest); 

void s-unregister-data-inter- 
est(int sfd, int interest); 

Description 

Sets the priority of the client to either high, 
medium, or low. 

Registers an event interest. 

Register a data interest. The client receives data in 
buffers no larger than bufsize. 

Unregisters an event interest. 

Unregisters a data interest. 

An Asynchronous Audio Sewer 55 



- - - - - - - - - - 

Multi-Client Operation and Audio Device Resource Management 

An Asynchronous Audio Sewer 



CHAPTER 8 n e  Sound File Directory 

The example Audio Server client p1ay.c is an example of some of the sound file 
management handled by the Audio Server. In addition to play from and recording 
to audio files, the Audio Server provides basic audio file management. This chapter 
describes the features it provides. 

For each client, the Audio Server maintains a "current working sound directory." It 
is under this directory which the Audio Server searches for all non-absolulte audio 
file names. This is true for all operations (e.g. play, record) on audio files; this 
behavior is kept consistent throughout. 

The Default Sound Directory 

The Audio Server sets the default working sound directory for each client based on 
the SOUND environment variable, and the user associated with the client. The 
SOUND environment variable provide a base directory for the sound directory. 
Each user has a subdirectory off of this base directory. For example, suppose user 
"hordack" execute a client and asks the Audio Server to play a file named "greet- 
ingsnd." Also, suppose the SOUND environment variable was set to "/sound". The 
Audio Server would search for the file named "/sound/hordack/greeting.snd." 

An Asynchronous Audio Server 



The Sound File Directory 

The SOUND environment variable must be set before the Audio Server is run, and 
in the same environment as the Audio Server. To set the SOUND environment vari- 
able, type: 

TABLE 34. Setting the SOUND environment variable 

% setenv SOUND /sound 

When the client issues the s-open-server() command to initialize a connection 
with the Audio Server, the user associated with the client is send to the Audio 
Server. The client uses the getpwuido UNIX system call to obtain the identify of 
the owner of the client process. Therefore, a user is simply required to execute the 
client as himherself (in addition to setting SOUND properly) in order for the cur- 
rent working sound directory to default correctly. 

In some cases, the user of the client might not be the owner of the process. The 
Audio Server provides a means to clients to manually set the current user. This, in 
turn, sets the current working sound directory to $SOUND/<user>, where <user> is 
the specified login name. For example, to change the current working sound direc- 
tory to "geek", use the following Audio Server request: 

TABLE 35. Changing the current user 

s-user(audiofd, "geek"); 

The s-user() request has two arguments. The first is the connection fd to the Audio 
Server and the second is a string of the new login name. s-user() may be issued at 
any time while a connection is actively open to an Audio Server and may be called 
any number of times. Note, however, that the current working sound directory for 
the client is changed immediately after the s-user() request is invoked. The 
s-user() request is summarized below: 

TABLE 36. Description of the s-user request 

Request Description 

s-user(int fd, char *login); Sets the current user and sound directory 

58 An Asynchronous Audio Sewer 



-- 

Utility Routines for Managing Directories 

Utility Routines .for Managing Directories 

Not all users structure the location of their audio files as provided by the default 
sound directory used by the Audio Server. Therefore, the Audio Server provides 
some basic sound directory creation, deletion, and management requests. Although 
the standard UNIX system calls may replace these Audio Server requests, it is rec- 
ommended to use the latter rather than the former. 

The s-cd() request changes the current working sound directory. All non-absolute, 
future file names given to the Audio Server will be assumed to be located under the 
new sound directory. The s-cd() request takes two arguments: a conenction fd, and 
the name of a new sound directory. 

s-mk-dir() and s-rm-dir() create and remove directories, respectively. These 
requests have the same requirements as the UNIX system calls. That is, a client 
cannot successfully create an existing directory, nor can it remove a non-empty 
directory. Both requests have two arguments, the second of which is a path name. 

s-get-dir() and s-get-path() are identical. Both return the name of the current 
working sound directory. Their first argument is a connection fd to an Audio Server. 
The second is a pointer to an allocated portion of memory large enough to hold a 
path name. 

The Audio Server provides two simple requests to access the subdirectories under 
the current working sound directory, s-find-first-dir() and s-find-next-dir(). To 
find the first subdirectory, the s-find-first-dir() request is used. Subsequent que- 
ries use the s-find-next-dir() request. The s-find-first-dir() request takes three 
arguments: a connection fd, a search template, and a pointer to allocated memory 
for a resulting directory. The client is able to filter for certain types of subdirectories 
with the second argument. This template argument has the same semantics as used 
in UNIX calls. This means that such wildcard characters as '?"and '':v'are perrnis- 
sible. The third argument must be allocated for the longest possible directory. The 
s-find-next-dir() request has two arguments. It uses the template argument pro- 
vided to the most recent call to s-find-first-dir() and, therefore, omits that argu- 
ment. 

An Asynchronous Audio Server 



The Sound File Directory 

i 

A summary of the available directory management routines is found in the chart 
below: 

TABLE 37. Directory managment Requests 

Requests 

void s-cd(int fd, char *path); 

void s-mk_dir(int fd, char 
*path); 

void s-rm-dir(int fd, char 
*path); 

void s_get-dir(int fd, char 
*dir); 

void sq;et-path(int fd, char 
*dir); 

int s-find-first-dir(int fd, char 
"template, char *match); 

int s-find-next-dir(int fd, char 
"match); 

Description 

Changes the current working sound directory to 
path. 

Makes a new sound directory named path. 

Removes the sound directory named path. 

Returns the current working sound directory in dir. 

Returns the current working sound directory in dir.. 

Returns in match, the first subdirectory in the cur- 
rent working sound directory. The returned direc- 
tory name matches the filter template. Returns 
TRUE if a matching directory was found, FALSE 
otherwise. 

Returns the next subdirectory under the current 
working sound directory in match. The returned 
directory name matches the filter template given to 
the most recent s-find-first-dir() call. Returns 
TRIE if a matching directory was found, FALSE 
otherwise. 

Utility Routines For Managing Audio Files 

The following AudioServer requests provide simple functionality for managing 
(e.g. copying, moving) audio files. They provide a convenient and easy interface to 
the standard UNIX system calls. These requests also reference files in relation to 
the current working sound directory. 

The s-file-exists() requests asks the Audio Server to see if a given audio file exists. 
It takes two arguments, the second of which is a file name. This file name is 
assumed to be located under the current working sound directory, unless it is given 

-- 

60 An Asynchronous Audio Server 



Utility Routines For Managing Audio Files 

as an absoulte path name. sffile-exists() returns TRUE if the file does indeed exist, 
false otherwise. 

The s-mv() requests moves one audio file to another. The second argument to 
s-mv() is the source audio file and the third argument is the destination audio file 
name. Both of these file names are assumed to exist under the current working 
sound directory if they are not specified as absolute path names. 

The s-rm() request deletes a specified audio file. The second argument of s-rm() is 
the audio file name which to remove. s-cp() copies the audio file name given as the 
second argument to the audio file name given as the third argument. 

The s-find-first() and s-find-next() requests are identical to the s-find-first-dir() 
and s-find-next-dir() requests as described previously. The only difference is that 
s-find-first() and s-find-next() operates on files rather than directories. These 
requests return the file names under the current working sound directory. 

The table below summarizes the file management requests: 

TABLE 38. File Management Requests 

Requests Description 

int s-file-exists(int fd, char Returns TRUE if fname exists, otherwise returns 
"fname); FALSE. fname is assumed to be located under the 

current working sound directory if not given as an 
absoulte path. 

void s-mv(int fd, char *from, Moves the audio file from to the audio file to. 
char *to); 

void s-rm(int fd, char *fname); Deletes the audio file fname. 

voi s-cp(int fd, char *from, Copies the audio file from to the audio file to. 
char *to); 

An Asynchronous Audio Sewer 61 



The Sound File Directory 

TABLE 38. File Management Requests 

Requests Description 

int s-find-first(& fd, char Returns in match, the first file in the current work- 
*template, char *match); ing sound directory. The returned file name matches 

the filter template. Returns TRUE if a matching file 
was found, FALSE otherwise. 

int f-find-next(int fd, char Returns the next file under the current working 
*match); sound directory in match. The returned file name 

matches the filter template given to the most recent 
s-find-first() call. Returns TRIE if a matching file 
was found, FALSE otherwise. 

62 An Asynchronous Audio Server 



Streams library module. Implements the stream abstraction on top 
of swindows. 

Atty Mullins 
Speech Research Group, MIT Media Lab 
19 9 4 

/ * 
* Standard Includes 
* / 

#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <termios.h> 
#include <math.h> 
#include <sys/types.h> 
#include <sys/time.h> 
#include <sys/timeb.h> 
#include <swindows.h> 
#include <s-app.h> 
#include <spare-sound.h> 
#include <db . h> 
#include <sndnote.h> 
#include <varray.h> 
#include <stream.h> 
#include <ere-midi.h> 

/ * 
* Constants 
* /  

#define SILENCE-BUFFER-LENGTH 8000 
#define START-DELAY-TICKS 3 
#define TICK-SIZE 20 
#define DISPLAY-LENGTH 30 
#define UNFOCUS-RATE (float)15.00 
#define CHNL 0 
#define INSTR 12 
#define VELOCITY 63 
#define FISH-UPDATE-WINDOW 1200 

/ * 
* Local Variables 
* / 

static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 

i static 
static 
static 
static 

swindow *swl, *sw2, *sw3, *sw4; 
stream *sl, *s2, *s3, *s4; 
stream *last-gaze; 
stream *gaze; 
stream *focus; 
bsm-bytes silence-bb; 
unsigned char silence[SILENCE-BUFFER-LENGTH]; 
char erase-string[DISPLAY-LENGTH]; 
time-t last-tone-time = 0; 
int polhemus-rw; 
int fish-rw; 
int f ish-ticks; 
int track-head; 
int output-fd; 
int feedback; 
int last~os-index = 0; 
float lrh [FISH-TICKS] ; 
float llh [FISH-TICKS] ; 



static 
static 
static 
static 
static 
static 
static 
static 

I static 

static 
static 
static 
static 
static 

static 
static 
static 
static 
static 

static 
static 
static 
static 
static 

static 
static 
static 
static 
static 

static 
I static 

static 
static 
static 

static 
static 
static 
static 
static 

static 
static 
static 
static 
static 
static 
static 
static 
static 
static 

float Ira [FISH-TICKS] ; 
float lla[FISH-TICKS]; 
float lrhv[FISH-TICKS]; 
float llhv[FISH-TICKS]; 
float last-left-head-velocity; 
float last-right-head-velocity; 
time-t last-time = 0; 
time-t base-time = 0; 
int first-time; 

float level-0-left-gain; 
float level-1-left-gain; 
float level-2-left-gain; 
float level-3-left-gain; 
float level-4-left-gain; 

float level-0-right-gain; 
float level-1-right-gain; 
float level-2-right-gain; 
float level-3-right-gain; 
float level-4-right-gain; 

float level-0-middle-gain; 
float level-1-middle-gain; 
float level-2-middle-gain; 
float level-3-middle-gain; 
float level-4-middle-gain; 

float level-0-left-rate; 
float level-1-left-rate; 
float level-2-left-rate; 
float level-3-left-rate; 
float level-4-left-rate; 

float level-0-right-rate; 
float level-1-right-rate; 
float level-2-right-rate; 
float level-3-right-rate; 
float level-4-right-rate; 

float level-0-middle-rate; 
float level-1-middle-rate; 
float level-2-middle-rate; 
float level-3-middle-rate; 
float level-4-middle-rate; 

int tone-time-interval; 
int focus~time~window; 
int t sms-t icks ; 
int gain-delay-ticks; 
int middle-start-delay 
int right-start-delay; 
int left-start-delay; 
double tsms-ratio; 
double max-tsms-ratio; 
double tsms-rate; 

* Local Function Declarations 
* /  

/ *  Play Functions * /  ' static void play-tone (stream *s, 
char *filename, 
int delay) ; 

static void play-segment(stream *s, 



segment *current-segment, 
long start, 
long stop); 

static void play-segment-on-stream(stream *s, 
VARRAY *segments, 
int segment-index) ; 

static void play-empty-buf-on-stream(stream *s); 

1 / *  Gain Functions * /  
static void s-delayed-gain(stream *st 

float gain, 
int ticks); 

static void decay-gain(stream *s); 
static void delay-gain(stream *s); 
static void update-gain(stream *s); 
static void update-tsms-ratio(stream *s); 

/ *  Callbacks * /  
static void segment-cb(int fd, 

char *client-data, 
int termination) ; 

static void buffer-cb(int fd, 
char *clientdata, 
int termination); 

static void time-cb(caddr-t *data); 

/ *  Initialization Functions * /  
static void initialize-swindows(); 
static void read-streamer-config-file(char *filename) ; 
static void init-streamer-config(); 
static thread *initialize-thread(char "filename); 
static VARRAY *initialize-segments(char *filename, 

int *num-segmentsatr); 
static stream "initialize-stream(swindow *sw, 

thread *t, 
I float level-0-gain, 

float level-1-gain, 
float level_2_gain, 
float level_3_gain, 
float level_4_gain, 
float level-0-rate, 
float level-1-rate, 
float level-2_rate, 
float level-3_rate, 
float level-$-rate, 
int start-delay-ticks); 

/ *  Storage * /  
static void free-thread(thread *t); 
static void free-stream(stream *s); 

/ *  Polhemus Interface * /  
static int init-polhemus-rw(char *device); 
static float *fetch~olhemus(float *location) ; 
static float *update-head-position(); 
static void update-gaze(f1oat yaw, float pitch); 

/ *  Fish Interface * /  
static int init-fish-rw(char *device) ; 
static void fetch-fish(f1oat *sensorl, 

float *sensor2, 
float *sensor3, 
float *sensor4); 

static void update-fish() ; 

/ *  Miscellaneous Functions * /  
static int stagger-start(stream *s); 



stati 
stati 
stati 
stati 

c long current_pos(stream *s); 
c void pause-stream(stream *s); 
c void continue-stream(stream *s); 
c void play-level(int level, stream *s); 

/ * 
* Function Definitions 
* / 

/ * 
* Opens the device to read and write to the polhemus. 
* / 

static int 
init_polhemus-rw(char "device) 
{ 

struct termios temp-termios; 
int fd; 

fd = open( device, 0-RDWR, 0); 
tcgetattr(fd, &temp-termios); 

/ *  Clear some flags * /  
temp-termi0s.c-oflag &= -(ONLCR I OPOST); 
temp-termi0s.c-iflag &= -(ICRNL I IXOFF I INPCK); 
temp-termios.c-lflag &= -(ECHO I XCASE I ISIG I ICANON) ; 
temp-termi0s.c-cflag &= -(PARENB I PARODD); 

/ *  And set others * /  
temp-termi0s.c-cflag I =  CS8; 

/ *  Set and update * /  
tcsetattr(fd, TCSANOW, &temp-termios); 
tcflush(fd, TCIOFLUSH); 

/ *  Don't block * /  
fcntl(fd,F-SETFL,O-NDELAY); 

/ *  Raw binary * /  
write(fd,"cFK", 3); 

return fd; 
1 

/ * 
* Fetches one location vector from the polhemus. 
* / 

static float 
*fetch_polhemus(float *location) 
C 
int nread, bytes-read, status; 
int reply-length = 47; 
char buffer[l281 ; 
float x, y, z, yaw, pitch, roll; 

/ *  Request a status record * /  
write(po1hemus-rw, "P", 1); 

bytes-read = 0; 

i / *  Process the reply and print it out * /  
while(bytes-read < reply-length) 

L 

nread = read(po1hemus-rw, &(buffer[bytes-read]), 



reply-length - bytes-read); 
if(nread > 0) 
bytes-read += nread; 

1 
/ *  Process the input into floats * /  
sscanf(buffer, "%d%f%f%f%f%f%fN, &status, location, (location + I), 

(location + 2), (location + 3), (location + 4), (location + 5)); 

i return location; 

/ * 
* Determines gaze (head pointing) from polhemus and updates focus 
* accordingly. 
* / 

static void 
update-gaze(f1oat yaw, 

float pitch) 

/ *  Update the gaze * /  
if(pitch < -10.00) 

gaze = (stream *)NULL; 
s-unf ocus ( ) ; 

I 
else 

{ 
if((yaw <= 90.00) && (yaw > 15.00)) 
gaze = left; 

else if((yaw >= 270.00) && (yaw < 340 
gaze = right; 

else if(pitch >= 10.00) 
gaze = center; 

else 
I gaze = (stream *)NULL; 

/ *  Update the focus * /  
if((1ast-gaze ! =  gaze) && 

(gaze ! =  (stream *)NULL)) 
s-give-focus(gaze); 

3 

/ *  Keep track of the gaze * /  
last-gaze = gaze; 

/ * 
* Updates the head position from polhemus information. 
* / 

static float 

float temp[61 ; 

/ *  Only update the yaw, pitch and roll of the head * /  
temp[01 = 0.0; 
temp[l] = 0.0; 
temp[2] = 0.0; 

(, / *  Yaw is positive counter-clockwise * /  
temp[3] = temp[3] + 180.00; 

/ *  Pitch ranges from + 90 to - 90 * /  



/ *  Roll * /  
temp[5] = temp[5] + 180.00; 

/ *  Update the gaze if necessary * /  
if (track-gaze) 

\ update_gaze(temp[3], temp[4] ) ; 

/ *  Convert to radians * /  
tempr31 = temp[31 / 57.3; 
temp[41 = temp[4] / 57.3; 
temp[5] = temp[5] / 57.3; 

/ *  Move the head * /  
return temp; 

/ * 
* Initializes the device to read and write to the fish 
* / 
init-fish-rw(char *device) 
{ 

struct termios temp-termios; 
int fd; 

fd = open( device, 0-RDWR, 0); 
tcgetattr(fd, &temp-termios); 

/ *  Clear some flags * /  
temp-termi0s.c-oflag &= -(ONLCR I OPOST); 
temp-termi0s.c-iflag &= -(ICRNL I IXOFF I INPCK); 
temp-termi0s.c-lflag &= -(ECHO I XCASE I ISIG I ICANON) ; 
temp-termi0s.c-cflag &= -(PARENB I PARODD); 

/ *  And set others * /  
temp-termi0s.c-cflag I =  CS8; 

/ *  Set and update * /  
tcsetattr(fd, TCSANOW, &temp-termios); 
tcflush(fd, TCIOFLUSH); 

/ *  Don't block * /  
fcntl(fd,F-SETFL,O-NDELAY); 

fish-ticks 

return fd; 
1 

/ * 
* Fetches the 
* / 

static void 

= 0; 

status of the four sensors from the fish. 

fetch-fish(f1oat *sensorl, 
float *sensor2, 
float *sensor3, 
float *sensor4 ) 

{ 
int nread, bytes-read, status; 
int reply-length = 16; 
char buffer [I281 ; 



/ *  Set up the output format * /  

/ *  Request a status record * /  
write(fish-rw, "R", 1); 

bytes-read = 0; 

( / *  Process the reply and print it out * /  
while(bytes-read < reply-length) 

C 
nread = read(fish-rw, &(buffer[bytes-read]), 

reply-length - bytes-read); 
if(nread > 0) 
bytes-read += nread; 

1 
/ *  Process the input into floats * /  
sscanf(buffer, "%f %f %f %f", sensorl, sensor2, sensor3, sensor4); 

1 

/ * 
* Updates focus etc based on the fish. 
* / 
static void 
update-f ish ( ) 

{ 
float left-arm, right-arm, left-head, right-head; 
float left-head-velocity, right-head-velocity; 
float left-arm-velocity, right-arm-velocity; 
float left-head-accelaration, right-head-accelaration; 
struct timeb tp; 
time-t this-time; 
int i; 

1 / *  Query the fish * /  
fetch-fish(&left-arm, &right-arm, &left-head, &right-head); 

if(fish-ticks == 0) 
{ 

/ *  Reset the clock * /  
fish-ticks = FISH-TICKS; 

/ *  Calculate velocity and accelaration * /  
i = abs(last_pos-index - 2); 
left-head-velocity = llh[i] - left-head; 
right-head-velocity = lrh[i] - right-head; 
left-arm-velocity = lla[i] - left-arm; 
right-arm-velocity = lra[i] - right-arm; 
left-head-accelaration = 
last-left-head-velocity - left-head-velocity; 

right-head-accelaration = 
last-right-head-velocity - right-head-velocity; 

/ *  Update everything * /  
last-right-head-velocity = right-head-velocity; 
last-left-head-velocity = left-head-velocity; 

/ *  Geek 6/29/94: go to relative time * /  
if (first-time == 0) { 
ftime (&tp) ; 
base-time = tp.time; 
last-time = 0; 
first-time = 1; 

} 



/ *  Fetch the current time * /  
ftime (&tp) ; 
this-time = ((tp.time-base-time) * 1000) + tp.millitm; 

/ * printf("subtracti0n: %d\nn, (this-time - last-time) ) ; 
printf("this %Id, last %Id, %Id, %d\nN, this-time, last-time, 
tp.time, tp.millitm); * /  

if ( (this-time - last-time) > FISH-UPDATE-WINDOW) 
t 

/ *  Check arms first * /  
/*if((left-arm < 255) && 

(right-arm < 255) ) 
{ 
sw-gain(center->sw, OFF-GAIN); 
last-time = this-time; 
J 

else if ((left-arm < 255) && 
(right-arm == 255)) 
{ 
sw-gain(1eft->sw, OFF-GAIN); 
last-time = this-time; 

else if ((left-arm == 255) && 
(right-arm < 255)) 
{ 
sw-gain(right->sw, OFF-GAIN) ; 
last-time = this-time; 
1 
else*/ 

{ 
/ *  Compute head point * /  
if((1eft-head-accelaration >= 2.0) && 

(right-head-accelaration >= 2.0)) { 
gaze = center; 

else if((1eft-head-velocity <= -1.0) && 
(right-head-velocity >= 2.0)) { 

gaze = left; 
} 
else if ((right-head-velocity <= -2.0) && 

(left-head-velocity >= 1.0)) { 
gaze = right; 

} 
else 
gaze = (stream *)NULL; 

/ *  Update focus * /  
if((1ast-gaze ! =  gaze) && 

(gaze ! =  (stream *)NULL) ) 
{ 
last-time = this-time; 
s-give-focus(gaze); 

} 

last-gaze = gaze; 
3 

} 
} 

else 
/ *  Decrement clock * /  
fish-ticks--; 

/ *  Add sensor values to FIFOs * /  
lrh[last_pos-index] = right-head; 
llh[last_pos-index] = left-head; 



lra[last_pos-index] = right-arm; 
lla[last_pos-index] = left-arm; 

/ *  Update the index * /  
last_pos-index = (++last_pos-index)%FISH-TICKS; 

/ *  
* Plays feedback in swindow. 
* /  

static void 
play-tone(stream *s, 

char *filename, 
int delay) 

i 
time-t current-time; 

/ *  If there's a filename play it * /  
if(fi1ename ! =  (char *)NULL) 

{ 
if (delay) 

L 

time(&current-time) ; 
if ((current-time - last-tone-time) < 

tone-t ime-int erval ) 
sleep(tone-time-interval - 

(current-time - last-tone-time)) ; 
J 

/ *  Save the last time * /  
time(&last-tone-time); 
sw_play(s->sw, filename) ; 

1 

/ * 
* Plays a sound segment on a stream. Records starting time as well. 
* / 

static void 
play-segment(stream *s, 

segment *current-segment, 
long start, 
long stop) 

L 

/ *  Record the start time and position of this segment * /  
ftime(s->start-time); 
s->start_pos = start; 
s->stop_pos = stop; 

/ *  Play the segment * /  
sw_play-segment(s->sw, current-segment->audio-file, 

start, stop) ; 

/ *  
* Playes a particular segment on a stream. Called from segment-cb 
* only. Typical interface is play-segment. 
* / 

static void 
play-segment-on-stream(stream *s, 

( 
VARRAY "segments, 
int segment-index) 

C 
/ *  Restart any paused streams * /  
if (sl ! =  s) 



/ *  Reset gain * /  
if(s->gain-level ! =  0) 

(s->gain-level)--; 

/ *  If we're not at a fixed gain, then bump gain * /  
if(s->gain-level == 0) 
s-delayed-gain(s, s->gains[l], gain-delay-ticks); 

/ *  Reset the tsms ratio and ticks * /  
s->last-tsms-ratio = s->tsms-ratio; 
s->tsms-ratio = tsms-ratio; 
s->tsms-ticks = 0; 
s-tsms-ratio(s->sw->id, s->tsms-ratio); 

s->current-segment = (segment *)VarrayGet(segments, segment-index); 
s->segment-index = segment-index; 

/ * 
* Loops an empty, i-e., silent buffer into stream s. This is 
* necessary because of a bug in stereoclient. 
* / 

static void 
play-empty-buf-on-stream(stream *s) 

I I 

/ * 
* Sets a timer ticks long after which the gain get set to gain. 
* / 

static void 
s-delayed-gain(stream *s, 

float gain, 
int ticks) 

L 

s->delayed-gain = gain; 
s->gain-delay-ticks = ticks; 

/ * 
* Decays the gain over time. On the gain is completely decayed the 
* gain-level (focus) is set to zero. 
* / 

static void 
decay-gain(stream *s) 
{ 
float temp-gain; 

/ *  Decay the gains on the windows * /  
if((temp-gain = sw-get-gain(s->sw)) > s->gains[O]) 
sw-gain(s->sw, (float) (temp-gain - s->rates[s->gain-level])); 

else 
s->gain-level = 0; 

1 



/ * 
* Checks to see if the delay timer has expired and if so sets the 
* gain appropriately. 
* / 

static void 
delay-gain(stream *s) 
i 

[ / *  Check if gain delay is on * /  
if(s->gain-delay-ticks > 0) 

{ 
s->gain-delay-ticks -= 1; 
if(s->gain-delay-ticks == 0) 

C 
s->gain-delay-ticks = 0; 
sw-gain (s->sw, 

s->delayed-gain); 

/ * 
* Handles gain decay and sets any delayed gains as appropriate. 
* /  

static void 
update-gain(stream *s) 
C 
decay-gain ( s ) ; 
delay-gain ( s) ; 

1 

/ *  
* Updates the playback speed when focus level is three or greater. 
* We need to halt the sound, change the speed, and continue playing. 
* 
* / 

static void 
update-tsms-ratio(stream *s) 
{ 
if(s->gain-level >= 4) 

C 
/ *  Time to update the tsms ratio * /  
s->tsms-ratio += tsms-rate; 
s-tsms-ratio(s->sw->id, s->tsms-ratio); 

I 
1 

} 
1 

/ *  
* Callback that loops segments onto a stream. If termination condition 
* is S-P-EOF, then the next segment is played. 
* / 

static void 
segment-cb ( int f d, 

char *client-data, 
int termination) 

C 
segment *temp; 
thread *t; 
stream *s; 



/ *  Figure out which segment finished playing * /  
/ *  and play the next * /  
if (fd == sl->sw->id) 

{ 
s = sl; 
t = sl->thread; 

J 

else if(fd == s2->sw->id) 
i 
s = s2; 
t = s2->thread; 

3 
else if (fd == s3->sw->id) 

{ 
s = s3; 
t = s3->thread; 

3 
else if (fd == s4->sw->id) 
t = (thread *)NULL; 

if(t ! =  (thread *)NULL) 

/ *  Play the attention tone * /  
if(s->attention == FALSE) 

/ *  We're going to play something here * /  
s->attention = TRUE; 

if(t->current-segment-index < t->num-segments) 
play-tone(s, ATTENTION-TONE, TRUE); 

else 
play-tone(s, NO-SEGMENT-TONE, FALSE); 

3 
else 

/ *  Now play the correct segment * /  
L 

s->attention = FALSE; 

/ *  Play next segment * /  
if (t->current-segment-index ,< t->num-segments) 

J 

else 
play-segment-on-stream(s, t->segments, 

t->current-segment-index); 
1 

3 

/ * 
* Callback that keeps a buffer of silence playing on the fourth 
* stream. FIXES a stereoclient bug that causes the fourth stream to 



* stop playing. 
* / 

static void 
buff er-cb ( int fd, 

char *clientdata, 
int termination) 

L 

/ *  Just keep playing an empty buffer * /  
( s-async_play-new-buf(fd, &silence-bb); 

/ * 
* Callback that handles time dependent changes (delays and gain 
* decay). Gets called every TICK-SIZE milliseconds. 
* / 

static void 
time-cb(caddr-t *data) 
{ 
float temp-gain; 
float *location; 
char outstring[DISPLAY-LENGTH]; 
char cl, c2, c3; 
int i; 

if(output-fd >= 0) 
{ 

/ *  Print some status info if necessary * /  
cl = ' ' ;  
c2 = "; 
c3 = '  ,; 

if (left == focus) 
C1 = r * , .  

if (center == focus) 
C2 = I * ' ;  

if (right == focus) 
c3 = ' * I .  

for(i = 0; i < DISPLAY-LENGTH; i++) 
outstring[il = ' ' ;  

sprintf(outstring, " %c%5.2f %c%5.2f %c%5.2fN, cl, left->sw->gain, 
c2, center->sw->gain, c3, right->sw->gain); 

write(output-fd, erase-string, DISPLAY-LENGTH + 1); 
write(output-fd, outstring, DISPLAY-LENGTH); 

1 

if (polhemus-rw >= 0 ) 
i 
location = update-head_position(); 
if ( track-head) 
sw~move~head(1ocation); 

1 

if(fish-rw >= 0) 
update-f ish ( ) ; 

/ *  Update the gains on the streams * /  
if(stagger-start(s1)) 



update-gain (s2 ) ; 
update-tsms-ratio(s2); 

1 

if(stagger-start(s3)) 
{ 
update-gain (s3 ) ; 

i update-tsms-ratio(s3); 
1 

I 

/ * 
* Initialize the swindows system. Allocates four windows and puts 
* them into their default positions. Also sets the gains properly. 
* / 

static void 
initialize-swindows0 
{ 
sw-init ( )  ; 

/ *  Allocate swindows * /  
swl = sw-open ( ) ; 
sw2 = sw-open ( ) ; 
sw3 = sw-open ( ) ; 
sw4 = sw-open ( ) ; 

/ *  Put them in the right place * /  
sw-move(sw1, 60.0, 0.0, 10.0); 
sw~move(sw2, 60.0, 300.0, 0.0); 
sw-move(sw3, 60.0, 60.0, 0.0); 
sw-move(sw4, 60.0, 180.0, 10.0); 

/ * 
* Initializes a stream and returns it. 
* / 

static stream 
*initialize-stream(swindow *sw, 

thread *t, 
float level-0-gain, 
float level-1-gain, 
float level_2_gain, 
float level-3_gain, 
float level-4_gain, 
float level-0-rate, 
float level-1-rate, 
float level_2_rate, 
float level-3_rate, 
float level-4_rate, 
int start-delay-ticks) 

C 
stream *s; 

/ *  Open four streams. * /  
s = (stream *)calloc((size-t)l, sizeof(stream)); 

/ *  Set up the gains properly * /  
sw-gain(s->sw, level-1-gain); 
s->delayed-gain = level-1-gain; 

I s->last-gain = level-1-gain; 
s->gains[O] = level-0-gain; 
s->gains[l] = level-1-gain; 
s->gains[2] = level-2-gain; 



s->gains[3] = level-3-gain; 
s->gains[41 = level-4-gain; 
s->rates[OI = level-0-rate; 
s->rates[ll = level-1-rate; 
s->rates[2] = level-2-rate; 
s->rates[3] = level-3-rate; 
s->rates[4] = level-4-rate; 
s->paused_pos = -1; 

I 
s->gain-level = 1; 
s->last-gain-level = 1; 
s->gain-delay-ticks = 0; 
s->last-tsms-ratio = tsms-ratio; 
s->tsms-ratio = tsms-ratio; 
s->tsms-rate = tsms-rate; 
s->start-delay-ticks = start-delay-ticks; 
s->thread = t; 
s->current-segment = (segment *)NULL; 
s->segment-index = 0; 
s->attention = FALSE; 
s->start-time = (struct timeb *)calloc((size-t)l, sizeof(struct timeb)); 
s->focus-time = (time-t)O; 
return s; 

1 

/ * 
* Initializes the streamer configuration to default values. 
* / 

static void 
init-streamer-config0 
C 

/ *  Set gains to default values * /  
level-0-left-gain = LEVEL-0-LEFT-GAIN; 
level-1-left-gain = LEVEL-1-LEFT-GAIN; 
level-2-left-gain = LEVEL-2-LEFT-GAIN; 
level-3-left-gain = LEVEL-3-LEFT-GAIN; 

1 level-4-left-gain = LEVEL-4-LEFT-GAIN; 

/ *  Set rates to default values * /  
level-0-left-rate = LEVEL-0-LEFT-RATE; 
level-1-left-rate = LEVEL-1-LEFT-RATE; 
level-2-left-rate = LEVEL-2-LEFT-RATE; 
level-3-left-rate = LEVEL-3-LEFT-RATE; 
level-4-left-rate = LEVEL-4-LEFT-RATE; 



/ *  Other * /  
tsms-ticks = TSMS-TICKS; 
gain-delay-ticks = GAIN-DELAY-TICKS; 
middle-start-delay = MIDDLE-START-DELAY; 
right-start-delay = RIGHT-START-DELAY; 
left-start-delay = LEFT-START-DELAY; 
tsms-ratio = TSMS-RATIO; 
max-tsms-ratio = MAX-TSMS-RATIO; 
tsms-rate = TSMS-RATE; 
tone-time-interval = TONE-TIME-INTERVAL; 
focus~time~window = FOCUS-TIME-WINDOW; 

1 

/ * 
* Reads a configuration file. 
* / 
static void 
read-streamer-config-file(char "filename) 
C 
char value[2561; 

/ *  This isn't really very efficient * /  

/ *  Set the variable values from the configuration file * /  

/ *  Set gains for left channel * /  
if(CaddSearchFor~eyValue("leve1-0-1efttganr, filename, value, 256) 

== TRUE) 
level-0-left-gain = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-l11efttgan1, filename, value, 256) 
== TRUE) 
level-1-left-gain = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-221efttgain', filename, value, 256) 
== TRUE) 
level-2-left-gain = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-331efttgain', filename, value, 256) 
== TRUE) 
level-3-left-gain = atof(va1ue); 

if(CaddSearchFor~eyValue("leve1-441efttgain", filename, value, 256) 
== TRUE) 
level-4-left-gain = atof(va1ue); 

/ *  Set gains for middle channel * /  
if(CaddSearchForKeyValue("leve1-0-middlegain, filename, value, 256) 

== TRUE) 
level-0-middle-gain = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-1-middlegain", filename, value, 256) 
== TRUE) 
level-1-middle-gain = atof(va1ue) ; 

if(CaddSearchForKeyValue("leve1-22middlegain, filename, value, 256) 
== TRUE) 
level-2-middle-gain = atof(va1ue) ; 

i if(CaddSearchForKeyValue("1evel-33middlegain", filename, value, 256) 
== TRUE) 
level-3-middle-gain = atof(va1ue); 

if(CaddSearchFor~eyValue("leve1-44middlegain, filename, value, 256) 



== TRUE) 
level-4-middle-gain = atof(va1ue); 

/ *  Set gains for right channel * /  
if(CaddSearchForKeyValue("leve1-0-right-gain, filename, value, 256) 

== TRUE) 
level-0-right-gain = atof(va1ue); 

if(CaddSearchForKeyValue("1evel-1-right-gain, filename, value, 256) 
== TRUE) 
level-1-right-gain = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-2-right-gain", filename, value, 256) 
== TRUE) 
level-2-right-gain = atof(va1ue); 

if(~addSearch~or~eyValue("level-3~right-gain", filename, value, 256) 
== TRUE) 
level-3-right-gain = atof(va1ue); 

if(CaddSearchForKeyValue("le~el-4~right-gain', filename, value, 256) 
== TRUE) 
level-4-right-gain = atof(va1ue); 

/ *  Set rates for left channel * /  
if(CaddSearchForKeyValue("leve1-0-left-rate, filename, value, 256) 

== TRUE) 
level-0-left-rate = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-1-left-rate, filename, value, 256) 
== TRUE) 
level-1-left-rate = atof(va1ue); 

if(CaddSearchForKeyValue("1evel-221efttrate", filename, value, 256) 
== TRUE) 
level-2-left-rate = atof(va1ue); 

if(CaddSearchForKeyValue("le~el-3~left~rate", filename, value, 256) 
== TRUE) 
level-3-left-rate = atof(va1ue); 

if(CaddSearchForKeyValue("le~el-4~left~rate", filename, value, 256) 
-- -- TRUE) 
level-4-left-rate = atof(va1ue); 

/ *  Set rates for middle channel * /  
if(CaddSearchForKeyValue("leve1-OOmiddlerate", filename, value, 256) 

== TRUE) 
level-0-middle-rate = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-1-middlerate, filename, value, 256) 
== TRUE) 
level-1-middle-rate = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-22middlerate, filename, value, 256) 
== TRUE) 
level-2-middle-rate = atof(va1ue); 

if(CaddSearch~or~ey~alue("leve1-33middlerate", filename, value, 256) 
== TRUE) 

1 level-3-middle-rate = atof(va1ue) ; 

if(CaddSearch~orKeyValue("leve1-4-middlerateu, filename, value, 256) 
== TRUE) 
level-4-middle-rate = atof(va1ue) ; 



/ *  Set rates for right channel * /  
if(CaddSearchForKeyValue("leve1-0-right-rate", filename, value, 256) 

== TRUE) 
level-0-right-rate = atof(va1ue) ; 

if(CaddSearchForKeyValue("leve1-1-right-rate", filename, value, 256) 
== TRUE) 
level-1-right-rate = atof(va1ue); 

if(CaddSearchForKeyValue("leve1-2-right-rate", filename, value, 256) 
== TRUE) 
level-2-right-rate = atof(va1ue) ; 

if(CaddSearchForKeyValue("leve1-3-right-rate", filename, value, 256) 
== TRUE) 
level-3-right-rate = atof(va1ue); 

if(CaddSearchForKeyValue("midd1e-starttdeay1 filename, value, 256) 
== TRUE) 

middle-start-delay = atoi(va1ue); 

if(CaddSearchForKeyValue("right-~tart~delay", filename, value, 256) 
-- 
-- TRUE) 
right-start-delay = atoi(va1ue); 

if(CaddSearchF~rKeyValue(~~left~start~delay", filename, value, 256) 
== TRUE) 
left-start-delay = atoi(va1ue) ; 

if(CaddSearchFor~eyValue("tone~time~interval", filename, value, 256) 
== TRUE) 
tone-time-interval = atoi(va1ue); 

if(Cadd~earch~or~eyValue("focus~time~window", filename, value, 256) 
== TRUE) 
focus~time~window = atoi(va1ue) ; 

if(CaddSearchForKeyValue("tsms-ticks1', filename, value, 256) 
== TRUE) 
tsms-ticks = atoi(va1ue); 

if(CaddSearchForKeyValue("gain-delayYticksl, filename, value, 256) 
== TRUE) 
gain-delay-ticks = atoi(va1ue); 

if(CaddSearchForKeyValue("tsms-ratio", filename, value, 256) 
== TRUE) 
tsms-ratio = atof(va1ue); 

if (CaddSearchForKeyValue ( ~lma~~tsms~ratio", filename, value, 256) 
== TRUE) 

max-tsms-ratio = atof(va1ue); 

if(Cadd~earchFor~eyValue("tsms-rate", filename, value, 256) 
== TRUE) 
tsms-rate = atof(va1ue); 

I 

/ * 
* Initializes four streams. Three have data and the fourth will have 
* a silent buffer looped though it. 

1 * / 
void 
s-initialize(char *filenamel, 

char "filename2, 



char *filename3, 
char *config-filename, 
int output, 
int thead, 
int tgaze, 
int tfish, 
int fb) 

, C 
int i; 

/ *  Read in the default configuration * /  
init-streamer-config(); 

/ *  What about output ? * /  
if(output) 
output-fd = output; 

else 
output-fd = -1; 

/ *  Initialize the polhemus if required * /  
if (thead I I tgaze) 
polhemus-rw = init_polhemus-rw("/dev/ttya"l; 

else 
polhemus-rw = -1; 

if (tfish) 
fish-rw = init-fish-rw("/dev/ttya"); 

else 
fish-rw = -1; 

if (thead) 
track-head = TRUE; 

else 
track-head = FALSE; 

if (tgaze) 
track-gaze = TRUE; 

else 
track-gaze = FALSE; 

if (fb) 
feedback = TRUE; 

else 
feedback = FALSE; 

/ *  Set up the erase string * /  
for(i = 0; i < DISPLAY-LENGTH + 1; i++) 
erase-string[i] = '\010'; 

/ *  Read in the configuration file if there is one * /  
if(config-filename ! =  (char *)NULL) 
read-~treamer-~onfig~fi1e(config~fi1enarne); 

/ *  Initialize the swindows * /  
initialize-swindows0; 

/ *  Initialize the segments * /  
tl = initialize-thread(filename1); 
t2 = initialize-thread(filename2); 
t3 = initialize-thread(filename3); 

/ *  Set focus to NULL * /  
focus = (stream *)NULL; 



/ *  THIS IS A HACK, because the sound servers are writing to pipes * /  
for(i=O; i < SILENCE-BUFFER-LENGTH; i++) 
silence [i] = ' \377' ; 

silence-bb.maxlen = SILENCE-BUFFER-LENGTH; 
silence-bb.curr~en = SILENCE-BUFFER-LENGTH; 
silence-bb.data = silence; 

/ *  Open four streams * /  
sl = initialize-stream(sw1, tl, 

level-0-middle-gain, 
level-1-middle-gain, 
level-2-middle-gain, 
level-3-middle-gain, 
level-4_middle_gain, 
level-0-middle-rate, 
level-1-middle-rate, 
level-2-middle-rate, 
level-3_middle_rate, 
level-4_middle_rate, 
middle-start-delay); 

center = sl; 
s2 = initialize-stream(sw2, t2, 

level-0-right-gain, 
level-1-right-gain, 
level-2-right-gain, 
level-3-right-gain, 
level-4-right-gain, 
level-0-right-rate, 
level-1-right-rate, 
level-2-right-rate, 
level_3_right_rate, 
level-4-right-rate, 
right-start-delay); 

right = s2; 
s3 = initialize-stream(sw3, t3, 

level-0-left-gain, 
level-1-left-gain, 
level_2_left_gain, 
level-3_left_gain, 
level-4-left-gain, 
level-0-left-rate, 
level-1-left-rate, 
level_2_left_rate, 
level_3_left_rate, 
level-4-left-rate, 
left-start-delay); 

left = s3; 
s4 = initialize-stream(sw4, (thread *)NULL, 

OFF-GAIN, 
MIDI-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
OFF-GAIN, 
0); 

/ *  Set up the gaze variables * /  
gaze = (stream *)NULL; 
last-gaze = (stream *)NULL; 

/ *  Play the first page * /  
play-empty-buf-on-stream(s4); 



/ *  Always continue playing to the end of the segment * /  
sw-register-callback(S-PLAY-DONE-EV, segment-cb, (char *)NULL); 

/ *  Loop and empty buffer into s4 * /  
sw-register-callback(S-PLAY-BUF-EV, buffer-cb, (char *)NULL); 

/ *  Periodically wake up and decay gains, etc * /  
SmSetTimeoutCallBack(TICK~SIZE, time-cb, (caddr-t *)NULL) ; 

} 

/ * 
* Read in the segments and add them to a thread. 
* /  
static thread 
"initialize-thread(char *filename) 

thread *t; 
VARRAY *segments; 
int num-segments; 

/ *  Allocate a thread * /  
t = (thread * )  calloc ( (size-t) 1, sizeof (thread) ) ; 

/ *  Initialize the segments from a file * /  
segments = initialize-segments(filename, &num-segments); 

t->segments = segments; 
t->num-segments = num-segments; 
t->current-segment-index = 0; 
return t; 

1 

I 
/ * 
* Delays the start of a stream by start-delay-ticks. 
* /  
static int 
stagger-start(stream *s) 

/ *  Stagger the stream start * /  
if(s->start-delay-ticks > 0) 

{ 
s->start-delay-ticks -= 1; 
return FALSE; 

1 
else if(s->start-delay-ticks == 0) 

s->start-delay-ticks = -1; 
s->attention = TRUE; 
play-tone(s, ATTENTION-TONE, FALSE) ; 

. return TRUE; 
1 

else 
return TRUE; 

1 

/ * 
* Try to estimate the current position of the sound. Since we're 
* writing to a pipe we need to use a timer to get the position. This is 
* inherently inaccurate. 
* / 

( static long 
current~os(stream *s) 
i 
struct timeb current-time; 



long currentsos; 

/ *  Figure out how long this segment has been playing * /  
ftime(&current-time) ; 
currentjos = (current-time.time * 1000) + 
current-time.millit-m; 

currentsos = current_pos - 
((s->start-time->time * 1000) + 
s->start-time->millitm) ; 

currentsos = currentsos + s->startsos; 
return currentjos; 

/ * 
* Paused a stream at the current position 
* / 

static void 
pause-stream(stream *s) 
f 

if(s->paused_pos < 0) 

/ *  Pauses a stream at the current position * /  
/ *  Use continue-stream to start it again * /  
s->paused_pos = currentsos(s); 

/ *  Halt the stream * /  
sw-halt-and-flush-queue(s->sw); 

' / *  
* Restarts a stream at the current position. 
* / 
static void 
continue-stream(stream *s) 
1 

/ *  Figure out where to restart it * /  
if(s->paused_pos > 0) 

C 
long pos; 

/ *  Stop looping empty stuff * /  
sw-halt-and-flush-queue(s->sw); 

pos = s->paused_pos; 

/ *  Be sure to set this here ! * /  
s->pausedjos = -1; 

/ *  Play the segment * /  
if(s->current-segment ! =  (segment *)NULL) 
play-segment(s, s->current-segment, pos, s->stopjos) ; 

void 
play-level(int level, 

stream *s) 
'l 

float r, theta, phi; 



if (feedback) 
{ 
if(s ! =  (stream *)NULL) 

i 
r = s->sw->slocation[O]; 
theta = s->sw->slocation[ll; 
phi = s->sw->slocation[2]; 

else 

r = 0.0; 
theta = 0.0; 
phi = 0.0; 

/ *  Move the feedback window * /  
sw-move(s4->sw, r, theta, phi); 
while(cre-update-audio() < 0); 

/ *  Play a short note * /  
cre-msg-midi(s4->sw->b-id, MIDI-PATCH, CHNL, INSTR, 0); 
cre-msg-midi(s4->sw->b-id, MIDI-NOTE-ON, CHNL, 

((OCTAVE-DN1 + level)*12)+ NOTE-C, VELOCITY); 
cre-msg-midi(s4->sw->b-id, MIDI-NOTE-OFF, CHNL, 

((OCTAVE-DN1 + level)*12)+ NOTE-C, VELOCITY); 
while(cre-update-audio() < 0); 

/ * 
* Gives focus to the stream. 
* / 

void 
s~give~focus(stream *s) 

I { 
time-t current-time; 

/ *  If this stream isn't in focus then unfocus first * /  
if (s ! =  focus) 

t 
/ *  This is a lot like s-unfocus, except that it has slightly * /  
/ *  different behavior. Here we don't reset the gain-level to * /  
/ *  zero or reset the focus-time * /  
if(focus ! =  (stream *)NULL) 

f 

/ *  Restart any paused streams * /  
if (sl ! =  focus) 
continue-stream(s1); 

if (s2 ! =  focus) 
continue-stream(s2) ; 

if (s3 ! =  focus) 
continue-stream(s3); 

/ *  Reset the gain and speed on the focus * /  
focus->last-gain-level = focus->gain-level; 
focus->last-gain = sw-get-gain(focus->sw); 
focus->gain-level = 0; 
if(sw-get-gain(focus->sw) ! =  OFF-GAIN) 
sw-gain(focus->sw, focus->gains[O]); 

/ *  Save the tsms-ratio * /  
focus->last-tsms-ratio = focus->tsms-ratio; 

/ *  Reset the focus unless it's at the default * /  
if(focus->tsms-ratio > tsms-ratio) 

{ 



focus->tsms-ratio = tsms-ratio; 
s~tsms~ratio(focus->sw->id, focus->tsms-ratio); 

/ *  Save the time that this stream was last in focus * /  
time(&current-time); 
focus->focus-time = current-time; 

/ *  Set the focus to Null * /  
focus = (stream *)NULL; 

3 

/ *  Bug in the Beachtron * /  
usleep(100000); 

1 

/ *  Get the current time * /  
time(&current-time); 

/ *  See if where within the focus window * /  
if((s ! =  focus) && 

((current-time - s->focus-time) < FOCUS-TIME-WINDOW)) 

/ *  Reset gain and tsms-ratio * /  
s->tsms-ratio = s->last-tsms-ratio; 
s-tsms-ratio(s->sw->id, s->tsms-ratio); 
s->gain-level = s->last-gain-level; 

1 
else 
sw-gain(s->sw, s->last-gain) ; 

/ *  If we're resetting to level 4 we need to pause the other * /  
/ *  streams again. * /  
if(s->gain-level == 4) { 
if(s1 ! =  S) 
pause-stream(s1); 

if (s2 ! =  s) 
pause-stream(s2); 

if(s3 ! =  s) 
pause-stream (s3 ) ; 

1 
else if(s->gain-level == 0) 

{ 
s->gain-level++; 
play-level(s->gain-level, s); 
sw-gain (s->sw, s->gains [l] ) ; 

} 
else if(s->gain-level == 1) 

C 

s->gain-level++; 
play-level(s->gain-level, s) ; 
sw-gain (s->sw, s->gains [ 2  1 ) ; 

1 
I else if (s->gain-level == 2) 

{ 
s->gain-level++; 
play-level(s->gain-level, s) ; 
sw-gain(s->sw, s->gains[3]); 





* / 
void 
s-next-segment(int direction) 
f 
L 

if (focus ! =  (stream *)NULL) 

if(((focus->thread->current-segment-index + direction) < 
focus->thread->num-segments) && 
((focus->thread->current-segment-index + direction) >= 0)) 

t 
sw~halt~and~flush~queue(focus->sw); 
focus->thread->current-segment-index += direction; 
focus->attention = TRUE; 
play-tone(focus, FOCUS-NEW-PAGE-TONE, FALSE); 

1 
else 

JL 

/ *  Pause at the current position * /  
focus->paused_pos = current_pos(focus); 

/ *  Halt the sound and play no segment tone * /  
sw~halt~and~flush~queue(focus->sw); 
focus->attention = TRUE; 
play-tone(focus, NO-SEGMENT-TONE, FALSE) ; 

3 

void 
s-rotate ( ) 
{ 
float r, theta, phi; 
stream *temp; 

/ *  Rotate the positions of the streams * /  
temp = center; 
r = center->sw->slocation[Ol; 
theta = center->sw->slocation[l]; 
phi = center->sw->slocation[21; 

sw-move(1eft->sw, r, theta, phi); 

center = left; 
left = right; 
right = temp; 

/ * 
* Initializes a set of segments by reading in the DBs in filename. 
* Return value is the number of segments. Side effects global 
* variable, segments. In this case segments correspond to story 
* boundaries as derived from closed caption information. 
* / 

static VARRAY 
*initialize-segments(char *filename, 



int *num-segmentsstr) 
i 
segment *temp; 
VARRAY *segments; 
int num-segments; 
FILE *infile; 
char line[MAX-LINE-LEN]; 
char audio-filename[MAX-LINE-LEN]; 
long start, stop; 
int length; 
char c; 

if( (infile = fopen(filename, "r")) == (FILE *)NULL) 
L 

perror("Canlt open segments file"); 
exit (-1) ; 

segments = (VARRAY *)calloc((size-t)l, sizeof(VARRAY)); 
VarrayInit(segments, NUM-SEGMENTS); 

num-segments = 0; 

/ *  Convert it to an array of segments * /  
while(!feof(infile)) 

1 

if ( (c = getc (infile) ) == ' < '  ) 
L 

/ *  It's an audio file, get the rest of the line * /  
fgets(line, MAX-LINE-LEN, infile); 

/ *  How long is it ? * /  
length = strlen(1ine); 

/ *  Put in a null * /  
line[length - 21 = '\0'; 

strncpy(audio-filename, line , length); 
1 

else if (c == I # ' )  

/ *  It's a comment. Toss the line * /  
fgets(line, MAX-LINE-LEN, infile); 

else 
L 

/ *  It's a range, so put the character back on the stream * /  
ungetc (c, in£ ile) ; 

/ *  Get the start and stop * /  
fscanf(infile, "%ld %1d\nN, &start, &stop); 

/ *  Allocate segment structure * /  
temp = (segment *)calloc((size-t)l, sizeof(segment)); 

/ *  Fill in the values * /  
strcpy(temp->audio-fileI audio-filename); 
temp->start = start; 
temp->stop = stop; 
temp->duration = temp->stop - temp->start; 

/ *  Save the segment in array * /  
VarraySet(segments, num-segments, temp); 



/ *  Close the file * /  
fclose(infi1e); 

/ *  Set up return values * /  
*num-segmentsstr = num-segments; 
return segments; 

/ * 
* Frees the storage allocated to a thread. 
* / 

static void 
free-thread(thread *t) 
C 
int i; 
segment *s; 

/ *  Free all of the segments * /  
for(i = 0; i < t->num-segments; i++) 

{ 
s = (segment *)VarrayGet(t->segments, i); 

I 
free (s) ; 

1 

/ *  Free the segment varray * /  
VarrayFree(t->segments); 

/ *  Free the thread * /  
free (t) ; 

I / * 
* Free the storage allocated to a stream. 
* / 
static void 
free-stream(stream *s) 

/ *  Free the timeb struct * /  
free(s->start-time); 

/ *  Free the stream itself * /  
free(s) ; 

/ * 
* Kills the streams and free their storage. 
* /  

void 
s-ki 11 ( ) 
{ 

/ *  Free threads * /  
free-thread(t1) ; 
free-thread(t2); 
free-thread(t3); 

/ *  Free streams * /  
free-stream(s1); 
free-stream(s2); 
free-stream(s3); 
free-stream(s4); 

/ *  Free swindows * /  
sw-kill() ; 


