
MailCall: Message Presentation and Navigation in a
Nonvisual Environment

Matt Marx  and Chris Schmandt
groucho@media.mit.edu, geek@media.mit.edu

MIT Media Lab
E15-252, 20 Ames St.
Cambridge, MA 02139

+1 617-253-5156

ABSTRACT
MailCall is a telephone-based messaging system using
speech recognition and synthesis. Its nonvisual interaction
approaches the usability of visual systems through a
combination of message categorization, presentation, and
random access. MailCall monitors conversational context in
order to improve feedback, error-correction, and help.
Studies suggest that its nonvisual approach to handling
messages is especially effective when the user has a large
number of messages.

KEYWORDS: Auditory I/O, interaction design, mobile
computing, speech recognition, speech interface design.

INTRODUCTION
Several telephone-based messaging systems, research and
commercial alike [3, 5, 6, 8], demonstrate the utility of
speech for mobile messaging. A common obstacle for such
systems, however, is the audio-only modality of the
telephone. The slow, serial, and transient nature of speech
[7] make stepping through long lists of messages to find
relevant ones not only frustrating but downright expensive
if calling long-distance or from a cellular phone.

An effective messaging system must support rapid access
by giving an overview of the information space and
supporting random access to individual messages. Since
these interactional demands exceed the capabilities of touch-
tone input, speech recognition must be incorporated. Hence,
the system must wrestle with additional issues regarding
helping users learn the system vocabulary as well as
handling recognition errors.

This paper describes the design of MailCall, a telephone-
based messaging system which strives to support in a
nonvisual environment the kinds of browsing and selection
available in visual messaging systems. MailCall
categorizes incoming messages by importance, provides
summaries of categories, and allows random access. It also

strives to meet user expectations of conversational
interaction by offering context-sensitive help, tracking
recognition errors, and customizing feedback according to
conversational context.

RELATED WORK
Although research on telephone-based messaging systems
dates back more than ten years [5], several of the above
issues are well-motivated by the Phoneshell system [6].
Phoneshell offers telephone-based access via touch-tones to
much of the information available on the desktop, including
electronic mail, voice mail, rolodex, calendar, news,
weather, and traffic. Since many users received several dozen
messages a day, Phoneshell supported rule-based filtering
based in order to group messages into categories such as
“important” and “mass mailings.” The limitations of touch-
tone input restricted the user principally to sequential
navigation—reading the next message or the previous one.

Chatter [3] attempted to render the messaging functionality
of Phoneshell using speech recognition. It allowed the user
to retrieve email messages, send voice messages, look up
information in a personal rolodex, place outgoing calls, and
ask the location of other Chatter users. It presented
messages in order of relevance based on the user’s past
behavior using memory-based reasoning. Still, users were
limited to sequential navigation. Chatter used a
sophisticated discourse model to track the conversation,
although it did not handle recognition errors.

The SpeechActs project [8] combined the conversational
style of Chatter with the broad functionality of Phoneshell,
offering a speech interface to several applications: mail,
calendar, stock quotes, weather, and scheduling reminders.
SpeechActs offered rule-based filtering similar to that of
Phoneshell and improved upon sequential navigation by
allowing the user to access messages by number (e.g., “read
message 17”). Recognition errors were addressed in
SpeechActs, which explicitly verified requests which were
irreversible (e.g., “delete message”) and offered
progressively more detailed assistance when the user
experienced difficulty in formulating a command which the
speech recognizer could understand.

The Wildfire Assistant is a commercial system which
attempts to replace a secretary: it serves as an interactive



voice mail system, allows the user to retrieve voice (but
not text) messages, schedules reminder notes, and provides
information about system users’ whereabouts. Incoming
telephone calls can be screened or forwarded. Wildfire does
not provide a summary of incoming messages but does
allow the user to ask if there are messages from system
users.

Phoneshell, Chatter, SpeechActs, and Wildfire all provide
remote access to messages, but none of them offers
interaction comparable to what users enjoy with a GUI mail
reader. Phoneshell and Chatter prioritize messages but
neither summarize them nor allow random access.
SpeechActs scans message headers and allows the user to
pick out a message by number, but remembering the
number of a message adds to the user’s cognitive load.
Wildfire takes a small step in the right direction, allowing
the user to ask if there are messages from other system
users, but does not summarize incoming messages and
allow users to pick from among them. To improve upon
previous work, MailCall must summarize the information
space and support random access to individual messages
without imposing great cognitive demands on the user.

MAILCALL
MailCall is a telephone-based messaging system which
employs speech recognition for input and speech synthesis
for output. It was developed on a Sun Sparcstation 20 under
both SunOS 4.1.3 and Solaris, using the DAGGER speech
recognizer from Texas Instruments and DECtalk for text-to-
speech synthesis. Call control is facilitated by XTL, ISDN
software from Sun Microsystems.

Unified voice/text message retrieval. MailCall retrieves
incoming messages and places them in categories depending
on their importance. The user can ask the sender, subject,
arrival time, or recipients of any message. Audio
attachments are processed and played as sound files, and
email notification sent by a homegrown voice mail system
acts as a pointer to the original voice message. Messaging
is “unified” in that there is no differentiation by media; the
user might have two email messages and one voice message
from the same person, and they would be grouped together.

Sending messages.  The user can send a voice message
in reply to any message, or to anyone in the rolodex. If the
recipient is a local voice mail subscriber, it will be placed
in the appropriate mailbox; if not, then it is encoded—
available formats include Sun, NextMail, MIME, and
uuencode—and sent as electronic mail. (Dictating replies to
be sent as text is not feasible with current speech
recognition.)

Voice Dialing.  Instead of sending a voice message, the
user may elect to place a call instead. If the person’s phone
number is available in the rolodex, MailCall uses it—and if
there is both a home and work number, MailCall prompts
the user to choose one or the other. If someone’s phone
number cannot be found, the user is prompted to enter it.

Usage Scenarios
MailCall is most useful when the user is beset with a long
list of incoming messages or when time is short. In the
first example, Pat is in a dreadful hurry trying to meet a
deadline, waiting for Lynn to send a critical piece of
information. MailCall enables Pat to check for it quickly.

MailCall: You have seven personal messages.
Pat: Is there anything from Lynn Smith?
MailCall: Sorry, no messages from Lynn Smith.
Pat: Good-bye.
MailCall: Did you say to hang up?
Pat: Yep.
MailCall: Pat, thanks for calling. Good-bye!

In a second example, Pat calls up after a marathon afternoon
meeting to find over 100 new messages. MailCall’s
summarization and random access capabilities enable Pat to
hear the most important ones first.

MailCall: Welcome to MailCall. Who’s there?
Pat: It’s Pat Peterson again.
MailCall: Pat Peterson, correct?
Pat: Correct.
MailCall: Hello, Pat. Please say your six-digit

password.
Pat: 5-6-5-5-1-9.
MailCall: Hold on while I get your messages...Just a

second...Okay! You have 16 timely
messages, 33 personal ones, and 150 others.

Pat: Is there anything from Lynn Smith?
MailCall: Personal messages from Lynn Smith.

Message 25 from Lynn Smith about “here’s
the info.”

Pat: When did that arrive?
MailCall: It arrived about three hours ago.
Pat: Send a reply.
MailCall: Record your message for Lynn Smith.

Pause for several seconds when finished.
Pat: Hey Lynn, thanks for finally sending the

info, but it was a bit too late. Let’s try to
coordinate a little better next time.

MailCall: Got it. Review the message, send it, or
cancel?

Pat: Send it.
MailCall: Did you say “send it”?
Pat: Yes.
MailCall: Please wait while I deliver your

message....What now?
Pat: Go to my timely messages.
MailCall: Timely messages. I can read you the

summary, or you can start with the first
one.

Pat: Read me the summary.
MailCall: You have a bunch from Chris Barry, a few

from Mark Matthews, one each from Deb
Cohen and Dominique Farnsworth, and
several others.

Pat: Read me the messages from Mark
Matthews.



MailCall: Messages from Mark Matthews. Message 5
from Mark Matthews about “can we meet?”

Pat: Let me hear it.
MailCall: (playing voice message) Hey Pat, I’ve got a

great new pyramid scheme I’d like to get
you involved in. We’ll make millions!

Pat: Delete it.
MailCall: Did you say to delete the message?
Pat: That’s correct.
MailCall: Deleting message 5.
Pat: Go to my other messages.
MailCall: Other messages. Read the summary, or read

the first header?
Pat: Read me the summary.
MailCall: You have an incredible number from Mail

Delivery Subsystem, a few from Fran Tess,
several from Joyce Ball, one from
listserv@mit.edu, and many others.

Pat: Read the one from listserv at MIT dot e d u.
MailCall: Message 121 from listserv@mit.edu about

“your request for privacywatch.” You have
been added to the privacywatch mailing list.
To unsubscribe send a message........(etc)

Pat: That’s all for now.
MailCall: Did you say to hang up?
Pat: Yep..
MailCall: Pat, thanks for calling. Good-bye!

As the above examples demonstrate, MailCall enables the
user to find important messages quickly. Its organization of
incoming messages into categories makes it feasible to
provide efficient presentation, which in turn affords effective
navigation of the information space. Further, its attention
to conversational context helps establish its credibility as a
cooperative conversant. The next two sections describe
MailCall’s approach to nonvisual information management
and its strategies for crafting conversation.

DESIGN CHALLENGE: NONVISUAL NAVIGATION
Retrieving messages over the phone is more cumbersome
than with a GUI-based mail reader. With a visual interface,
the user can immediately see what messages are available
and access the desired one directly via point and click. In a
nonvisual environment, however, a system must list the
messages serially, and since speech is serial and slow, care
must be taken not to overburden the user with long lists of
choices. Organizing the information space by breaking
down a long list of messages into several shorter lists is a
first step. Once these smaller, more manageable lists are
formed, the system must quickly present them so that the
user can choose what to read first. And once the user is
informed of available options, the system must provide
simple, natural methods of picking a particular message out
of the list.

Information organization
A first step towards effective message management in a
nonvisual environment is prioritizing and categorizing
messages. Like many other mail readers, MailCall filters
incoming messages based on a user profile which consists

of a set of rules for placing messages into categories.
Although rule-based filtering is powerful, writing rules to
keep up with dynamic users interests can require significant
effort on the part of the user. We considered memory-based
reasoning (adopted by Chatter) to lighten the burden on the
user, but decided against it since the associated learning
curve can be too slow to capture dynamic interests.

Capturing dynamic user interests either by requiring the
user to write filtering rules or attempting to infer priorities
from past behavior ignores a wealth of information in the
user’s work environment. The user’s calendar, for instance,
keeps track of timely appointments, and a record of
outgoing email suggests people who might be important.
MailCall exploits these various information sources via a
background process called CLUES, which scans various
databases and automatically generate rules to be used for
filtering. (For details on the mechanics of the search see
[4]). The messages which are prioritized by CLUES are
placed in a “timely” category —thus the user can benefit
from both static rules in the filtering profile and dynamic
ones generated automatically by CLUES. Below are
described several information sources and how CLUES uses
them to prioritize messages. The elements which match
entries in the information sources are printed in bold.

MONDAY
10am Motorola visit
5pm leave for airport

TUESDAY
visiting Sun all day
fax: 415-555-5555

ROLODEX CARD 32 OF 89
Name: Kim Silverstone
Address: 25 Harshwood Way, Palo Alto CA 94306
Phone: (415) 555-5555
Email: ksilvers@eng.sun.com
OUTGOING EMAIL:
geek@media.mit.edu latest draft of paper
chi96@sigchi.acm.org please please give me an extension
mickelsen@leland.stanford.edu What’s up?
OUTGOING PHONE CALLS:
215-555-5555 (Charles Hemphill)
8-5956

Figure 1: various information sources available in
the user’s computing environment, including
calendar, rolodex, and records of outgoing email
and phone calls.

Calendar. Assuming an “interest window” of
approximately two weeks ahead of the current date and a few
days back, CLUES extracts salient items from calendar
entries. Thus the following message is marked “timely”
even though it was not addressed directly to the user.

From lad@media.mit.edu
To: demo-staff@media.mit.edu
Subject: visitors from Motorola delayed until 3:30

Email replies. CLUES scans the user’s record of outgoing
messages to see who might be sending a reply and what
they  might be replying about. For instance, CLUES would
automatically mark the following message as “timely.”



From chi96@sigchi.acm.org
Subject: Re: please please give me an

extension

Returned phone calls. Similarly, CLUES can detect
when someone returns a call by correlating the user’s record
of outgoing phone calls—created when the user dials using
one of a number of desktop dialing utilities—with the
Caller ID number of voice mail. Our voice mail system
sends the user email with the Caller ID of the incoming
message. CLUES would prioritize the following voice
message:

From Operator <root@media.mit.edu>
Subject: Voice message from 8-5956

Email replies to phone calls. Often, someone does not
reply using the same medium; one may call in response to
an email message or send email in reply to a voice
message. Finding the email address the person has called by
looking up the phone number in the rolodex, CLUES can
mark an email reply to an outgoing phone call as “timely.”
In this example, CLUES marks the email message from
Charles Hemphill timely since I recently tried to call him.

From hemphill@csc.ti.com (Charles Hemphill)
Subject: I just got your voice mail; here’s what I think

Geographic filtering. Business travelers often leave behind
a phone number where they can be reached. CLUES
correlates a phone number found in the calendar with the
user’s rolodex to produce a list of people who live in that
area. (CLUES also keeps a small table of co-located area
codes such as 408 and 415.) A message from any of those
people is then marked “timely” under the assumption that
the user might be trying to coordinate with them while in
town. Hence, messages from those the user is visiting
suddenly become important, as when my calendar has a fax
number in an area code near where Kim Silverstone lives:

From ksilvers@eng.sun.com
Subject: let’s do lunch while you’re in town!

Domain-based filtering. CLUES also extracts the domain
names of the email addresses for those people, presuming
that messages from people at that same site may too be
relevant. Since CLUES identified Kim Silverman as
someone whom the user might want to visit on Tuesday’s
trip, messages from anyone at the same domain are marked
timely.

From smith@eng.sun.com
Subject: Kim Silverstone told me you’re in town...

Isolating the important part of a domain name is nontrivial.
Some people may receive email at one sub-domain
(groucho@media-lab.media.mit.edu) but send from another
(groucho@timpanogos.media.mit.edu). Some corporations
are geographically distributed; eng.sun.com is in California,
but east.sun.com is in Massachusetts. Others like aol.com

are non-location specific, so they are useless in determining
timeliness. CLUES prunes domain names as appropriate.

MailCall’s categorization breaks up a long list of messages
into several smaller, related lists, one of those being the
messages identified as important by CLUES. Once the
messages have been sorted into various categories, the user
needs a way to navigate among categories. Although
messages may be filtered in order of interest, categories can
nonetheless serve as navigational landmarks which assist in
keeping context and returning to already-covered ground.
The MailCall user can jump from category to category in
nonlinear fashion, saying “go to my personal messages” or
“go back to my important messages.”

Nonvisual presentation
Categorization of messages helps to segment the
information space, but when there are many messages
within a single category, the user once again is faced with
the challenge of finding important messages in a long list.
Creating more and more categories merely shifts the burden
from navigating among messages to navigating among
categories; rather, the user must have an effective method of
navigating within a category—or, more generally, of
finding one’s way through a large number of messages.
Efficiently summarizing the information space is the second
step toward effective nonvisual messaging.

With a GUI-based mail reader, the user is treated to a visual
summary of messages and may point and click on items of
interest. This works because a list of the message headers
quickly summarizes the set and affords rapid selection of
individual messages. These are difficult to achieve aurally,
however, due to the slow, non-persistent nature of speech.
Whereas the eyes can visually scan a list of several dozen
messages in a matter of seconds, the ear may take several
minutes to do the same; further, the caller must rely on
short-term memory in order to recall the items listed
whereas the screen serves as a persistent reminder of one’s
choices.

Since speech is slow, summaries must be streamlined,
avoiding extraneous information or repetition. The approach
adopted by SpeechActs is to read the headers one by one:

SpeechActs: Your next six messages are from MIT.
User: Scan the headers.
SpeechActs: Message 1 from Gina-Anne Levow about

“final draft changes.” Message 2 from Chris
Schmandt about “visit Friday.” Message 3
from Chris Schmandt about “visit Friday—
correction.” Message 4 from Matt Marx
about “videotape.”........(etc)........Message
10 from Matt Marx about “final draft
changes.” Message 7 from Matt Marx about
“hello.”

MailCall’s summary is more concise, though at the
expense of some detail.

MailCall: Timely messages. Read the summary, or



read the first header?
User: Read me the summary.
MailCall: You have several from Matt Marx, a couple

from Chris Schmandt, and one from Gina-
Anne Levow.

Although the latter summary does not list the subject of
each message, it is more quickly conveyed and easier to
remember. By grouping messages from a single sender, it
avoids mentioning each message individually, instead
providing a summary of what is available.

In addition, MailCall attempts not to overburden the user
with information. When reading the list, for instance, it
does not say the exact number of messages but rather a
“fuzzy quantification” of the number: e.g., “several from
Matt Marx” instead of “six from Matt Marx.” And if there
are messages from many different people in the same
category, MailCall will mention only the first four or five
and add “...among others.”

Nonvisual navigation
Now that the user can hear a summary of available
messages, it is practical to support random access to
individual messages. Random access refers to the act of
nonlinear information access—i.e., something other than
the neighboring items in a list. The chart delineates four
general modes of random access.

location-based content-based

relative “skip ahead five
messages”

“read the next one
about ‘meeting”

absolute “read me message
thirty-five”

“read the message
from John Linn”

Figure 2: Four types of random access.

By location-based random access we mean that the navigator
is picking out a certain item by virtue of its position or
placement in a list—i.e., “Read message 10.” Location-
based random access may either be absolute (as in the
preceding example), when the user has a specific message in
mind, or relative, when one moves by a certain offset: e.g.,
“skip ahead five messages.” (It may be noted that sequential
navigation is a form of relative location-based navigation
where the increment is one.) SpeechActs implements both
absolute and relative location-based random access, and
suggests their use by reading the number of each message
(for future reference, should the user need to return) and by
scanning the headers in a message category. Location-based
random access does impose an additional cognitive burden
on the user, who must remember the numbering of a certain
message in order to access it. Indeed, participants in the
SpeechActs usability study were often observed jotting
down the numbering of messages, though doing so would
be most difficult in situations where speech is maximally
beneficial—driving, for instance.

With content-based random access the user may reference an

item by one of its inherent attributes, be it the sender,
subject, date, etc. For instance, the user may say “Read me
the message from John Linn.” Thus the user need not recall
the numbering scheme. Like location-based navigation,
both relative and absolute modes exist. Relative content-
based access associated with following “threads,” multiple
messages on the same subject. Phoneshell, for instance,
allows the user to drop into “scan mode” which reads the
next message on the current topic or from the current
sender; this is feasible with touch-tones since the user need
not specify the desired topic explicitly but signify that the
current topic is to be followed. Absolute content-based
navigation is the contribution of MailCall, allowing the
user to pick the interesting message(s) from an efficient
summary without having to remember details of position.

MailCall: You have several messages from Lisa
Stifelman, a few from Mike Phillips, and
one each from Jill Kliger and Steve Lee.

User: Read me the ones from Mike Phillips.

It is practical to support absolute content-based navigation
thanks to recent advances in speech recognition. Normally a
speech recognizer has a static, precompiled vocabulary
which cannot be changed at runtime. This makes it
impractical for the speech recognizer to know about new
messages which arrive constantly. (This explains why
neither Chatter nor SpeechActs could offer absolute content-
based random access). Recently, however, a dynamic
vocabulary updating feature added to the Dagger speech
recognizer [2] enables us to add the names at runtime. When
the user enters a category, MailCall adds the names of the
email senders in that category to the recognizer’s
vocabulary. Thus the user may ask for a message from
among those listed in a summary. One may also ask if
there are messages from anyone listed in the rolodex, or
from whom one has recently sent a message or called (as
determined by CLUES). Supporting absolute content-based
random access in MailCall with Dagger dynamic vocabulary
updating is a positive example of technology influencing
design. Absolute content-based random access brings
MailCall closer in line with the experience one expects
from a graphical mail reader.

DESIGN CHALLENGE: CRAFTING CONVERSATION
The rich nature of MailCall’s interaction exceeds the
capabilities of touch-tones and thus requires the use of
speech recognition. The use of speech for both input and
output raises user expectations, since the interaction
implicitly resembles a conversation. Since speech
recognizers are far less adept than humans, additional
obstacles exist in designing nonvisual messaging systems.
Knowing what to say is a stumbling block for new users,
yet taking the time to explain one’s options can be
tiresome for experienced users. Further, speech recognition
errors slow down the interaction. This section describes
strategies for avoiding conversational breakdown.

Communicating capabilities with help
A major responsibility of the speech interface designer is to
communicate system capabilities to the user. People may



have very different expectations for a “conversational”
system: some may speak as if chatting with a good friend,
expecting the machine to perform human-level speech
recognition as well as topic-independent language
understanding. Experience [8], however, demonstrates that
many people in fact have extremely low expectations of
spoken language systems. They sit mute in front of the
telephone or speak slowly with exaggerated enunciation. In
either case, it is essential to guide users to phrase requests
which the system understands.

Like SpeechActs, MailCall eschews explicitly listing
options in the form of a menu, instead opting for a more
conversational style which is both more familiar and faster
for experts who know what to say. Still, novice users need
to know what their options are. The SpeechActs strategy
involved giving each user a printed card with a list of
sample commands. In the usability study, this proved
successful; most users speak only those commands listed
on the card. For MailCall, our goal is an “out-of-box”
experience, meaning that we want users to be able to learn
the system without reading manuals or carrying instruction
pamphlets. MailCall users are informed at the beginning of
a session that they can ask “what can I say now?” or press
the 0 key for assistance.

The first step in providing help is reestablishing context—
reminding users where they are and how they got there,
usually by revisiting the last action taken by the system
and explaining what the system thought the user said. Next,
a list of currently available options is given with an
explanation of each command. Finally, the user is reminded
of the global reset command (“start over from the
beginning”) so that the user can begin the session anew
instead of hanging up in disgust.

Handling recognition errors
Like many speech systems [7, 8], MailCall invests
significant effort in detecting and correcting speech
recognition errors. It handles rejection errors by apologizing
and giving progressive assistance, and also verifies potential
substitution errors, allowing the user to correct them
quickly.

Its contribution to error-handling is ErrorLock, a general
interface algorithm for handling recognition errors. Instead
of dealing with errors on a case-by-case basis, each
incoming utterance is passed through ErrorLock for
evaluation and confirmation. Aside from insuring uniform
error-handling among varied input, it also keeps track of
past recognition errors and deals more intelligently with
consecutive errors. If, for instance, the recognizer
consistently picks an hypothesis but its confidence is just
under the cutoff threshold, ErrorLock temporarily relaxes
the threshold and asks if that is what the user meant. Error-
tracking also helps to keep MailCall from sounding
oblivious to context. In the following example, MailCall
makes the same mistake twice but reflects that knowledge
in its feedback.

MailCall: Welcome to MailCall. Who’s this?

User: Matt Marx.
MailCall: Nat Parker, correct?
User: No, Matt Marx.
MailCall: I thought I heard “Nat Parker” again, but

you just said that. Is that right?

If the speech recognizer were able to return more than one
hypothesis (called an N-best list), ErrorLock would be able
to automatically throw away hypotheses which have already
been rejected and check the second-most-likely choice.

In addition to facilitating better interaction, ErrorLock is a
convenience for the developer. Centralizing error-handling
removes the need to copy error-handling code all over the
application, and since ErrorLock is domain-independent, it
can be reused for other applications, changing prompts as
necessary.

Contextually customized feedback
Grice’s cooperative principle of conversation [1] as applied
to spoken language systems might read as follows: “give as
little feedback as possible, but no less.” Giving too much
feedback is a vice , but failing to give enough feedback is a
greater sin if the user becomes confused for lack of
explanation. Both the user’s level of competence and the
conversational context of the current session are factors in
deciding how to give feedback.

Varying the length of feedback. Like other speech
systems [6, 7], MailCall offers various levels of feedback,
with longer prompts for novices than experts. MailCall
also adapts its feedback based on the conversational context,
usually manifesting itself through the use of ellipsis.
Ellipsis refers to the leaving out of words or phrases which
have already been established earlier in the conversation,
assuming that the intended meaning can be reconstructed
from a shorter prompt and the existing context. In the
following example, the user is asked twice whether to
review, send, or cancel a message. Items omitted by ellipsis
appear in strikeout text.

User: Send a message to Jordan Slott.
MailCall: Record your message for Jordan Slott. Pause

for several seconds when finished.
User: records a voice message to be sent
MailCall: Got it. Review the message, send it, or

cancel?
User: Send.
MailCall: Sending your message. Please wait.
User: Send a message to Steve Lee.
MailCall: Record your message for Steve Lee. Pause

for several seconds when finished.
User: records a voice message to be sent
MailCall: Got it. Review the message, send it, or

cancel?
User: Send.
MailCall: Sending your message. Please wait.

As the above example demonstrates, MailCall  uses ellipsis
on individual words, phrases, and even sentences. Ellipsis
helps to streamline the interaction and may help users to



perceive the interface as non-repetitive.

Varying the speed of feedback. Like other speech
systems [7], MailCall allows the user to set a default
speech output rate or change it during a session. It also
recognizes that certain items are more familiar than others,
having been established earlier in the conversation.
Prompts, for instance, become familiar with use. Items
which are new to the conversation, however, may be harder
to understand. Thus MailCall temporarily slows down its
speech—relative to the current output rate—when
presenting the sender or subject of a message. It does so in
the following example, with the words spoken more slowly
rendered in expanded text.

User: Start with the first message.
MailCall: Message 1 is from S t u a r t  A d a m s

about a response to “n e x t  w e e k .”

Temporarily slowing down for new information can allow
the user to set a high default speaking rate, speeding the
presentation of prompts. Ellipsis and automatic speed
adaptation help to reduce the repetitiveness of repeated
prompts while helping to insure that new information can
be comprehended.

FIELD STUDY
To evaluate the effectiveness of MailCall, a user study was
conducted. The goal was not only to determine how usable
the system was for a novice, but also how useful it would
prove as a tool for mobile messaging.

Method
Since our goal was not only to evaluate ease of learning but
likelihood of continued use, we conducted a long-term user
study. The five-week study involved four novice (yet
technically savvy) users with varying experience using
speech recognition. In order to gauge the learning curve,
minimal instruction was given except upon request.
Sessions were not recorded or monitored due to privacy
concerns surrounding personal messages, so the results
described below are based chiefly on user reports. The
experiences of the two system designers using MailCall
over a period of three months were also considered.

Results
Feedback from novices centered mainly on the process of
learning the system, though as users became more familiar
with the system, they also commented on the utility of
MailCall’s nonvisual presentation. Seasoned users offered
more comments on navigation as well as the limits of
MailCall in various acoustic contexts.

Bootstrapping. As described above, our approach was to
provide a conversational interface supported by a help
system. All novice users experienced difficulty with
recognition errors, but those who used the help facility
found they could sustain a conversation in many cases. A
participant very familiar with speech systems found the
combination of error-handling and help especially useful:

I have never heard such a robust system before. I like
all the help it gives. I said something and it didn’t
understand, so it gave suggestions on what to say. I
really liked this.

Other participants were less enthusiastic, though nearly all
reported that their MailCall sessions became more
successful with experience.

Recognition robustness. MailCall has a very large
vocabulary, pushing the limits of DAGGER. The
experience of the system designers was used to measure the
usability of MailCall in various contexts (assuming that
they knew the vocabulary). Two factors were identified in
the success of the system: vocabulary size and acoustic
context. Since the user can ask if there are messages from
anyone in the rolodex, send them messages, or call them at
any time, MailCall’s vocabulary size varies directly with
the number of people in the user’s rolodex. A user with
well over 100 names in his rolodex found recognition to be
unacceptable when talking over a noisy cellular connection.

Specifying Names. A difficulty common to all users was
getting MailCall to understand names, both in asking for
messages from certain people and simply identifying one’s
self. Unlike Chatter, which used first names only, MailCall
requires the user to say full names. Everyone responded to
the prompt “Welcome to MailCall. Who’s this?” with “It’s
Matt!” or something similar. Furthermore, users were
disappointed when they had to refer to someone the same
way that MailCall did; instead of saying “read the one from
groucho at media at MIT dot E D U,” they wanted to say
“read the one from groucho.”

Navigation. Users cited absolute content-based navigation
as a highlight of MailCall. One beginning user said “I like
being able to check if there are messages from people in my
rolodex [just by asking].” And one of the system designers,
a diehard Phoneshell user, admits that he uses MailCall
instead of Phoneshell when facing an unusually large
number of messages because he can ask for a summary of a
category and then pick the ones he wants to hear first.

For sequential navigation, however, speech was more a
bane than a boon. The time necessary to say “next” and
then wait for the recognizer to respond can be far greater
than just pushing a touch-tone, especially when the
recognizer may misunderstand. Indeed, several used touch-
tone equivalents for “next” and “previous.” And since some
participants in the study received few messages, they were
content to step through them one by one.

These results suggest that MailCall is most useful to
people with high message traffic, whereas those with a low
volume of messages may be content to simply step through
the list with touch-tones, avoiding recognition errors.

Implications for redesign
The results of our user study suggested several areas where
MailCall could improve, particularly for novice users.
Some changes have already been made, though others will



require more significant redesign of the system.

More explanation for beginners. Supporting
conversational prompts with help appears to be a useful
method of communicating system capabilities to novices.
Our experience with four novice users, however, suggests
that our prompts and help were not explicit enough. As a
step in iterative design, we lengthened several prompts
including those at the beginning of a session and raised the
level of detail given during help; a fifth novice user who
joined the study after these changes had been made was able
to log on, navigate, and send messages on his very first try
without major difficulties. This suggests that prompts for
beginners should err on the side of lengthy exposition.

More flexible specification of names. Specifying names
continues to be an elusive problem. MailCall should allow
the user to refer to someone using as few items as necessary
to uniquely specify them. Doing so would involve two
additions to MailCall: first, a “nickname generator” which
creates a list of acceptable alternatives for a given name;
second, an interface algorithm for disambiguating names
with multiple referents as in [8].

Moded vs. Modeless interaction. If MailCall is to be
usable in weak acoustic contexts (like the cellular phone)
for people with a large rolodex, its interaction may need to
become more modal. We intentionally designed MailCall to
be modeless so that users would not have to switch back
and forth among applications, but as the number of people
in the rolodex grows, it may become necessary to define a
new “rolodex” application.

CONCLUSIONS
Telephone-based messaging systems can approach their
visual counterparts in usability and usefulness if users can
quickly access the messages they want. Through a
combination of message organization, presentation, and
navigation, MailCall offers interaction more similar to that
of a visual messaging system than previously available.
Consideration of context helps to meet user expectations of
error-handling and feedback, though beginning users may
require more assistance than was anticipated. Results
suggest, however, that a large-vocabulary conversational

system like MailCall can be both usable and useful for
mobile messaging.

ACKNOWLEDGMENTS
Jordan Slott implemented the ISDN software, and several
research associates of the MIT Media Lab Speech Group
have contributed to infrastructure. Raja Rajasekharan and
Charles Hemphill made it possible for us to use DAGGER.
Nicole Yankelovich reviewed a draft of this paper. This
work was supported by Sun Microsystems and Motorola.

REFERENCES
[1] H. Grice. “Logic and Conversation,” Syntax and

Semantics: Speech Acts, Cole & Morgan, editors,
Volume 3, Academic Press, 1975.

[2] C. Hemphill & P. Thrift. “Surfing the Web by Voice.”
To appear in ACM Multimedia ‘95, San Francisco,
CA, Nov. 5–9, 1995.

[3] E. Ly. “Chatter: A Conversational Telephone Agent”
MIT Master’s Thesis, Program in Media Arts and
Sciences, 1993.

[4] M. Marx. “Toward Effective Conversational
Messaging.” MIT Master’s Thesis, Program in Media
Arts and Sciences, 1995.

[5] C. Schmandt. “Speech Synthesis Gives Voiced Access
to an Electronic Mail System.” Speech Technology,
Aug/Sept 1984, pp. 66–68.

[6] C. Schmandt. “Phoneshell: the Telephone as Computer
Terminal” Proceedings of ACM Multimedia
Conference, August 1993.

[7] L. Stifelman, B. Arons, C. Schmandt, and E. Hulteen.
“VoiceNotes: A Speech Interface for a Hand-Held Voice
Notetaker, ACM INTERCHI ‘93 Conference
Proceedings, Amsterdam, The Netherlands, April 24–
29, 1993.

[8] N. Yankelovich, G. Levow, and M. Marx. “Designing
SpeechActs: Issues in Speech Interfaces.” Proceedings
of CHI ‘95, Denver, CO, May 8–11, 1995.


