A Tool to Support Speech and Non-Speech Audio
Feedback Generation in Audio Interfaces

Lisa J. Stifelman
Speech Research Group
MIT Media Laboratory
20 Ames Street, Cambridge, MA 02139
Tel: 1-617-253-8026
E-mail: lisa@media.mit.edu

ABSTRACT

Development of new auditory interfaces requires the
integration of text-to-speech synthesis, digitized audio, and
non-speech audio output. This paper describes a tool for
specifying speech and non-speech audio feedback and its use
in the development of a speech interface, Conversational
VoiceNotes. Auditory feedback is specified as a context-free
grammar, where the basic elements in the grammar can be
either words or non-speech sounds. The feedback
specification method described here provides the ability to
vary the feedback based on the current state of the system,
and is flexible enough to allow different feedback for
different input modalities (e.g., speech, mouse, buttons).
The declarative specification is easily modifiable,
supporting an iterative design process.

KEYWORDS

Speech user interfaces, auditory feedback, text-to-speech
synthesis, non-speech audio, hand-held computers, speech
recognition.

INTRODUCTION

As computers continue to decrease in size, speech and sound
will become a primary means of communication between
the human and computer. It will be increasingly common
for people to speak to their computers, VCRs, and wrist
watches, and for them to speak back. While speech and
sound are becoming more prevalent components for
interaction, better tools are needed for designers and
developers of audio interfaces. Speech recognition
technology has moved from speaker-dependent isolated word
recognition to speaker-independent continuous speech,
increasing the complexity of both the spoken input and
output. Most continuous speech recognition systems (e.g.,
Plaintalk [16], Hark [1], Dagger [13]) provide a mechanism
for a developer to specify what a user can say to an
application.! An easily modifiable, declarative mechanism

Permission 1o make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

UIST 95 Pittsburgh PA USA
© 1995 ACM 0-89791-709-x/95/11..$3.50

is also needed for specifying speech and non-speech audio
feedback (i.e., auditory icons [9] or earcons [4]).

Natural language generation research has tended to focus on
producing coherent multisentential text [14], and detailed
multisentential explanations and descriptions [22, 23],
rather than the kind of terse interactive dialogue needed for
today’s speech systems. In addition, sophisticated language
generation tools are not generally accessible by interface
designers and developers.? The goal of the work described
here was to simplify the feedback generation component of
developing audio user interfaces and allow rapid iteration of
designs.

This paper describes a tool for specifying speech and non-
speech audio feedback and its use in the development of a
speech interface, Conversational VoiceNotes. Auditory
feedback is specified as a context-free grammar, where the
basic elements in the grammar can be either words or non-
speech audio sounds.

FROM VOICENOTES TO CONVERSATIONAL
VOICENOTES

VoiceNotes [28, 29] explored a speech interface for a hand-
held notetaking device. VoiceNotes allows a user to capture
and randomly access spontaneous thoughts, ideas, or things-
to-do in contexts where writing would be inconvenient
(e.g., while driving or walking down the street). This
research explored the idea of a speech-driven, hand-held
computer with a microphone, speaker, and only a few
buttons; no keyboard or screen. VoiceNotes demonstrated
the utility of stored speech, overcoming the time
consuming nature of listening to speech by providing the
user with random access, dynamic speed control, and
customizable feedback.

Conversational VoiceNotes expands the navigational model
of the original system, providing the user with multiple
ways of organizing and accessing notes in the speech
database. Conversational VoiceNotes uses the PlainTalk

IThese systems utilize a grammar to constrain the perplexity of input,
and enable efficient searching within the speech recognition engine.
20ne barrier is that most interface and application development
environments use ‘C’ while Al and natural language researchers work in
LISP.

November 14-17, 1995

UIST '95 171

[16] speaker-independent continuous speech recognition and
text-to-speech synthesis systems. Using continuous speech
input, users can describe or add actions to their notes.
Currently implemented descriptors are importance, day of
the week, and a time to be reminded. Descriptors can be
added to notes as a preamble to recording (e.g., “Take an
important note”) or postamble (e.g., “It’s important™).
These descriptions can then be used to navigate through the
speech database (e.g., “Play all my important notes”),
allowing random access to small subsets of notes. In
addition to scaling the interface, allowing the user to
manage a larger number of notes, the goal is to provide
added flexibility to support different user preferences or
mental models.

CRITERIA FOR DESIGN

In developing Conversational VoiceNotes, a tool was
needed to support easier integration of speech and non-
speech audio feedback. Conversational VoiceNotes uses
digitized speech for the user’s notes, text-to-speech
synthesis for responding to the user’s voice commands, and
non-speech audio for navigational cues and describing notes.
In early prototypes of the system, each of these types of
output were embedded in various places in the code. This
made it difficult to make modifications to the design,
integrate the different forms of feedback, and ensure
consistency throughout the system. It was therefore
important to have a mechanism for describing speech and
sound feedback as a whole, in a form that would be easily
modifiable.

Another important consideration is the ability to
dynamically vary the type and amount of feedback [7, 29].
Conversational VoiceNotes varies the audio feedback
depending on factors such as the user’s preferred output
modality, detail level, and the input modality employed.
Brennan [6, 8] emphasizes a collaborative view of
interaction in which the computer must adapt its responses
to its conversational partner and the current context of the
dialogue. In addition, studies show that users prefer
dynamic to static or repetitive feedback. Yankelovich [32]
found that progressively modifying the feedback for speech
recognition rejection errors? was preferred over a single
repetitive message. A study of educational games for
children found that programs with a number of different
messages for the same situation were preferred to those
using the same feedback over and over again [30].

Since audio output can be used independently of speech
input, the generation method should not assume the
existence of speech recognition. The feedback specification
method described here can apply to any mode of input (e.g.,
mouse, keyboard, physical buttons, speech), and is flexible
enough to allow different feedback for different modalities.

3checti0n errors occur when a speech recognizer is unable to report
any of the words spoken by the user [26].

SPECIFYING AUDITORY FEEDBACK

Early in the process of developing Conversational
VoiceNotes it became clear that a tool was need to support
feedback generation, specifically for providing:

» synthetic speech feedback for responding to speech
database queries

» digitized speech for playing a user’s voice notes
* non-speech audio for navigational cues
* combinations of the above types of feedback

» multiple levels of feedback (i.e., differing amounts
of detail)

» selection between different types of feedback
(synthetic speech vs. non-speech audio).

The following sections present the basic design of the
feedback generation tool. Note that the code examples have
been simplified and modified for the paper.

Feedback Grammar

Auditory feedback is specified as a context-free grammar.
The format of the grammar is based on one used by
Plaintalk [2, 31] for continuous speech recognition input.
The goal was to make the two formats as compatible as
possible, so that they might eventually be used in
conjunction with one another. The advantage of a
hierarchical grammar is the ability to reuse components and
avoid repetition. The specification is modular—for
example, once the grammar rules for handling dates and
times have been written, they can be used in a variety of
applications.

Using Variables in Feedback Rules

One problem with many speech recognition grammars is
that they do not provide a mechanism for sharing data (i.e.,
variables) with the application. The programmer is often
forced to hard code information into the grammar. This is
extremely limiting, since the grammar cannot be
synchronized with the application data. For example, the
following definitions hard code the names of people,
duplicating information already contained inside a user’s
personal information manager or a group information
database:

SENDMESSAGE:

"Recording a note for" PERSONNAME;
PERSONNAME:

"Chris" | "Barry" | "Eric";

The feedback grammar described here, allows the use of
application variables inside nonterminal? definitions. The
grammar can access data within the application which in
turn can access any database. In the example below,
%personName accesses the value of the personName
variable in the application:

4A terminal is an atomic unit in the grammar that cannot be broken down
any further (e.g., a word string). A nonterminal is a collection of
terminals and may also contain other nonterminals (see Figure 1).

172 UIST '95

November 14-17, 1995

%define SendMessage
"Recording a note for" %personName
%end

Note that in this grammar specification, %define is used to
begin a nonterminal definition and %end to complete it.
Angle braces (e.g., <nonterminal-name>) are used whenever
a nonterminal is referenced [2].

Dynamic Generation Based on Application State
The feedback grammar allows the application developer to
specify the conditions under which different types of
feedback will be generated. If there is more than one rule
inside a definition, then more information is needed to
determine which rule to use to generate the feedback. A
conditional statement can be specified for each rule
(indicated using a semicolon after the rule) as shown in the
following example:

%define Modifier /* conditional statements */
"high priority" ; Yopriority==HIGH
"low priority" i %priority==LOW

%end

%define VoiceObj
"reminder" . %reminderVar==TRUE
llnotell

%end

%define RecordResponse
"Recording a" <Modifier> <VoiceObj> "for" <WeekDay>
%end

The conditional statement:

%reminderVar==TRUE

is equivalent to the ‘C’ programming construct:

if (reminderVar == TRUE) {
VoiceObj = "reminder”;

}
else {
VoiceObj = "note”;

}

If no conditions are specified, the feedback generator will
use the first rule in the list. In the example above, if
reminderVar is true the result will be “Recording a reminder
for ...” If reminderVar is false, then the second rule
("note") will match by default since there are no associated
conditions and the result will be “Recording a ... note for

»”

The definition of Modifier shows an example of a null rule,
which is useful for keeping the specification concise. In
this definition, the last rule (") will be executed if the
priority is not set to high or low. Without the null rule,
two <RecordResponse> rules would be needed—one with
the <Modifier> component, and one without it.

The program also supports a logical AND operator, so
multiple conditions can be placed on the right hand side of a
rule. For example, the feedback grammar condition:

%reminderVar==TRUE %event==PLAY

is equivalent to the ‘C’ construct:

if (reminderVar == TRUE && event == PLAY)

Currently, AND is the only logical operator implemented,
however, OR can be accomplished using multiple rules.

Sharing Constant Definitions

In addition to sharing variables between the application
program and grammar, constant definitions can also be
shared. The ‘C’ programming constructs #define and
#include can be used inside the grammar, thereby avoiding
duplicating definitions already specified in ‘C’ header files
(i.e., .h files), or worse, hard-coding values into the
grammar. Notice the condition %priority==HIGH in the
definition for <Modifier>. The definition of HIGH is
contained in a ‘C’ header file that is shared by the
application and the grammar.

Integrating Sound into the Grammar

In addition to word strings, sound references can also be
used in the feedback grammar. Note that “sound” refers to
digitized speech or non-speech audio. A simple example is
a prompt for recording a voice message:

%define RecordMessage
"Record your message at the beep" SOUND:beep
%end

All sound terminals in the grammar are specified using
SOUND: followed by a name or variable. In the above
example, the sound named beep is used.

The feedback generation program passes an object list
containing word strings and sound references back to the
application (see Implementation section). In
Conversational VoiceNotes, audio output is then handled by
text-to-speech and sound libraries.5 The feedback tool does
not generate audio output itself since the application
handles all audio output and is set up to allow interruption
by the user. All sounds are currently stored in AIFF sound
files, however, there is nothing to preclude the use of
synthesized [10] rather than sampled sounds.

In the definitions below, the sound name of the user’s voice
note (or voice reminder) is contained in the variable
%currentNote.

5The text-to-speech and sound libraries are built on top of the Macintosh
Toolbox to provide a higher level, easier to use, programmatic interface
to speech and sound.

November 14-17, 1995

UIST 85 173

%define ReminderPlayBack
"Remember to" SOUND:%currentNote
%end

%define MoveResponse
"Move" SOUND:%currentNote "to where?"
; %needCategory==TRUE
SOUND:%currentNote "moved to" <Category>
%end

The first definition states that when a reminder is played,
the system precedes it with the phrase "Remember to"
before playing the user’s voice note. The MoveResponse
output depends on a single condition—whether the user has
specified the new category. If the user requests "Move this
note to my grocery list", the system would respond by
playing the note being moved (e.g, Buy apples) followed by
the phrase "moved to groceries".

FEEDBACK GENERATION IN

CONVERSATIONAL VOICENOTES

The following sections discuss the use of the feedback
generation tool by Conversational VoiceNotes to support a
variety of interface design considerations.

Feedback Levels

Conversational VoiceNotes uses two types of output—
speech and non-speech, two types of input—speech and
buttons, and two levels of detail (terse or verbose). The
audio feedback is varied depending on the variables listed
below:

» user preferred output modality

+ user preferred detail level

* input modality employed

*» time elapsed since the last user command

Conversational VoiceNotes selects the type of feedback
based on the conditional statements in the grammar. The
RecordNoteResponse definition below states that sound
output is used in response to recording a note when the user
employs button input or has requested terse feedback.®
Button input is associated with terse or sound output more
often than speech input. In a user test of the original
VoiceNotes interface [29], users did not expect speech
feedback in response to pressing the record button on the
device and often spoke over it.

%define RecordNoteResponse

SOUND:beep ; %input==BUTTON_INPUT
SOUND:beep ; %fbLevel==TERSE_FEEDBACK
"Recording a note" SOUND:beep

%end

The StopResponse definition states that no explicit
feedback is provided for stopping audio playback (except
silence) if button input is used or terse feedback is preferred.

The addition of an OR operator would remove the duplicate rule in the
RecordNoteResponse definition.

%define StopResponse
" ; %oinput==BUTTON_INPUT
; %fbLevel==TERSE_FEEDBACK
"Stopped"

%end

A concern with the interface is that users will not remember
their place in the speech database and put a note in an
unintended place. Therefore, if the time since the user’s last
command has exceeded a threshold (i.e., timeElapsed ==
TRUE), then the system reminds the user of the current
location. For example, when a new note is recorded, the
system reports the name of the category where the note has
been placed:

%define NewNoteResponse
"Note added to" <Category> ; %timeElapsed==TRUE

SOUND:thunk’ ; Y%output==SOQUND_OP
"Note added to" <Category> ; %fblevel==VERBOSE_FB
"New note added"

%end

Speech and Non-Speech Audio Feedback

In Conversational VoiceNotes, non-speech audio is used for
navigational cues and to provide information about notes.
For example, whenever an “important” note is played, it is
preceded by an auditory icon that sounds like a trumpet. To
reinforce this cue, if a note is marked as important (e.g., by
saying “It’s important”) and sound output is selected, the
trumpet sound is also played:

%define DescribePriority
SOUND:trumpet SOUND:%currentNote
; Y%e0utput==SOUND_OP
"Note marked as important" SOUND:%currentNote
; Yooutput==SPEECH_OP
%end

Rules can also combine sound output and text to be
spoken. In the example below, if the user preference is set
to SOUND_OP, when a category of notes is selected, an
“opening” auditory icon (named opencat) is played followed
by text-to-speech synthesis of the category name.

%define SelectResponse
SOUND:opencat <Category> ; %output==SOUND_OP
"Moving into" <Category> ; Yooutput==SPEECH_OP
%end

Error Correction

Due to the error-prone nature of current speech recognition
technology, some experimentation was also done with a
mechanism for error correction and feedback. In particular,
substitution errors® often occur when users enter dates and
times as in the following example dialogue:

TThe thunk sound uses the analogy of the note being dropped into a
container and hitting the bottom.

8Substitution errors occur when all or part of the utterance spoken by the
user is recognized as a different utterance (e.g., the user says 3 o’clock
and the recognizer reports 2 o’clock) [26].

174 UIST '95

November 14-17, 1995

User: "Play today’s notes”

System: Notes for today ... "work on the CHI position
paper', "meet with Jordan"

User: "Remind me about this"

System: At what time do you want to be reminded?

User: "At 3 o’clock"

System: Note marked as reminder for today at
2 o’clock ...

User: “No | said 3 o’clock"”

System: Qops sorry, note marked as reminder for

today at 3 o’clock "meet with Jordan”

%define CorrectionRule
"Oops sorry, " <Response> ; %correction==TRUE
<Response>

%end

Whenever the user speaks a day or time for a reminder, the
system adds an editing expression® to the speech
recognition grammar, allowing the user to say “No I said”
followed by a new day and time. The system’s response to
such an editing expression is extremely important for
maintaining mutual belief between the system and user. By
responding “Oops sorry” Conversational VoiceNotes
acknowledges the user’s intention to correct an error,
keeping the dialogue on track.

Notice in the above dialogue that the correction response
repeats all of the information for the reminder. While an
ellipticall® response such as “Note marked for 3 o’clock” is
briefer, inclusion of all reminder attributes implicitly
informs the user what the system has assumed to be correct
[12, 27, 32] allowing further repair if needed.

IMPLEMENTATION

Feedback State Frame

The feedback generator is designed to work in conjunction
with a ‘C” program. The program shares variables with the
feedback grammar using a feedback state frame (see example
below). Variables in the feedback state frame can be used
inside nonterminal definitions or conditional statements in
the grammar. For every variable to be used in the
grammar, the programmer specifies the text name and a
pointer to the application variable.

KVPair FbStateFramef[] = {

{"event", &lInput.event},
{"object", &Input.obj},
{"argument”, &Input.arg},

{"currentPosition", &AppState.currentPos},
{"currentNote", &AppState.currentNote},
{"inputType", &Feedbackinfo.inType},
{"outputType", &Feedbackinfo.outType},
{"feedbackLevel", &Feedbackinfo.fbLevel},

h

9An editing expression (e.g., er, rather, no, I mean) is used to signal a
correction to the listener [18].

1OEIlipsis is the omission of one or more words that are expected to be
implicitly understood based on the context.

In the example, variables from an “Input” structure that
contain the user’s voice command are included in the
feedback state frame. In addition, there is information about
the current state of the application—the current note being
played and its position in the speech database. Lastly, there
is information that is critical for use in the feedback
generation—the input modality used, the output modality
preferred by the user, and the level of detail.

Parsing the Grammar

The feedback grammar is lexically analyzed and parsed using
variants of Lex and Yacc [15, 17, 21]. Using these tools, a
separate tree is created for each nonterminal definition
(%define) in the grammar. The nonterminal is the root
node of the tree, with a subnode for every rule in the
definition. The rule nodes have a subnode for each token
contained in the rule (see Figure 1). Figure 2 shows a tree
for the nonterminal definition GetReminderinfo. For each
rule node, the program creates a list of conditions.

Tokens Example
nonterminal references |<Date>

word strings “on Friday"

word string variables %personName

sound names SOUND:whoosh
sound variables SOUND:%currentNote

Figure 1: Tokens that can be used in rules.

%define GetReminderlinfo
“On what day” <Reminded> ; %day==TRUE
“At what time” <Reminded> ; %time==TRUE
“On what day and time” <Reminded>

%end

GetReminderinfo

Rule 2
%time==TRUE

Rule 1
%day==TRUE

Non-Terminal
Reference
“On what day” <Reminded>

Figure 2: Tree for a nonterminal definition.

In a second stage of processing following parsing, all of the
nonterminal references are resolved—a link is created
between each reference and the tree for that nonterminal. In
the example above, the <Reminded> reference would get
linked to the Reminded tree. In the resulting structure,
nonterminal definitions may have more than one parent

November 14-17, 1995

UIST '95 175

node, since they can be referenced in multiple places
throughout the grammar. This tree structure (technically a
directed acyclic graph, or DAG), identifies common
subexpressions (i.e., nonterminals) to eliminate duplication

{31

Checking for Errors in the Grammar

During the second stage processing, as nonterminal
references are resolved, two kinds of error checking are
performed. First, an error occurs if a nonterminal reference
has not been defined in the grammar. The program
continues to attempt to resolve the remainder of the
references, and outputs an error report listing all the
unresolved references. Second, each nonterminal definition
node contains a flag indicating whether or not it has been
referenced anywhere in the feedback grammar. A warning is
given in the error report for every unreferenced nonterminal.
When developing the Conversational VoiceNotes grammar,
this error report was an invaluable resource for debugging
the grammar.

Generation Solving Function

The feedback generation solving function uses a depth-first
search through the tree of nonterminals starting at the root
node.'! Each rule is checked in the order listed in the
grammar until one succeeds. The following is a very
simple example grammar to show the process of feedback
generation, from grammar specification to final result:

%define Root
<QuestionResponse> ; %needIinfo==TRUE
<AnswerResponse>

%end

%define QuestionResponse
"Call who?" ; Yoperson==NULL
"Call" %person "where?"

%end

%define AnswerResponse
"Calling" %person "at" <Place>
%end

%define Place

"home" : %location==PERSONAL_LOC
"work" : %location==BUSINESS_LOC
%end

Given this example grammar, the algorithm would first
evaluate the <QuestionResponse> rule; if this rule failed,
the <AnswerResponse> rule would be evaluated next. A
rule succeeds if all of its conditional statements evaluate to
TRUE. If no conditions are specified (as in the
<AnswerResponse> rule), a rule is automatically accepted.

If a rule contains a nonterminal reference, then the
algorithm checks the rules for this reference, and this
continues until a leaf node is reached. The following

U The root node of the grammar is specified in the first %define in the
feedback specification.

example shows how the result "Call who?" could get
generated:

Given: needinfo = TRUE
person = NULL
Resuit: "Call who?"

The algorithm starts at the root node, first evaluating the
<QuestionResponse> rule. Since %needInfo is TRUE,
then the algorithm traverses to the definition of
<QuestionResponse> and checks these rules. Starting at
the first rule ("Call who?"), the algorithm evaluates the
condition %person == NULL. Since this is true and the rule
does not contain any more nonterminal references, a leaf
node has been reached successfully. In order to generate the
final result, each node in the tree maintains a list of tokens
that gets propagated from the leaf up to the root node of the
tree. In this example, the token "Call who?" gets copied
from the QuestionResponse node to the Root node and the
algorithm completes successfully.

In the sample generation illustrated above, each rule
condition that was checked completed successfully.
However, if one of the rules had failed (i.e., a rule condition
evaluates to FALSE), the algorithm would pop up a level to
test the next rule for that nonterminal. The next example
shows how the result "Calling Barry at home" could get
generated:

Given: needinfo = FALSE

person = "Barry"

location = PERSONAL_LOC
Result: “Calling Barry at home"

Again, the algorithm starts at the root node, evaluating the
<QuestionResponse> rule. Since %needinfo is FALSE,
the algorithm then goes on to the next rule,
<AnswerResponse>. This rule has no conditions, so it is
accepted automatically. Next, the algorithm traverses to the
definition of <AnswerResponse> and checks the first rule,
“Calling" %person "at" <Place>. This rule also has no
conditions, so the algorithm traverses another level to the
definition of <Place> and checks its first rule "home". The
variable location is set to PERSONAL_LOC, and there are
no more nonterminal references to check, so a leaf node has
been reached successfully.

As in the previous example, the final result is propagated
from the leaf to the root node of the tree. First, the token
"home" is copied from the Place node to the
AnswerResponse node. It is added onto the end of the list
of tokens located at this node—"Calling", "Barry", and "at".
Note that the %person token is resolved to "Barry" using
the key-value pairs specified in the feedback state frame.
Lastly, a list of 4 tokens ("Calling”, "Barry”, "at", and
"home") is copied from the AnswerResponse node to the

176 UIST '95

November 14-17, 1995

Root node of the tree. The grammar generator returns this
list of tokens to the application.

RELATED WORK

Many conversational speech interfaces are being developed
using the latest continuous speech recognition and text-to-
speech synthesis technologies (e.g., [19, 32, 33]). While
ATIS (Air Travel Information Service) research [25] has
focused on effective speech recognition performance in
specialized domains, better tools are needed for designers to
develop new user interfaces employing speech technology
in a variety of domains. In addition, as Zue states “current
research in spoken language systems has focused on the
input side” alone, rather than on both speech input and
generation [34].

Researchers at Sun Microsystems are currently working on
SpeechActs, a general environment for developing speech-
based applications [20]. This architecture consists of a
natural language component called SWIFTUS, a grammar
compiler for speech recognition, and a discourse manager.
The goal is to support the use of a variety of speech
recognition systems. These tools have been used in the
development of several applications for accessing
information (e.g., email, calendar) over the telephone using
spoken input [32]. The SpeechActs architecture is an
important step toward easier development of speech-based
interfaces. Without a development tool like SWIFTUS, a
speech application developer is forced to write a separate
grammar for the speech recognizer and natural language
components of the system. In addition, these specifications
would not be portable for use with another speech
recognition system. SpeechActs has focused on speech
input specification, but would be a good environment for
integration with an audio output tool like the one described
in this paper.

Brennan and Hulteen have developed a general model for
adaptive feedback [7]. As a testbed for their model they
developed a conversational telephone agent that adapts its
feedback depending on the state of the interaction between
the user and computer. The feedback model has seven
possible states for responding to the user. For example, if
the agent is in the “attending” state but has not heard the
words spoken by the user, it might respond “What was that
again?” A number of factors are taken into account such as
the frequency of user interruptions to correct the system in
the recent dialogue history, the frequency of
misrecognitions (e.g., rejection errors) made by the system,
and the level of noise in the user’s environment. This work
represents an important step toward the development of
conversational speech interfaces that are able to repair errors
in communication and adapt to the current context of the
discourse. However, tools like the feedback grammar
described in this paper are needed to help designers
implement this kind of feedback model.

ISSUES FOR FUTURE WORK

Throughout this paper, examples have been given showing
the generation capabilities of the auditory feedback tool.
However, a number of limitations were also experienced.
Given the declarative specification of the grammar, the
feedback can be changed quickly, without recompiling the
application. However, a context-free grammar was found to
be too limited in its generative power. The grammar
becomes long and unwieldy as additional rules are needed to
handle cases such as singular versus plural forms. The
sections below describe other limitations encountered when
implementing the feedback for Conversational VoiceNotes
and how these issues might be addressed in future work.

Auditory Feature Specification

In the original VoiceNotes interface, the speed of the audio
feedback is varied. For example, when deleting a note, the
system responds “Deleting ...” and then plays back the
contents of the note being deleted at a rate 1.5 times the
user’s speed setting. The current feedback grammar does
not provide support for specifying playback speed. A
general mechanism for specifying features (e.g., speed,
duration) of tokens in the grammar is needed for cases like
this one. This could also be useful for allowing
parameterization of auditory icons (e.g., not just specifying
a "thunk” sound but how big and what type of object) [10].

The grammar also does not provide a syntax for specifying
that sounds be mixed or spatialized. The problem becomes
one of auditory streaming [S]—sounds must be broken into
auditory streams according to their semantic groupings. In
Conversational VoiceNotes, notes and descriptive audio
icons should form one auditory stream, and navigational
sounds another. There are many potential cues that can be
employed to cause such streaming (e.g., spatial location,
pitch differences, time synchronization). Additional support
is needed for this in the grammar. For example, a designer
needs to be able to specify that two sounds should begin or
end at the same time or be normalized in length.
Ultimately, there needs to be a way to group segments of
auditory output, creating multiple auditory streams.

Adaptive Feedback

In addition to coding information such as playback speed in
the grammar, there needs to be a mechanism to account for
dynamic changes based on discourse context. The global
and local focus of the discourse [11] will impact the use of
pronouns, ellipsis, and prosodic cues such as accent. One
difficulty is although something may be pronominalized in
human-human conversation, this may not be appropriate in
the same instances for conversation with an error-prone
speech recognizer (see example below).

The decision of when to pronominalize will depend not
only on discourse structure but on factors such as the user’s
experience level, the number of speech recognition errors
that have occurred in the present interaction, and even the
noise level of the listening environment. Brennan and

November 14-17, 1995

UIST '95 177

Hulteen’s conversational telephone agent adapts its feedback
based on factors like these [7].

Another important consideration is how critical is the
action that is about to be performed. For example, deleting
a voice note has a destructive consequence whereas playing
it back does not. Brennan and Hulteen use “positive
evidence” [8] to notify users of an intended action before it
is completed. The following are two example dialogues
from their system:

User: “Call Lisa."

System: "Ok, I'lt call Lisa."
User: "Call Lisa."

System: 'Ok, t'll call Lewis."
User: "No! | said call Lisa."

In the first case, given only discourse focus information, a
pronoun could have been used—“OK, I'll call her.”
However, the system explicitly repeats the command as part
of the feedback in order to give positive evidence of the
name recognized by the system. Given this evidence, the
user has the opportunity to interrupt if an error has
occurred. The error-prone nature of speech recognition as
well as the added cognitive load of listening to synthetic
speech [24] must be taken into account when designing
auditory feedback.

Integration with Speech Input

Due to the device dependent nature of current continuous
speech recognition grammars, the feedback grammar tool
has not yet been integrated with a particular speech input
format. The input grammar for Conversational VoiceNotes
is specified using the format for the Plaintalk speech
recognition system and is not currently integrated with the
feedback grammar. In order for this tool to be most valuable
to designers using both speech input and output, it is
critical to allow the input and output grammars to share a
lexicon, nonterminals, and phonetic pronunciation rules.

CONCLUSION

This paper describes a tool to support generation of speech
and non-speech auditory feedback and provides examples of
its use in an application. In particular, Conversational
VoiceNotes uses the grammar to specify conditions under
which different types and amount of feedback should be
generated. Once a feedback grammar has been created, it is
simple to modify, supporting an iterative design process.

The paper outlines a number of important issues for future
work in this area. Researchers exploring uses of speech and
non-speech audio have primarily studied the two in
isolation. Given the growing need for auditory feedback in
the user interface, it is necessary to focus on how speech
and sound can be used together effectively. The work
presented in this paper is an important step in this
direction.

ACKNOWLEDGMENTS

Thanks to Barry Arons for helping with the design and
coding of the feedback compiler and providing valuable
comments on drafts of this paper. Jordan Slott helped with
debugging. Eric Hulteen, Barry Arons, and Chris Schmandt
gave valuable input in the design of Conversational
VoiceNotes. Kai-Fu Lee and Eric Hulteen provided
Plaintalk, and Bob Strong, Matt Pallakoff, and Ted
Kopulos provided technical support.

This work was sponsored by Apple® Computer, Inc. and
Sun Microsystems.

REFERENCES

1. HARK Prototyper User’s Guide. BBN Systems and
Technologies: A Division of Bolt Beranek and
Newman Inc., 1993.

2. Speech Rules. Chapter 8 in Macintosh Quadra 840AV
and Macintosh Centris 660AV Computers. Apple
Computer, Inc. DeveloperPress, 1993.

3. A.V. Aho, R. Sethi and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1988.

4. M.M. Blattner, D.A. Sumikawa and R.M. Greenberg.
Earcons and Icons: Their Structure and Common

Design Principles. Human-Computer Interaction,
4(1):11-44, 1989.

5. A.S. Bregman. Auditory Scene Analysis: The
Perceptual Organization of Sound. Cambridge, The
MIT Press, 1990.

6. S.E. Brennan. Conversation with and through
computers. User modeling and user-adapted interaction,
1(1):67-86, 1991.

7. S.E.Brennan and E.A. Hulteen. Interaction and
Feedback in a Spoken-Language System: A Theoretical
Framework. Knowledge-Based Systems, (March)1995.

8. H.H. Clark and S.E. Brennan. Grounding in
communication. In J. Levine, L.B. Resnick and S.D.
Teasley, editor, Perspectives on socially shared
cognition, pages 127-149. APA, 1991.

9. W.W. Gaver. The SonicFinder: An interface that uses
auditory icons. Human-Computer Interaction, 4(1):67-
94, 19%9.

10. W.W. Gaver. Synthesizing Auditory Icons. In
Proceedings of INTERCHI '93, pages 228-235. ACM,
1993.

11. B. Grosz and C. Sidner. Attention, Intentions, and the

Structure of Discourse. Computational Linguistics,
12(3):175-204, 1986.

12. P.J. Hayes and D.R. Reddy. Steps toward graceful
interaction in spoken and written man-machine

178 UIST "95

November 14-17, 1995

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

communication. International Journal of Man-Machine
Studies, 19:231-284, 1983.

C.T. Hemphill. Dagger User’s Guide and Reference
Manual. Texas Instruments Incorporated, 1993.

E.H. Hovy. Planning Coherent Multisentential Text.
In Proceedings of the 26th Annual Meeting of the
Association for Computational Linguistics, pages
163-169, 1988.

S.C. Johnson. YACC: Yet Another Compiler
Compiler. University of California, Berkeley, CSRG,
1986.

K. Lee. Towards Conversational Computers: An Apple
Perspective. In Proceedings of EuroSpeech. Berlin,
Germany, 1993.

M.E. Lesk and Schmidt. Lex—A Lexical Analyzer
Generator. University of California, Berkeley, CSRG,
1986.

W.J.M. Levelt. Speaking: From Intention to
Articulation. The MIT Press, 1989.

E. Ly and C. Schmandt. Chatter: A Conversational
Learning Speech Interface. In Proceedings of AAAI
Spring Symposium on Intelligent Multi-Media Multi-
Modal Systems, 1994.

P. Martin and A. Kehler. SpeechActs: A Testbed for
Continuous Speech Applications. In Proceedings of
AAAI 94 Workshop on the Integration of Natural
Language and Speech Processing, 12th National
Conference on Al 1994,

T. Mason and D. Brown. LEX & YACC. O’Reilly &
Associates, Inc., 1991.

K.R. McKeown. Text Generation: Using Discourse
Strategies and Focus Constraints to Generate Natural
Language Text. Cambridge University Press, 1985.

J.D. Moore and C.L. Paris. Planning Text for
Advisory Dialogues. In Proceedings of the 27th Annual
Meeting of the Association of Computational
Linguistics, pages 203-211. ACL, 1989.

24.

26.

27.

29.

30.

31.

32.

33.

34.

D.B. Pisoni, H.C. Nusbaum and B.G. Greene.
Perception of Synthetic Speech Generated By Rule.
Proceedings of the IEEE, 73(11):1665-1676, 1985.

. P. Price. Evaluation of Spoken Language Systems:

The ATIS Domain. In Proceedings of DARPA Speech
and Natural Language Workshop, pages 91-95, 1990.

C. Schmandt. Conversational Computing Systems.
New York, Van Nostrand Reinhold, 1993.

C. Schmandt and B. Arons. A Robust Parser and
Dialog Generator for a Conversational Office System.
In Proceedings of AVIOS, 1986.

. L.J. Stifelman. VoiceNotes: An Application for a

Voice-Controlled Hand-Held Computer. Master’s
Thesis. Massachusetts Institute of Technology, 1992.

L.J. Stifelman, B. Arons, C. Schmandt and E.A.
Hulteen. VoiceNotes: A Speech Interface for a Hand-
Held Voice Notetaker. In Proceedings of INTERCHI
’93, pages 179-186. ACM SIGCHI, 1993.

E. Strommen. “Be Quiet, You Monster!”: Speech as an
Element of Software for Preschool. Presented at the
Annual Meeting of the American Educational Research
Association. Children’s Television Workshop, 1991.

B. Strong. Casper: Speech Interface for the Macintosh.
In Proceedings of EuroSpeech. Berlin, Germany, 1993.

N. Yankelovich, G. Levow and M. Marx. Designing
SpeechActs: Issues in Speech User Interfaces. In
Proceedings of CHI '95. ACM SIGCHI, 1995.

V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips,
J. Polifroni and S. Seneff. The Voyager Speech
Understanding System: Preliminary Development and
Evaluation. In Proceedings of IEEE 1990 International
Conference on Acoustics, Speech, and Signal
Processing, 1990.

V.W. Zue. Human Computer Interactions Using
Language Based Technology. Presented at the 1994
International Symposium on Speech, Image
Processing, and Neural Networks, 1994,

November 14-17, 1995

UIST '95

179

