IMPROMPTU:

AUDIO APPLICATIONS FOR MOBILE TP

Kwan Hong Lee
B.S. and M.Eng., Computer Science
Cormell Untversity, 1998

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the Massachusetts Institute of Technology

September 2001

© Massachusctts Institute of Technology, 2001. All rights reserved.

Author

Kwan Hong Lee
Program in Media Arts and Sciences
September 7, 2001

Certified by

Christopher Schmandt

Principal Research Scientist

Speech Interface Group, MIT Media Lab
Thesis Supervisor

Accepted by

Dr. Andrew B. Lippman
Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

IMPROMPTU:

AUDIO APPLICATIONS FOR MOBILE IP

By

Kwan Hong Lee

Submutted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on September 7, 2001 1n Partial Fulfillment of the
Requirements for the Degree of Master of Science in
Medra Arts and Sciences

ABSTRACT

IMPROMPTU 1s an Internet Protocol (IP) based audio platform for mobile communications
and networked audio applications. IMPROMPTU supports multiple audio applications on a
mobile device communicating over the IP network. The audio user interface on the
IMPROMPTU client provides speech imterfaces to switch applications and control each
application with unique vocabulary and grammar along with providing auditory feedback during
the usage of the applications. The alerting model is based on the applications competing to
attract user’s attention. Various audio applications with different characteristics have been
mplemented, including radio, MP3 player, and baby monitor. Although IMPROMPTU
supports conventional voice telephony services, it does so with mncreased negotiation between
calling parties through more flexible call control. The system architecture 1s composed of
distributed services and applications managed by the Application Manager.

Thesis Supervisor: Christopher Schmandt
Title: Principal Research Scientist, MI'T Media Laboratory

THESIS COMMITTEE

Thesis Supervisor:

Christopher Schmandt
Principal Research Scientist
MIT Medra Laboratory

Thesis Reader:

Mark Ackerman

Associate Professor

School of Information and Department of Electrical Engineering and
Computer Science, College of Engineering

University of Michigan

Thesis Reader:

Brian Smith
Assistant Professor
MIT Media Laboratory

ACKNOWLEDGMENTS

I have been truly humbled by the experience at the MI'T Media Lab. I have learned the importance of
discipline 1n life and what it takes to pursue the truth in this world. 1 cannot help but thank:

God for providing me with the power and perseverance as I struggled through the last two years to
balance out my life. He has constantly kept me in watch and nurtured me spiritually throughout my
endeavor at MI'T to be focused on what 1s really important in life.

My parents, brother and sister and my Cornell buddies for their love, support and encouragement.

Chris Schmandt, my advisor, for mtroducing me to audio mterfaces, actively supporting me in this
rescarch endeavor, bearing with my slow performance and advising me to go further with my attempts

to prove that something really works.

Mark Ackerman for giving me advice and encouragement in times of uncertainty and for reading my

thests.

Brian Smith for his sense of humor and his help mn writing a better thesis and providing support during
the last mile of the thesis writing,

Speech Grads, Natalia Marmasse, Stefan Marti (for Perl Script), Sean Wheeler (audio for Audio Book),
and Nitin Sawhney (ex Speech grad) for constantly encouraging me and bemng there whenever I needed
help and advice. Thank you also for proof reading my thests.

Rm 350 buddies, Thomaz Edison, Shyam Krishnamoorthy, Floyd Muller, and Jim McBride, who have
been great friends to share office with. They kept me sane as there was always someone to turn to when

I was m that room and made the Media Lab experience really enjoyable.

UROPs Jang Kim, Elina Kamenetskaya, David Kim and Joshua Baratz for giving me the opportunity to
work in a team and also attack hard problems together. Especially Jang Kim for his diligence.

Tom Gardos for supporting me with computational resources for my research.

Brothers and sisters of First Korean Church of Cambridge who prayed for me as I was struggling to
finish my thests and gave me continual spiritual support.

Roz Picard who challenged me how excellence was not to be traded off with faith, but how they can
coexist.

Linda Peterson for her patience and her help during my stay at the Media Lab.
Pat Turner for taking care of ordering different resources I needed.

Assling Kelliher, John Kim and Wona Park for proof reading my thests.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ...ttt ettt st sae s s sbe s sbessaessabessnessnessnsessnes 12
R N I @Y I = T =S O 13
1.2, CONTRIBUTIONS. .. ueiittieteeiteeesteeiteesseesssessesssessssesssesssessssesasessssssssesssesssssssesssesssssnsesssesssesns 14

CHAPTER 2. EXTENDED EXAMPLEottt sttt sae s s s 17
2.1. A NORMAL PARENT SDAILY SCENARIOceiiitiiitieiteeiteeiteesaeestessseesssessresssessssesssesssessssens 17

21.1. Babhy IMONITON ...ttt a e b s e nenenas 17
2.1.2. Multiple APPIICALIONS........ceieieieieeeesesee et e s e nesrenaens 18
2.1.3. Enhanced TEEPNONY ..o s 19
214. A 11001010721 ST STS T SURT SRR PRSP 19
2.2. A LABENVIRONMENT SCENARIOcciiiitiiiiteiiitieestiessstessseessssesssssessssesssssesssssessasssssasesssnnes 20
2.2.1. (0] 150 (<0015 T 20
222, Alrting and Priority......ccoccoioeieiceseee et se e s e e aens 21
2.2.3. (@ gT= 72 o]0 [o1 o o O TSRRTR 22
2.24. S T 0 0°= | 22
2.3, ACROSSTHE GLOBEcccuteiisteieiiteeesteesstesssseesssesssssessssbessbesssabessssbessabesssbesssnbesssssnssasesssanes 23
231 Telephony RENVENTED ... s 23
23.2. Another Application: RAIO.........couiueuiririeeririeereee e 24
233 A 1101010751 OSSPSR RP 24

CHAPTER 3. THEORY/RATIONALE ...ttt sttt 26
G T T AN U 51 [0 B = V7 = =L 26
3.2, INTERNET (IP) TELEPHONYcoccvetiiteistesieuesteseesesteeesesaeessessesessessesessessssessessssessesessensssessenes 27
G T T Y [=TI = = = = T N 2R 28
34, UBIQUITOUS COMPUTING.....cuteitieistiesssteesisesssssessssesssssesssssessasesssssesssssessasssssssesssssessasssssanes 29
3.5. AUDIOINTERFACESFORMOBILE USERS......ciioiiiiiieeeiteecereeesreesssresssssessvessssvesssnesssanenssanes 30
3.6, AWARENESS CHANNELS......ctiiiiteeesteeistessssersssesssssesssssessasessssesssssessasesssssessssessssssssasesssases 31
A S U 1V - =3 22 32

CHAPTER 4. USER INTERFACE AND APPLICATIONS. ...t 33
g T U £ = = LN = = 33

4.1.1. Browsing APPlICALIONS. ..ottt 33
41.2. 010 1S 34
4.1.3. Alerting and INtErTUDPLION.........ccviiieeeesceee e ene e 36
4.1.4. [0S R (0T 1= 36
4.1.5. FPEECH COMITIANTS ...ttt 37
416, Application USer INTEITACE..........oiirrierieeirie e 38
L A = = I (07 L] NS T 39
4.2.1. Characteristics of the APPlICAtIONS.ccccceieeereiceee e 41
4.2.2. NEWS HEAIINES (JAVA)eceeueieicieseeeeseee ettt 42
4.2.3. L0 ol oY= = V7 N T 43
424, (@072 B (@7 @ 44

4.2.5. S o0 0 = g (@7 @2 o 44
4.2.6. RAIO (JAVA)evveerieereetee ettt 45
4.27. AUIO BOOK (JAVA).......coerueiirerieeirieisisie sttt 45
4.2.8. Baby MONITOr (JAVA)cveveereeieirieieerie et 46
4.2.9. Super Phone — Enhanced Telephony (C/CH+) ..o 47
4,210, SUMITINY ceiiiiiieieseeie et de s e be e se e besse e besseesbeeseesbeeneessennsensennsesrennsens 52
CHAPTER 5. SYSTEM SERVICESAND ARCHITECTURE ..o 53
5.1, HIGH LEVEL ARCHITECTUREccueuirtrteuiristeesessesessssesessssesesessesessssansssssessssssenssssssnsssssenessssens 53
5.1.1. [0 UT WIS = Vo= TSR 54
51.2. AppliCation MANAGEScccceviereeieeeeeisieesesesese e sesaesessesessessessesesseseesessenessessenes 55
ST 0 T 11 o | OSSR 55
5.14. FPEECN SEIVICR. ..ttt 57
5.1.5. PrOfHEr SEIVICE ..ottt 58
5.1.6. PrESENCE SENVICE ..ottt 58
51.7. D21z 0 <SSR 59
5.2, SOFTWARE ARCHITECTURE.....ccuttrttrteuerteeesessestasessssessessesessensssessessssesssssssensesessensssessesessenens 59
o220t TR A\ o o[o= o] S 59
oI O 1 o | PO STPRSRRSP 61
523. LOOKUD SENVICE......oiiiecte sttt 62
524, APPIICATION MBNAGESceieeiieieieirieieresie ettt sr b e es 62
5.25. FEECH SENVICE.....eeeeee et nens 63
5.3, MESSAGING PROTOCOL q...cviuiuiirienesisieesisteesessesesessesesessssesessesesssssnsssssessssssensssssenssssssnessesens 64
5.3.1. Client and LOOKUD SEIVICE........ccuciieeeeisieeee ettt saens 64
5.3.2. Client and Application Man@gEYccoeeeereeeeereeereseee e e ssenes 65
533. Applicationsand the LOOKUD SErVICE.........ccuvreirirerireereriee e 66
534. Applicationsand the Application Managercoccrrererrenreiereseseseeeseseeseseeeenes 67
5.35. Client and APPHICALION ... 68
5.3.6. Application Manager and Personal SErVICES..........occoeeevieeeeeseceeesie e 71
SN © = = 1N T | SRS 72
54.1. Registration and SEUP PrOCESS.........ccceieeereeee e siesessesee e essessee e saeessesaenes 72
54.2. Activation and DEACHIVALIONcc.ccurerererererereseeeseeseseesese e seesesseseeesseseenens 73
54.3. GOING OFfliNE.....eieeiieieere e 74
ST TS B Y 1Y 1. = TSR 74
CHAPTER 6. EVALUATION ..ottt esasse s ssese s s ssssesessssesssensns 75
6.1, USER INTERFACEcciitirtirieriesteste sttt sttt aesae s saesaesaesaesbesaesbesaesaesaesbesaesresaesaesaeenas 75
6.1.1 ADPPIrOPriale AlEITINGcccieeueiereerirerieere ettt nr e 75
6.1.2. PEECH INLEITACE......o et s 76
6.1.3. Enhanced TEEPNONY ..o s 78
6.1.4. MOOES OF CONEIOL......eeuierieiiririee e et 78
6.1.5. AUIO PrOCESSING ...corveuiirieiiirieirisie sttt ettt 79
A N o =00 R 80
6.2.1. BN DEIGN .t 80
6.2.2. Extensibility and SCalabilityccoeerreiininiireess e 81
6.2.3. N EU RESDUICES. ...ttt ettt ne e es 82
6.24. SOftware REIADIITY......cooiireiree s 82

9

CHAPTER 7. CONCLUSION ...t 83

7.1. CONTRIBUTIONS . . eteeeeeeeeeeeeeeeeeeeeeeeesaaaaseeeeeeeesessaaaansseeesessssasaassseeeeesssssaaaannneeeesesssaaannnneees 83
7.2. FUTURE WORK ...ttt ettt e e e et ee e e et e e e e e aeeeeeaneeeesaaneeeeseaneeessaanenessaaneeeessannenessannens 84
CHAPTER 8. APPENDICES.ot e e e et e e e e e e e e aaeee e e eeeeeeeasaseneeeeseeseaaennnnnees 87
CHAPTER 9. REFERENGCESot e e e e e e e aee e e eeeeeeseaaeneeeaeeeeenaaennneeees 89

10

TABLE OF FIGURES

FIGURE 1. BROWSING APPLICATIONS. ..eeicvteiiteessteessesesssssesssssessssesssssessssssssasesssssesssssssssssssssessssssssaresssns 34
FIGURE 2. MAPPING OF BUTTONS ON THE IPAQ FOR PROVIDING TACTILE INTERFACE. ..cvvvverveeviveeens 35
FIGURE 3. XML FORMATTED VOCABULARY DEFINITION. ..uvetiicteeisveeiseressseresssesssssessssesssssesssssessasenssas 38
FIGURE 4. XML FORMATTED NEWS CONTENT. ..vvvttiteeiiiesiirrrereeessessssssssssessssssssssssssseessssssssssssssssssesssss 43
FIGURE 5. STATES OF THE CALLER AND THE RECEIVER IN THE SUPER PHONE APPLICATION.cc...... 47
FIGURE 6. AUDIO GARBLING ALGORITHM. 1..uutiiiiiiteieeeeiteiesseeseeessssssressssssssssssssssssssssssssssessssessasssssessnns 49
FIGURE 7. ENHANCED TELEPHONY WITH GARBLE PHONE AND WHISPER.uvieiitieescreessreesseeessreeenns 51
FIGURE 8. HIGH LEVEL ARCHITECTURE DIAGRAM. . vttiitieistteesiseessiseessesssssesssssessssssssssesssssessasssssasesssns 54
FIGURE 9. SPEECH RECOGNITION COMPONENT[35]cveueirereeeierereeresseesseseeesseseeseseseesesseseesessesessesens 64
TABLE 1. APPLICATION MANAGER LEVEL COMMANDS. ... uvttiitiieeitieesreesseeesasesssssesssssessasssssssessassessanes 37
TABLE 2. PROPERTIESTHAT IMPROMPTU APPLICATIONS DEFINE WHEN INITIALIZING THE

Y == T TN 1 | 40
TABLE 3. APPLICATION CHARACTERISTICS ..ceivtieiteiesreessstessssessssesssssessasesssssesssssessasesssssesssssssasesssanes 42

11

CHAPTER 1. INTRODUCTION

“We're moving to a world where you're constantly connected. That’s a good thing. If peaple need to reach
you, they can. If you need to reach somebody else, you can. Applications will presume that you're already
connected 1o the Internet. So they can always grab or send the data they need.” [1]

With increasing mobility, mobile telephones and handheld computers are becoming commodities n our
lives. Recent growth in mobile phone usage has shown the value of voice communications for people
on the move|2]. Although mobile messaging and Internet access through mobile phones are already
popular i FEurope and Japan, they are just beginning to gain acceptance in the United States. With
mncreasing number of data oriented applications, more and more people are using the wireless bandwidth
to access different services beyond telephony. The development of Wireless Application Protocol
(WAP)[3] raised hopes of revolutionizing wireless data access from the mobile phones, and
VoiceXML[4] has been standardized by the World Wide Web Consortium to provide commercial voice
based interactive services to the phone users. Emergence of these technologies and their acceptance
indicate that people want the phones to have multiple functions and to be connected to different

services providing various applications.

Nonetheless, there are fundamental problems with the current mobile telephone systems that limit their
functionality. The major downfall of a mobile device is that traditional graphical user interfaces do not
scale down to the mobile device’s small screens. The display area 1s small and full sized keyboard and
mouse are not available for data mput. As a result, the main input method 1s through button and
pen-based mputs. With such a wide spread acceptance of mobile phones, the importance of audio based

mterfaces mcreases as one’s eyes and hands are needed for other tasks while moving around.

In addition, the wireless network connections provided to these devices are based on traditional
circutt-switched phone networks, which require a caller to call a number and wait for the recipient to
respond to an alert before a connection 1s setup. The circuit switched network 1s not designed to handle
multiple applications or multiple, connected communication channels. For example, when you are
browsing using WAP and you get an incoming voice call, you will need to hang up on the WAP
connection, attend to the voice call and then redial and reconnect to the WAP service to continue

browsing. In contrast, the success of -mode service from NTT DoCoMo indicates the importance of

12

“always on” nature, which removes significant barriers to accessing applications and services using the
mobile phone[5]. 1-mode uses a packet switched network for its services i contrast to WAP, which uses

the circuit switched connection on mobile phones.

Future generations of wireless networks will provide greater bandwidth to mobile devices, and these
devices will be equipped with enough computing power to provide nomadic users with a diverse set of
applications. Although a general purpose appliance such as the personal desktop computer is
constdered undesirable for some situations and computing in the future|6], the popularity of Palm
devices and handheld computers shows how multiple applications can be useful for mobile users.
Currently, people have to carry many different devices such as Palms, pagers, phones, MP3 players and
walkie-talkies for different types of communication. However, 1 believe mobile computing 1s
experiencing the same paradigm shift that personal computers have experienced -- from supporting
single applications at a time to supporting multiple tasks and broader communication capabilities (with
mcreasing computational power and greater availability of network bandwidth). This transition will
require a new type of user interface that 1s more suitable for mobility, just like the multi-tasking

environment on the desktop has led to novel graphical interfaces using window managers.

1.1. The Challenges

Existing mobile devices that provide audio applications for mobile users are mainly built to support a
single application on a single device. MP3 players, CD players, Mini Disc players, and walkmans only
allow playback of music; voice recorders allow recording and playback; radios only support broadcast
radio; walkie-talkies support half duplex wireless voice communication; mobile phones support full
duplex communication, but are bound to a built-in alerting protocol before a communication channel
can be setup. On the other hand, personal computers are a multipurpose platform for a wide range of
different applications. Combined with the Internet, the PC has been a general-purpose platform for
different types of communication applications ranging from instant messaging, e-mail, news groups,
IRC chats and even Internet telephony. However, these applications have been designed with the
assumption that users are sitting, stationary, and focused on the application. The advent of mobile IP
suggests that there may be a role for a single, audio based appliance that 1s mobile and multi-functional
that replaces all personal mobile devices currently available while supporting multiple applications for

nomadic users.

13

In order to make such an apphance work well, this thesis presents:

1. An appropriate architecture with necessary services on the network to manage and support

multiple audio applications with various characterstics.

2. A powerful but simple communication protocol to communicate with the applications and

Services.

3. An auditory user mnterface to manage and interact with these applications with minmmal visual

attention.

As computational power converges into smaller devices and as higher wireless bandwidth connectivity
becomes more commonplace, the mobile devices will be able to support a diverse set of networked
audio applications. However, these applications will be competing for different resources mncluding the
microphone and the speaker on the client, the user’s attention, and the speech resources (speech
recognition and text to speech). This will require appropriate management of resources and applications

with adequate load sharing between the client and the network services that support the client.

In addition to the architecture, a standard communication protocol i1s needed for the client to
communicate with the services on the network and the applications. The client needs to switch between
the applications and request necessary resources when certain applications are activated. The
applications also need to know when to send and recetve data and when to use resources such as the

speech recognizer.

Finally, a novel design of the audio interface 1s needed 1 order to mteract with various applications from
the mobile device. A speech mnterface would be a requirement for such a device since mobile users will
often have their eyes and hands focused on other tasks. Users will need the capability to access and

control the applications using voice.

1.2. Contributions

IMPROMPTU 1s an IP based mobile platform, which consists of a wireless client device and distributed
services that support multiple audio applications. IMPROMPTU addresses the above principles and

provides an implementation of a multifunction mobile audio applance.

14

A distributed architecture was implemented with various distributed components and applications.
Distributed services and applications make it suitable for efficiently load balancing and optimizing the
usage of computational resources on the network. In the current architecture, a thin client
communicates with the distributed services over the network in order to interact with distributed audio
applications. An Application Manager was developed to manage these applications and services for the
client. In order to support a personalized management of the applications, the Application Manager
communicates with the user’s personal services, which include the Presence, Profiler and Speech

Services.

The communication protocol 1s based on the standard Internet Protocols. We use the TCP/IP protocol
to transmit control messages among different components of IMPROMPTU. However, many
components of IMPROMPTU are implemented 1n Java, allowing Remote Method Invocation (RMI) to
be utilized to communicate among the networked components. A text messaging protocol has been

mplemented in order to communicate with non-Java entities such as the client and some applications.

Diafferent audio applications that would be useful for mobile users have been implemented to
demonstrate the capabilitics of IMPROMPTU architecture and investigate the user interface for audio
applications. Baby Monitor, Radio, News Headlines, Audio Book, Recorder, Chat, Super Phone, and
MP3 Player applications have been implemented. Development, testing and coordination of distributed
applications were very challenging during implementation. Speech interface was a necessity for mobile
applications and most applications support speech recognition by sharing the Speech Service and

dynamically loading their vocabularies when they require customized speech interactions.

A push-to-talk button mterface was implemented to provide on demand speech interaction. Initially, the
push to talk button was a toggle button with visual feedback of the recognized text. Such an nterface
confused users about the state of the speech recognition. When it was redesigned as a push and hold
button, the users had a more positive response since it gave tactile feedback on the state of the speech
recognizer and an auditory feedback when there was a successful recognition. Audio cues were a very
mportant element mn informing the users about the state of the applications since there was minimal
visual feedback. IFor example, when there were no audio cues i the Recorder application to indicate the
recordmg state, the record button would be pressed by mistake and either it failed to record anything or
record without the user knowing about it. When audio cues were used to notify the start of the

recording and the end of the recording, there were less false recordings.

15

Applications also have unique alerts that are used to signal users for attention. These alerts were initially
very random and of varying lengths. Iterative testing led to the conclusion that the alerts should be
around one second or less and should give an indication about the content of the application. Selecting
such approprate alerts was a challenge, and 1n order to facilitate this, we provide a web mterface for

users to set therr alerts.

The design and implementation of IMPROMPTU overcomes the limitations of current mobile audio
communication systems by providing an extensible architecture based on the IP network and providing
anew design of audio nterfaces to interact with multiple audio applications from a single device. It takes
advantage of the computational power and wireless bandwidth that 1s becoming more available on
mobile devices in order to provide the user with a combination of auditory and tactile interfaces for
accessing digital audio applications. Audio mterfaces have been explored for several years as a means to
provide easy access to mnformation and communication on mobile devices. However, IMPROMPTU
provides an architecture that can support several of these audio applications on a single device by
utilizing the availability of the wireless IP network through 802.11b wireless Ethernet (which transmits
data 1n the unlicensed spectrum at 2.5GHz supporting data rates up to 11 Mbps) and the programming
and computing capabilities provided by a Compagq 1Paq-like hand held device. This will help us manage
busy social lives 1n a networked mobile environment by providing an clegant user interface to access
many mobile audio applications on a single device and improve how we communicate with people and

access digital audio entertainment and information on the move.

16

CHAPTER 2. EXTENDED EXAMPLE

IMPROMPTU is an architecture that enables access to multiple audio applications with different
characteristics from a single mobile device. As part of the thesis, I have implemented eight applications
for IMPROMPTU that people would want to use m real life. In this chapter, I present several usage
scenarios to illustrate how these applications would be used by people i their daily lives in different
sttuations and how the mterface features of IMPROMPTU facilitate interactions that look very different
than those associated with the desktop graphical interfaces or the current mobile phones.
IMPROMPTU assumes that high bandwidth wireless connectivity will be available everywhere 1n the
future. In our mplementation we used the 802.11b wireless LAN to smmulate such a connected
environment and as a result, the applications are usable only mside the Media Lab. In order to illustrate
the full potential of IMPROMPTU, three different real life scenarios are used to mntroduce and examine
the functionality of the applications. The first one illustrates how IMPROMPTU can be used by parents
with young children. The second scenario presents a more public environment involving
communication between co-workers. A final example presents how IMPROMPTU can facilitate the

communication between geographically distributed family members.

2.1 A Normal Parent’s Daily Scenario

2.1.1. Baby Monitor

Joseph and Mary are a married couple in their thirties who have two children, Jesus and James. Joseph
and Mary are both working professionals who hire a baby sitter to take care of the babies when they are
away from home. Their babies are monitored with baby monitors that are attached to the children and
connected to the wireless LAN connection at home. The parents can monitor their babies through
these monttors regardless of where they are through their IMPROMPTU client. The baby monitor is an
application of IMPROMPTU that is activated when any of the babies start crying, or some loud noise
occurs 1n the environment. When triggered, the baby monitors signal to alert Joseph and Mary. Each
monitor can even have different alerts to indicate whether it is Jesus or James that 1s crying. The mother

1s alerted primarily and the father 1s alerted when the mother does not respond withm ten seconds after

17

being alerted. This feature can be customized, if desired, so that both of the parents would be alerted

stmultaneously, or the father could be alerted before the mother.

2.1.2. Multiple Applications

While commuting, Mary likes to listen to audio books related to children’s stories. When Mary holds
down the push to talk button and says “Audio Book™ she hears a chime indicating that her voice
command was recognized and hears a book flipping sound that notifies that the Audio Book application
has come to the foreground. She has been listening to the stories of Winnie the Pooh and the
application starts streaming that audio book when it comes to the foreground. The application always
bookmarks where Mary leaves off during her previous interaction with the book and it starts streaming
from twenty seconds of audio that precedes from where she left off last time so that she may recall which

part of the story she left off.

Joseph likes to listen to his music collection while he works and he has also setup a profile for news
headlines so that he can recetve important news updates while he 1s listening to his music. He has his
own MP3 music collection that he hosts at home and 1s able to access through his IMPROMPTU client.
While he is listening to Beethoven’s Symphony number 3, he recerves an audio alert from Yahoo! News.
He “jumps” to the application by pressing the “activate” button. The client plays an alert that the News
application has come to the foreground and the News application 1s immediately activated. Joseph hears
the headline regarding the current updates on the conflict between Israel and Palestine. He says “more
info” mn order to get more detailed nformation about the news headline. While he has the news

application active, he also browses through other news by using up and down buttons.

While browsing through the news, he learns of a film festival taking place in Boston and decides to reach
Mary to discuss on a date for that night. So, he browses through his applications until he reaches the
phone application. He presses the push to talk button and says “Phone”. He hears a short chime
indicating that his commands were recognized and he hears a ringing sound that indicates the phone
application 1s activated. He browses through the list of users using the “down” button, but Mary s the

first one that comes up so he says “Call” which establishes a connection with Mary.

18

2.13. Enhanced Telephony

Once Joseph activates the connection to Mary, he 1s authorized to listen to her garbled audio. Garbled
audio allows Joseph to listen in to the audio environment of Mary through a garbled channel, allowing
him to infer her availability with minimal intrusion. This is equivalent to him approaching her in a
physical encounter and deciding whether he should interrupt or not. Mary hears a soft alert from her
IMPROMPTU client that Joseph 1s trying to reach her. Mary 1s a little busy at that moment so she waits
to sce what Joseph 1s calling about. Joseph realizes that she 1s not accepting the call so he waits for a few
minutes with a garbled connection to see if she becomes more available. Mary does not respond, so he
takes the next step by saying “approach” and decides to leave her a voicemail message. At that pomt,
Mary 1s notified that Joseph 1s trying to leave a message and decides to screen the call and listen to the
message. Joseph leaves a message about the film festival and whether she 1s willing to go out that night.
Mary has either the option of accepting the call and talking to him, or simply ignoring it. In this case, she
decides that a quick answer will suffice, so she decides to connect to him by pressing the “up” button.
Real time connection 1s established and Mary tells Joseph that the film festival would be great and that

she would pick him up at the T stop.

However, as Mary 1s driving to pick up Joseph, the baby monitor suddenly alerts her. She immediately
jumps to the application by pressing the “activate” button and starts listening. James 1s crying for some
reason and she tries to reach the baby sitter, but she does not get any response. She switches to the
phone application and calls Joseph and tells him that she 1s heading home because of the children.
Joseph instantly activates his baby monitor by saying “Baby Monitor”. The baby monitor plays a unique
alert indicating that it has come to the foreground. Immediately he hears James crymg and Jesus saying
“Do not be afraid,” to calm him down. Joseph 1s also able to speak into the monitor to calm him down

since the monitor supports full duplex audio.

2.14. Summary

This scenario presented several applications of IMPROMPTU and how they mteract among themselves
and with the users. Baby Monitor, Audio Book, News, Music and Phone applications were presented.
Users have the option to interact with these applications using speech or using the buttons on the
IMPROMPTU client. Only one application can be in the foreground although all applications are

practically active. When the applications need focus, it signals with an alert. There are speech

19

commands to activate the applications and speech commands used to browse the content inside the
applications as i the News application. The speech recognition s done over the network by streaming
the audio captured from the client to the speech recognizer and getting back the recognized text. The
Application Manager keeps track of which applications are online, which applications are active and
which applications may interrupt the user or not. It relays all client mnputs and requests to the

appropriate applications.

2.2. A Lab Environment Scenario

David works at the Media Lab and Esther and Peter are good friends and coworkers at the lab.
However, they reside physically i different locations in the lab, and they decide to use IMPROMPTU 1n
order to stay connected with each other. They like to go out together once in a while and sometimes
they also have to collaborate on projects and IMPROMPTU provides them with a convenient awareness

and communications channel.

2.2.1. Connectedness

Thunderwire|7] was a shared media system that allowed several members in a work group to be always
connected and share an audio space. The study showed how telepresence could be used to collaborate
while forming a social space among coworkers. Ambient workspace sounds were conveyed through the
Thunderwire audio channels to allow different members using the system to remain aware about each

other’s presence, when they were not using it to converse.

IMPROMPTU can serve a similar purpose to David, Esther and Peter as they work on a project trying
to meet a deadline. The audio channel 1s not always open, but any of them can reach any other person
through IMPROMPTU because they have given each other permission to interrupt during their work
hours. In the morning when Esther comes in, she approaches David through the IMPROMPTU client
to check i1f he 1s in the office. David hears an alert indicating that Hsther wants to reach him. He 1s on his
way to work and he 1s listening to music and ignores the alert not wanting to be disturbed. Esther just
hears some garbled audio and it sounds like he 1s near some busy street and assumes that he 1s on the way
to work. This “garbled” connection enables users to let others know about one’s availability by
publishing audio or other data to one’s peers as n the AROMA[8] mutual awareness system. AROMA

system used abstract representations, which required a high learning curve. However we use garbled

20

audio to keep things simple, while preserving some privacy. The audio is garbled on the client so that it

cannot be spoofed from the network.

Since David seemed like he did not want to be disturbed, Esther decides to leaves a voice mail by
approaching David further (by pressing the “up” button or saying “approach”) and tells him to let her
know when he comes 1, 1n order to discuss the status of a bug and also asks 1if he can do lunch today.
David hears an audio cue saying that the caller 1s leaving a voice mail. This is to give the receiver an
option to decide to connect the call while the caller 1s leaving a voice message 1f the message seems to be
mmportant. When the caller 1s also done with their voice message the recerver hears an audio cue
(currently “beep beep”) that indicate the end of the voice message. The voice mail is recorded by the
Recorder application in IMPROMPTU. The Recorder application is an example of an application that
becomes active m the background when it needs to record audio from another application. The
Recorder application can be explicitly activated by the user to record user’s personal voice memos or it
can be activated when another application 1s already active, in order to record an audio content of

another application.

2.2.2. Alerting and Priority

While Peter 1s preparing to go to work, he listens to the weather forecast on his IMPROMPTU client to
see if he should take his umbrella. While he is checking the weather, he suddenly gets an alert from the
Phone application. Since he can come back to the weather, he decides to immediately connect to her by
pressing the “activate” button and jumping to the Phone application. He hears an alert that indicates
that the call 1s from Esther so he presses the “approach” (up) button twice to get connected. She asks to
have a lunch meeting and he agrees on it. After he is done with the call, he returns to the weather
forecast application by saying “Weather” and 1s happy to know that he does not need to take an

umbrella.

As he steps out from his home and gets mnto his car, he suddenly gets a call from his father in Utah. It1s
six in the morning there and he 1s kind of worried because his mother has not been feeling well lately.
His intuition 1s correct and his father tells him that she has been transported to the emergency room. He
mmediately decides to forego work for the day and heads mstead to the airport. He also calls back
Esther and from her garbled channel he infers that she 1s i a meeting, so he just leaves a voice message

mdicating that he has a family emergency and cannot make it to work today. Esther however, was

21

getting a little bored from the meeting so she screened the voice message and upon hearing Peter’s

distressed message, she connects to him immediately and sends a word of encouragement.

2.2.3. Chat Application

When Peter arrives in Utah, his mother had gone mto the operation room. While he 1s waiting outside in
the hospital he decides to reach Esther and David to see 1if they can chat to discuss any bugs that are
occurring and keep track of each other’s status. However, David, Esther and another developer were
already 1 a chat sesston and discussing several ssues. Peter joins the chat session and quickly skims
through the chat recordings by pressing the “down” button in order to catch up on the status of the
current chat. The others notice that Peter jomned the chat as they hear Peter’s alert. After several minutes
of catching up, he decides it would be a good time to give an update. He first tells them that his mother
seems to be domng ok and gives a brief status update on his modules mndicating some pending bugs that

he has been trying to fix lately.

2.24. Summary

In this section, the capabilities of the Phone application have been elaborated, and the Chat application
was introduced. The garbled audio and the call screening features i the Phone application enable a
more flexible call control and call setup process between the calling parties. The call control protocol
alters the call state 1 a call session. The call state includes the different states 1 a call and mformation
about callers and recervers. The call setup process establishes the call states in the network and the end
pornts so they may start communicating.|9] Due to its capabilities beyond current telephony, the Phone
application will be referred to as the Super Phone application. It supports traditional telephony so that
users may dial out to and recerve calls from conventional phones. However, by utilizing the IP network,
it provides options to monitor one another and screen calls before a two way real time communication
channel 1s setup so that certain trusted group of people such as family members, friends and coworkers

can use the enhanced call setup functionality.

This section also illustrated how audio applications may interact with cach other as the Recorder
application did with the Super Phone application to provide voice mail functionality. The architecture of
IMPROMPTU facilitates this kind of interaction between applications. The Chat application presented

mn this section is a multi-user application of IMPROMPTU that enables a group of people to have a

22

sesston setup to communicate freely and post voice messages that they would like to share
asynchronously. It also keeps a history like the text chat rooms so that users may browse through the

contents of the chat to catch up with current conversation.

2.3. Across the Globe

IMPROMPTU will help connect geographically separated family members. Sarah 1s in US studying in
college. Her parents travel between the US and Korea every six months. When her parents are 1n the
US, they stay with her, but when they are in Korea, they are in Seoul, at their relative’s place. Her brother
John 1s 1n the military 1n Dae-koo, which 1s about 4 hours away from Seoul by car. Connecting global
families m a distributed world where there are different time zones and completely different life styles 1s
something that current telephony does not do well. IMPROMPTU will help such family members stay

connected through the enhanced call setup process it provides.

2.3.1. Telephony Reinvented

When Sarah’s IMPROMPTU client 1s 1dle, her family members can easily check up on her, since she has
given them trusted permussions. They would not get clear or real time audio when they check on each
other, but they would be able to infer from the garbled audio whether any of their family members are
busy oridle. During John’s lunch hour, he “approaches” her to see what 1s up with her. He listens to the
garbled audio and there seems to be some activity. Although it 1s one AM mn US, he realizes that she 1s
not asleep. Sarah 1s alerted that her brother 1s trying to connect to her. She was writing some e-mails
while listening to some music with her IMPROMPTU client, so she decides to accept the call and start a

short chat with her brother.

In another instance, Sarah tries to call John or “approach” him. She hears some garbled audio for 30
seconds and infers that he seems to be i a military trammg. While she 1s listening to garbled audio, John
approaches her and transitions to monitoring state to see what she s calling about. This establishes a
one-way clear channel where John can listen to what his sister 1s mnterrupting him about. As Sarah asks
him whether their parents have arrived safely in Korea, he switches the state by “approaching” her
further and setting up a full duplex connection. He tells her that he was directing the traming and he has
a few moments during the break. He also tells her that their parents have arrived safely mn Seoul and he

talked to them last night. Sarah asks John to join the chat session later when he 1s done with the tramning,

23

2.3.2. Another Application: Radio

Sarah’s parents have been listening to the Korean radio by accessing the Radio application from their
IMPROMPTU clients. They were on their way to a sauna since that is the first thing Koreans usually do
when they return to Korea. Her father suddenly hears an alert from the Super Phone and he decides to
switch the application by pressing the “activate” button while her mother continues to listen to the radio.
As he switches to the Super Phone, he asks his wife to save the radio content using her recorder so that
he may share it after he 1s done with the call. When the “record” button is pressed, his wife hears a beep
that indicates the start of the recording. Sarah’s father cannot really record the radio while he 1s attending
to the call since current IMPROMPTU Recorder application can only record the currently active

application.

When he hears Sarah’s unique alert he just presses the “up” button twice to skip the monitoring state and
get connected directly. Sarah asks how they are domg and he tells her about what 1s happening in Korea
and that they are going to a sauna. Suddenly Sarah’s mother wants to chat with her also so they all
browse and activate the Chat application. Although currently Chat only supports asynchronous
messaging, the Chat application can provide multiple people to also chat together in real time. As they
were chatting for about half an hour, they hear John joining the chat. He quickly browses through
previous recordings of the chat and greets the other family members. At this time, John’s father decides
to continue to listen to Radio and let his children chat with their mother. He uses the browse buttons
(left/right buttons on the IMPROMPT'U client) to switch to the Radio application, since the speech

recognizer does not cope too well with his English pronunciation.

2.3.3. Summary

This section presented a scenario where IMPROMPTU can facilitate communication between
geographically separated family members by providing them an awareness channel and a private chat
room that 1s accessible from the same client. Also the final application that has been implemented for
IMPROMPTU, the Radio application is mntroduced. 'This application is actually a pretty simple
application that streams audio from a tuner. However, this demonstrates how IMPROMPTU mtegrates
different kinds of audio applications that we currently use and access using different devices. Finally the

mterface on IMPROMPTU to access applications provide some main functionality such as browsing

24

different applications using buttons to complement the speech interface that mught not be always

adequate i certain situations.

25

CHAPTER 3. THEORY/RATIONALE

In this chapter I describe some previous and related work that has motivated the development of
IMPROMPTU. The first section describes audio server research that dealt with some similar research
tssues 1 architecture and user mnterfaces for making audio easily accessible from the desktop computers.
In the second section, developments mn IP telephony is presented along with how IMPROMPTU differs
from traditional 1P telephony. The third section describes works in mobile phones that have been
developed over the last few years and the resulting commercial services that are becoming available. In
the fourth section, I present some related infrastructure and architecture work that tries to provide users
with access to ubiquitous computing. The fifth section details previous work on audio interfaces that
have motivated the development of IMPROMPTU. Finally, in the last section, previous work on

awareness channels 1s described to support IMPROMPTU’s new approach to setting up calls.

3.1. Audio Servers

Audio servers have been an active research area i the 80’s and early 90’s to make digital audio more
accessible from the desktop computers. Integration of computer and telephony led to applications that
could seamlessly access voice mail recordings from the workstations. The audio servers were used to
provide audio services such as digital signal processing, telephony, text to speech and speech recognition,
to various applications on the desktop. Desktop audio research presented in [10] investigated “a unified
view encompassing the technologies, applications, and user interfaces to support audio processing at the

2

workstation.” The research on audio servers and architecture for desktop audio were driven by the
requirements of the applications that would be more useful with the use of digital audio and their user
mterfaces on the desktop workstations. By making audio as a basic data type that 1s as easily manipulable
as text on the desktop computers, the users could more easily interact with audio from their workstations.
The architecture for achieving desktop audio resembled the client server architecture of the X windows
system by allowing multiple applications to access digital audio resources simultancously without
mterfering with cach other. The technology provided users with casy access to telephony, to their voice
mail, to voice annotations m their calendars and to text to speech and speech recognizers.

IMPROMPTU is a natural evolution from the previous research on audio servers to nvestigate the

requirements of the user interface, software architecture and audio applications for users on the move in

26

the mobile arena. Audio applications become more useful to mobile users and speech mnterfaces
becomes more of a necessity due to lack of visual mterfaces and sophisticated mputs such as the
keyboard and the mouse on mobile devices. The audio server research promoted a server based
approach to processing audio and presenting it on the desktop computers for different applications, and
IMPROMPTU takes the idea a step further to allow distributed audio applications to be casily accessible

from mobile devices through mostly auditory interfaces.

3.2. Internet (IP) Telephony

Internet telephony protocols have been developed in the last few years to send voice over the IP
(Internet Protocol) network[11]. The two main protocols that have been standardized are the H.323[12]
from the International Telecommunication Union (ITU) and the Session Initiation Protocol (SIP)[13]
from the Internet Engmeering Task Force (IETF). I.323 1s a very complex[14] protocol that
encompasses all aspects of multimedia communications over packet-based networks. The protocol
even includes standards for audio and video codecs. The call control protocol it uses 1s H.225, which 1s
a subset of Q.931 protocol that 1s used in ISDN digital telephony. The call setup protocol which s the
negotiation protocol for setting up the connection between two entities that are trying to communicate,
follows the simple call setup process as 1n the traditional telephony mvolving setup, alerting, connect and
release messages. Recent development efforts in SIP also include support for presence related protocols
to provide awareness between callers[15]. “Presence is a means for finding, retrieving, and subscribing
to changes in the presence information (e.g. online or offline) of other users.”[16] These protocols
spectfy how audio and video can be transported over the Internet and what kind of signaling protocol 1s

necessary to communicate between terminals and different entities on the network.

However, the protocols, themselves, do not mherently change how we establish connections and
communicate using voice with other people. As described above, the call setup model for these
protocols still follow the traditional idle, call in progress, alerting, connected and disconnected model.
The negotiation of the call setup only mnvolves either answering or not answering an incoming call with
the ring alert being the only indication for the desire to setup the call. Voice over IP mobile phones that
are capable of operating on the 802.11 wircless networks are not much different from a normal
telephone except that they can access the LAN and transport audio over the IP network. Hxcept for the
endpomts having IP addresses and the quality being dependent on the network traffic, the user

experience was not much different from current mobile phones. Callers still have to alert, and neither of

27

the parties on each end know what the call would be about until they are actually connected. The alerting
1s context insensitive. Neither the sender nor the recetver of the call can know the urgency of the call or
the status of each other until the call 1s setup. As a result, what the users experience on the IP phones 1s

not much different from what they experience when they use conventional telephones.

IMPROMPTU leverages the IP connection between IP enabled devices and the “always connected”
property of the network to provide users with a different experience when connecting with people using
voice communication. It also utilizes the universality of the IP to coordinate between distributed
applications and services and to transmit digital audio over the network to the client. By making the call
setup protocol more flexible, a user can sense another user’s status using garbled audio and subsequently
transition to a normal connection 1if the recetver 1s available for mnterruption. It also provides receivers
with the option of screening calls in real time before establishing connections to converse. Call
screening allows the recerver to listen to the caller to determine the purpose or the urgency of a call,
without the caller hearing the recetver. This models real life physical interactions between people when
they initiate face-to-face conversations. Before interrupting someone, one approaches close enough to
notice the availability of that person. 'The mterrupted person can decide whether to interrupt their
current task or ask the person to come back later or send an e-mail. In this interaction, both parties are

aware of what 1s happening to cach other during the whole conversation setup process.

3.3. Mobile Telephony

In mobile telephony, the WAP Forum|3|, N'T'I”s i-mode|17] and the “Voice Browser” Activity|4] are
the main consortiums developing standards for providing visual applications and mteractive voice
portals for mobile phone users. Their work will provide different services that are useful to current and
future mobile phone users. However, the small screens on current mobile phones make visual nterfaces
very difficult to use for most applications. The speech based interactive applications provide quite useful
services, but because the phone operates on the circuit switched network, the users are required to
disconnect and dial a different number to access different applications unless all applications are
provided by a certain provider. The limited bandwidth on the current phone network also limits the
quality of audio that can be transmutted over the network. Upcoming development of third generation
wircless networks for mobile phones and mobile devices that support IP network connections will

become a potential deployment infrastructure for IMPROMPTU. Many different packet data oriented

28

applications are proposed, and IMPROMPTU will provide guidelines on how applications, particularly

audio applications, can be supported on these devices.

Telephones have been made for circuit-switched networks, which require a separate channel reservation
for each connection. This makes multiple connections to multiple applications expenstve and difficult
to manage. Multiple audio applications can be supported by current telephony through service
providers such as TellMe[18], which offer multiple audio applications such as stock quotes, weather,
news, driving directions and yellow pages through a 1-800 number. TellMe also offers easy ways to
publish “phone sites” that you can browse (with speech) using the phone. However, the services are

limited to the mnteractive speech based audio applications that VoiceXML|4] can offer.

Among many different audio applications IMPROMPTU supports, enhanced telephony changes the
call control and call setup protocol of how people communicate using mobile devices for voice
communication to provide users with richer mteraction over the mobile devices. The traditional
telephones use circuit switched phone network, which requires the phone to always alert before a call
can be setup. The Internet Protocol (IP network) changes this completely because one is virtually always
connected with other people over the mobile devices. As a result, different ways of setting up calls can

be realized.

Alerting can be more mtelligent and provide more information about the status of a call. Before an
actual real time two-way communication 1s setup, an awareness channel can be established mn order to
provide an “outeraction”|19] channel for call setup. This channel does not involve a direct mteraction
and communication, but aids mn the process of setting up the call by providing both the caller and the
recetver with information about cach other without mterrupting their current tasks. This awareness
channel provides a flexible negotiation mechanism to both the caller and the receiver in making the call

setup decision for connecting fully or not at all.

3.4. U C

Other projects that also attempt to change the Internet and telecommunications landscape, are the
ICEBERG9, 20] project at UC Berkeley and the Oxygen|21] project at MI'T Laboratory of Computer
Science, which are larger in scale and scope compared to IMPROMPTU. The ICEBERG project

explores the lower level computing nfrastructure and wireless networks for providing services to mobile

29

devices. Oxygen project explores the more fundamental levels of computing infrastructure and
communication infrastructure, which involves research in hardware chip designs to user interfaces. The
Ektara|22] architecture proposed by the Wearables group at the MI'T Media Lab also encompasses a
larger scope in wearable and ubiquitous computing to provide computing resources and data to wearable
clients. The goal of ubiquitous computing is to make computers invisible while making them widely
available m the normal physical environment of people’s daily lives[23]. Don Norman suggests that
current personal computers are too complex and designed to be too general purpose to do all things for
all people[6]. However, he also argues for information appliances that are activity specific devices that fit

the way we work.

The architecture proposed for IMPROMPTU 1s more modest compared to the works m ubiquitous
computing since its primary goal 1s to support distributed audio applications and enhance audio based
services for users. However, the goal of shifting the focus of attention so that the users may engage in
their active tasks 1s similar. By bringing as many audio applications as possible mto an integrated
environment, IMPROMPTU models more of a general purpose desktop computing paradigm, but
IMPROMPTU can be considered more of an appliance for accessing audio information and audio
communication ubiquitously. IMPROMPTU 1s an architecture that stands i the transition stage
(marked by Mark Weiser as Widespread Distributed Computing stage) to ubiquitous computing vision
where distributed audio applications are connected and accessible to the users at any time through an
IMPROMPTU client. All the complex audio processing and applications run in the background and the
distributed architecture of the system becomes transparent. Also, IMPROMPTU is here currently and it
works now over the Internet protocol. However, with true ubiquitous computing becoming available,
IMPROMPTU’s design of user interface and audio applications will become more accessible while
being less intrustve. Rather than just one device being the source of audio, the audio source may be the

physical environment itself.

3.5. Audio Interfaces for Mobile Users

Nomadic Radio 1s a wearable platform for nomadic access to unified messaging. Interface techniques
were designed for simultancous and peripheral listening, spoken feedback, and navigation via voice and
tactile interaction|24|. This thesis explored wearable audio interfaces for accessing asynchronous
mformation (voice mail, e-mail, and calendar) from a wearable device and contextual alerting for timely

notification of incoming messages while mmmizing iterruption to the users. Nomadic Radio describes

30

the advantages of audio mterfaces that allow hands free operation for mobile users. However, Nomadic
Radio only supported incoming asynchronous messaging to access voice mail and e-mails converted to
speech using text to speech. IMPROMPTU provides an implementation to some of the future works
described 1n Sawhney’s thesis with regards to awareness communication channels, synchronous and
asynchronous two-way communications and their interaction protocols that allow transition from one
communication channel to another. In solving these problems, IMPROMPTU first provides an
architecture that supports multiple audio applications with an adequate arbitration of resources through
distributed services. An alerting model based on the applications competing for the resources on the
client and the user’s attention 1s provided so that the users are notified about the events that occur in the
application space. Alerting of events triggered by not only incoming calls from people, but by multiple
audio applications are handled by the IMPROMPTU architecture. Also, the user interface 1s designed to
be scalable to support different applications using speech, tactile and auditory interfaces on a handheld
voice terminal. T'o provide an awareness channel, IMPROMPTU supports garbled audio that can be
used to negotiate further mterruption when a call 1s being setup and provides capabilities to transition to

a full duplex audio channel or transition to Chat application for asynchronous voice messaging.

NewsComm]|25] s a handheld playback device for structured audio recordings. It allowed casy
browsing of audio books and news content. However, content had to be retrieved from the audio server
and needed to be manually downloaded to the handheld device by docking it, due to the lack of wireless
network connection. This limited access to real time streaming content from the device.
IMPROMPTU, on the other hand, makes a wireless high bandwidth connection a requirement, and it
allows on-demand access to audio book contents and news. This allows new content to be available
from applications immediately, requiring a more sophisticated alerting paradigm to mndicate different
events that dynamically happen during the use of the application. There 1s no mtelligent structuring of
the content for ndexing or annotating the media stream as NewsComm does, but an application

developer could potentrally implement such functionality in the application.

3.6. Awareness Channels

Interaction and Outeraction: Instant Messaging (IM) 1in Action|19] describes how mnstant messaging has
enabled people to “negotiate the availability of others to mitiate conversation”, and how this capability
has facilitated the establishment of communication channels. Such a feature 1s not yet available in

current telephony although such capabilities are being developed in the IP telephony protocols as

31

described above. IM is also “used to maintamn a sense of connection with others within an active
communication zone.” When IM was used mn office environments, people initially would start using IM
to converse, but they would switch media to a phone for more responstve interaction in the course of a

single communication event.

IMPROMPTU brings together the advantages of IM by providing information on the availability of the
users while improving the user interface for switching media between an awareness channel and a real
time communication channel. Instead of having to switch from typing on the computer to speaking on
the phone, one can use one device for both. Normal phones are tedious for unprompted nformal and
brief message exchange, however IMPROMPTU facilitates such exchange by providing Garble
Phone|26] awareness channel, call screening functionality, and the subsequent transition of connection

to real time media for direct voice connection with the communicating party from a single device.

3.7. Summary

This section has illustrated some related work that has guided the design and implementation of
IMPROMPTU. Audio servers have provided an architecture for desktop applications to access various
audio services on the desktop, and IMPROMPTU takes this a step further to provide audio applications
of varying characteristics to be accessible from a single mobile client. The architecture provides
distributed speech recognition and text to speech services that can be used by the applications to acquire
user mput from speech and present text using synthesized speech. IMPROMPTU overcomes
traditional call setup models implemented in current IP telephony and mobile telephones to provide
users with more flexible negotiation during the call setup process. It provides an awareness channel that
can be used by callers to decide whether to further mterrupt the receiver and a similar screening channel
on the recerver side to provide more information about the caller before getting fully connected. In
addition to traditional telephony and enhanced telephony, IMPROMPTU supports audio applications
with different characteristics making it a ubiquitous audio client for accessing audio based applications.
With a single appliance, people can access their MP3 music, listen to their favorite radio station and
enjoy their audio book collections, while getting timely news updates. Based on the need for non visual
mterfaces for mobile users, IMPROMPTU also provides a stmple clegant user mterface based on the
speech and tactile mnterfaces with auditory feedback to guide users in accessing the multiple applications

1t supports.

32

CHAPTER 4. USER INTERFACE AND APPLICATIONS

This chapter introduces IMPROMPTU client’s user interface design and the applications that have been
mplemented. The first section highlights some key features of the user interface that are used to interact
with the applications. IMPROMPTU uses a combimation of button, speech and auditory interfaces to
allow the user to navigate through different applications and mteract with each of them. In the second
section, the applications that have been implemented for IMPROMPTU are described mn greater detail.
IMPROMPTU supportts applications with different properties and resource requirements. These
factors determine how the user interacts with them and how the applications access resources on the

client and the distributed services.

4.1. User Interface

This section presents the user interface design of the IMPROMPTU client. The goal of the design was
to make it as simple as possible and as intuitive as possible to access different applications. The
challenge 1s trying to design a coherent user interface for accessmng multiple applications from a single
client. A combrnation of button input, speech interface and audio cues are used. The IMPROMPTU
client allows users to browse through different applications and use the alerting cues to determine which
applications are active and which applications need attention. “Push to talk” functionality 1s essential for
providing users with an effective speech mterface. Once an application 1s activated, different
applications require different user interfaces. Buttons and voice commands are used m combination to
provide serial and random access to the applications. Some applications make use of the Speech Service

to provide speech interfaces to browse and access the applications.

4.1.1. Browsing Applications

Users can browse through the applications serally, by using browsing buttons or randomly, by activating
them using voice. As the user browses through the applications by going LEFT or RIGHT. As the user
browses through the applications, distinct audio alerts are played for each application and the application
1s immediately activated if the user discontinues browsing. The following diagram illustrates the

browsing process.

33

Radio Monitor News Super Phone Chat Music
Headlines

0-00 0 00

browse

Active Application

Interrupting application -alert played before activation
-application alert played

-user can activate app or ignore

Figure 1. Browsing applications.

If the user does not want to have any applications active, he/she can either browse to the Sleep
application, press the deactivate button which jumps to the Sleep application, or voice activate it by
saying “sleep”. The sleep application is an 1dle application that basically does not do anything. Once an
application 1s activated, further user mput will be processed by the application except for the browsing
commands. After the user has finished using an application, the user can move to another application by

browsing or voice activating the new application.

4.1.2. Buttons
The client captures key input from the user and forwards it to the Application Manager, which mn turn
forwards it to the applications. The hardware buttons on the 1Paq are used to control the applications

and send commands to the Application Manager. These keys are mapped m the following manner.

34

Up

Left Right
Push to Talk

Down

Lucent Technologies

-

Linh encap Local Laspbiach
Teet a2 0 Taa 255 0.0
AON0G MTE 208 T

Record Deactivate

Function Activate

Figure 2. Mapping of buttons on the iPaq for providing tactile interface.

The activate button and the deactivate button send ACTIVATE and DEACTIVATE messages respectively
to the Application Manager. Other key presses or user input send the APP message to the active
application. Button pressing and releasing can be detected and the number value corresponding to the
event 1s sent as part of the message. If an application 1s already active and the “activate” button 1s
pressed, the client checks to see 1if there are any pending applications (applications that have alerted for
attention) and the next application in the pending queue becomes active. The deactivate button

deactivates the active application and switches to the Sleep application.

The UP/DOWN buttons are used mn the applications to usually browse and navigate inside the
application. This 1s adequate due to the serial nature of audio contents. FUNCTION button is the only
other available button that 1s used by applications to implement specific functions. For example, in the

Super Phone application, the FUNCTION button 1s used to hang up or make calls. Buttons are used as

35

an alternative to the speech mterface and there is always more speech commands available to the

application than button commands.

4.1.3. Alerting and Interruption

VoiceCues|27], which are audio signatures that identify people and auditory icons, are used to provide
users with awareness and feedback on the currently active users, active applications and the different
applications that users browse. When a new application comes online or an application goes offline, the

user 1s also notified with distinct auditory cues.

Applications have their own distinct alerts that get setup by the application developer. However, users
can customize these alerts by mapping them to different alerts when they subscribe to these applications
from the web mterface. Every time a user browses through the applications (sertal access), each
application plays a short audio cue to indicate which application the user is accessing. When an
application suddenly comes online or has certain content that requires user’s attention, the current
application 1s briefly interrupted for the alert to be played back. The user can activate the application that
1s interrupting or just ignore it. After 20 seconds, the application 1s removed from the pending queue,

although it can still be accessed manually by activating it through browsing or through voice.

Fach user also has his/her own personal alerts, which are played back when he/she tries to call another
user. 'This alert 1s also used 1 the Chat application to notify active users that one has joined the chat. All
these alerts are WAV files that are specified by an HI'T'P URL.

41.4. Pushto Talk

Push-to-talk functionality 1s added m order to allow more effective use of the Speech Service.
Push-to-talk means a button that needs to be pushed and held down to talk and released to stop talking,
The push-to-talk button 1s the button on the upper left hand corner, which 1s used to enable and disable
push-to-talk mode. When the button 1s pressed, the push-to-talk command is forwarded through the
Application Manager m order to be delivered to the Speech Service. For all applications, audio i1s
forwarded to the Speech Service when push-to-talk 1s enabled. Also, when the button is pressed, the
client pauses the audio output to the speakers mn order to prevent the output from mterfering with the

voice mput. When a word 1s recognized, the client plays a short chime to indicate that there was a

36

successful recognition. The recognized word 1s streamed back to the client to be displayed on the screen

in order to provide feedback to the user with the recognition result.

Audio 18 normally streamed directly to the applications that require both speech recognition and audio
mput from users. However, while the push-to-talk button 1s pressed, the audio 1s forwarded to the
Speech Service. This would be required when the user wants to activate another application or provide
speech commands to the application. The user pushes and holds the push-to-talk button and speaks the
application name in order to activate an application. The user releases the button after speaking the

utterance. If something 1s recognized, the user will hear a chime sound.

4.1.5. Speech Commands

There are two levels of speech commands available to the users. These are the Application Manager
level commands and the application level commands. The application level commands will be described
m more detail in the next section. The Application Manager level commands are available globally from

whatever state the user 1s i and they are:

Commands Behavior

“What are the applications?” or | It tells the user which applications are online
“applications” for short and available using synthesized speech.
“Where am 1?7 Application alert 1s played back to indicate

which application the user 1s currently active.
Applicatton names such as “Music” or | Activates the applicatton and plays the
“News” application’s alert as it 1s activated to give
user feedback.

Table 1. Application Manager level commands.

If a user has been idle for a while, the user may not remember the previous state of the applications.
“What are the applications?” or “applications” 1s used to find out what applications are available and
online. “Where am I?” 1s used to see n which application the user 1s currently in. The user may have left
off listening to some music and had the music playback paused. The user may decide to browse to the
next application and to browse back to find out which application the user was in or he/she may say,
“Where am [?” The latter speech command plays the application’s alert. Finally, all the application

names are available to the user to jump to different applications from wherever they are.

37

4.1.6. Application User Interface

Each application has a distinct user mterface that consists of a combmation of button presses, speech
mput, audio alerting and notification. All user key input from the client 1s forwarded to the applications
by the Application Manager to be processed by the applications. The applications can support any kind
of key input from the user, although the applications that we have implemented mostly respond to
button presses on the IMPROMPTU client. 'This corresponds to a single key input, 1 order to keep the
user mnterface as simple as possible. However, some applications like the Super Phone require telephone

numbers or user ID’s as user mput which needs to be typed mn through the software keyboard.

The speech interfaces for the applications are supported through the application specific dynamic
vocabularies and grammars that can be loaded and unloaded as applications are activated and deactivated.
The following is a sample vocabulary defined for the news application. These vocabularies constitute

the application level speech commands.

<?xml version="1.0"7>

<vocabulary application="yahoonews@media.mit.edu">

<term>
<recotext>start</recotext>
<output>start</output>

</ term>

<term>
<recotext>more info</recotext>
<output>more</output>

</term>

<term>
<recotext>stop</recotext>
<output>stop</output>

</ term>

<term>
<recotext>tell me the commands</recotext>
<output>commands</output>

</ term>

<term>
<recotext>next</recotext>
<output>next</output>

</term>

</vocabulary>

Figure 3. XML formatted vocabulary definition.

In the above figure, the vocabulary XML file 1s formatted into different “terms” that can be recognized
and cach term consists of a recognizable text and an output. This is to allow different words to be
spoken for the same operation. For example, the users can say “tell me the commands” or “what are the
commands?” and in response to either of the inputs, the speech recognizer would send “command” to

the application.

38

Voice activation of applications 1s also done through the dynamic vocabulary. Each application has a
name, which 1s defined by the application developer. This application name 1s added to the application
vocabulary each time an application registers and it 1s removed when it unregisters. Users can ask “What

are the applications?” in order to find out what applications they can activate.

The speech interface 1s very sensitive to ambient noise because the microphone used is a standard
omni-directional microphone built into the 1Paq. The 1Paq is not easy to take apart, but if an external

noise-canceling microphone could be attached, the speech interface could be made more robust.

Applications can alert users to interrupt, to notify of event changes in the application and to give
feedback to the users about the status of the application. Interruption occurs when an application alerts
the user when there 1s already another active application. Notification of event change occurs during the
use of the application when the status of the application changes. Finally, the application gives feedback

to the user when certain actions have been successfully or unsuccessfully processed.

4.2. Applications

In this sectton 1 describe some applications that have been implemented n the IMPROMPTU
architecture. EFach application defines its own application properties and these properties determine
how the client mnteracts with the application when the application 1s activated. When the client receives
the application mformation from the Application Manager, it creates an application object on the client
side that interfaces with the remote application. Once this 1s setup, the control commands are all
forwarded through the Application Manager. However, audio connections are made directly between
the endpoints to reduce any latency. This was a major design requirement for IMPROMPTU since
latency affects the usability of a real time audio application. Also applications are only allowed to send
audio when activated through the Application Manager upon clients request. If they are not active, they
will either wait until they are activated or they may send ALER'T messages to the client to ask the user for

permission to stream audio.

39

The following properties need to be set by the applications:

Property Details

Application ID The unique application identifier such as music@media.mit.edu

Application name The application name, which is also used by the speech recognizer for
voice activation. Therefore, one should be considerate in picking the
name of the application for good recognition results.

Application RMI URL This only exists for Java applications. The URL is of the following
format:
//<IP address of hosting machine>/ <application ID>

Application port The port application is listening for TCP audio connections or where
UDP socket is bound for UDP audio input. The UDP port will be
updated for each user when the user comes online and connects to the
application. (See UDPPORT message description)

Application alert URL The HT'TP URL where the application specific alert resides.

Application transport type

Indicates whether the application supports TCP or UDP audio
connections. Those applications that are sensitive to delays use UDP
to transport audio, while those that are less sensitive, but require
reliable audio communication, uses TCP to transport audio.

Application 10O type

Indicates whether the application sends and receives audio (full
duplex) or just sends only or receives only. There can also be
application with “no audio” IO type. These applications are not
involved directly with communicating audio with the client. They are
facilitator applications that help two different clients connect or the
client and another application communicate using audio.

Application sampling rate

The audio sampling rate that the application uses to play or record
audio. 22050 Hz is default.

Application channels

The number of audio channels the application needs. Mono default.

Application speech requirement

Indicates whether the application requires both text to speech and
speech recognition, only one of them, or none of them. Default is
NORMAL, which does not use any of the speech services.

Vocabulary URL

[OPTIONAL] Vocabulary URL of the application if it uses the speech
recognizer.

Grammar file name

[OPTIONAL] If the application requires grammars, the grammar file
name needs to be specified. The grammar file also needs to be
accessible locally by the speech recognizer.

Table 2. Properties that IMPROMPTU applications define when initializing the

application.

There are applications that require direct audio channel connections to the application themselves along

with those that do not require audio channels. Some applications have audio interactions directly with

40

mailto:music@media.mit.edu

the client and there are some applications that act as an intermediary between two entities by managing
state and intermediating control messages between those two entities. The Super Phone does not
require any audio access when setting up calls between 1Pags, although some applications such as the
Recorder will require duplex audio access since one can record messages and play back recorded audio

directly from the application.

4.2.1. Characteristics of the Applications

IMPROMPTU applications are distributed applications that are accessible remotely from
IMPROMPTU clients. Applications define their own properties during mitialization, and the client uses
these propertics to determine how to interact with the application. Applications require registering with
the Lookup Service to make themselves available to the clients. The following chart shows the different

characteristics of different audio applications.

Presence News Personal Call Lemblite . .
Baby] g chat Private ~ Audio]
5 info broadcast Phone notes/ screening Music
monitor : . ; dRC chat books
(Awareness) (Radio) reminders (Preview) typ0)
Real time! X X X X X X
Archived? X X X X X X
Asynchronous X X
Delay X X X X X X X
permitted
Continuous
(No breaks) X X X X X X X X X
Tolerate
breaks X X X
Regular/
Timely? X X
Interactive X X X X X X
Active
(Pushed) X X
Passive
(Polled) X X X X X X
Single user X X X X X
Multi user X X X X X X X X
Limited X X X X X X X
access
Public access X X X X X

1Generated in real time
2Ordginally archived, since any audio content can be archived
3The content is regularly streamed

41

Table 3. Application characteristics

Above table illustrates the varying characteristics of different audio applications. They may produce real
time audio from live situations, events or concerts or serve archived audio from existing audio contents
previously recorded. Some applications do not depend on the quality of the audio as in awareness
applications, since users do not need real time communication, but a sense of awareness, which can be
mferred even from discontinuous audio. Delays are not permitted for real time person-to-person
communication, but on other cases they can be tolerated. News type of applications generate timely
content that changes with time and these contents would be adequate to be pushed when the content 1s
considered important to the user. This would require alerting the user and these types of applications are
classified as active. Applications like chat would involve multiple people accessing it and conversing
through the application, but they may have different access privileges just like Internet chats. There
could be public chats that anybody could join, or private chat rooms that can be used by certain family
members. The following sections describe in greater detail, the applications that have been implemented

for IMPROMPTU.

4.2.2. News Headlines (Java)

This 1s a speech-enabled application that allows users to access timely “Yahoo! News” headlines using
speech recognition and text to speech. Users can speak different commands or use UP/DOWN
buttons to browse through the news. When the user first activates the application, either by voice or by
browsing with buttons, it plays the News application’s alert and streams the first headline. Users can
cither say “next” or “more” to go to the next headline or get more mformation about the headline. The
UP/DOWN buttons allow users to browse through the headlines. Users can press the FUNCTION

button mstead of saying “more”.

A Perl script written by Stefan Marti retrieves news from the web every two hours and makes 1t available
as an XML formatted file, which the news application retrieves to deliver to the user. The following
figure shows how the news 1s formatted. Each item 1s composed of a headline and several sentences that

contain more information about the headline.

42

<?xml version="1.0"7?>
<news title="Yahco! News for Friday August 10 12:20 AM ET">

<item>

<headline>U.S. Offers China $34,576 for Plane-Collision Cost</headline>
<details>

<gentence>After rejecting Beijing's demand for $1 milliocn, the

United States is sending China 534,576 to pay for support of a crippled
U.S. Navy surveillance aircraft that ceollided with a Chinese fighter jet
in April, U.S. officials said Thursday.</sentence>

<sentence>The officials, who asked not to be identified, teold Reuters
there was no word yet on whether China would accept the payment, which
was en route to the U.S. Embassy in Beijing for transmissicon to the
Chinese Foreign Ministry.</sentence>

</details>

</item>

</news>

Figure 4. XML formatted news content.

News from other sources can also be accessed through this application if they can be structured in the

supported format.

Both the vocabulary and the content of the news are available through an HT'TP server making it flexible
where the application may be deployed. Further development can be done to allow the application to
alert users when new news content is available, or use the Profiler Service to profile users for more

customized content.

4.2.3. Music Player (Java)

There are two types of music playing applications. The first application 1s a server side jukebox, which
pushes music to the client. The second type 1s the pull type of music application. However, for the user,

these are not differentiated.

The client side pull player recetves URLs and makes use of HI'TP to transport MP3 audio. Decoding 1s
done on the client side and code from Splay[28] has been adopted to handle this. The application

responds to user mput by sending back URLs as the user browses through the music list.

The push version, however, fits the IMPROMPTU architecture better. The server side application
handles the retrieval, decoding and streaming of music over the network to the client. The music player

plays MP3’s from the user’s public_html/mp3 directory. The MP3 files need to have world read

43

permussions. The music player also accepts various speech commands and button mput. Users can say

22 << 2> <C

“random” to jump to a random song in their play list and use “start”, “stop”,

browse through the songs. The FUNCTTON button is used to select random songs and UP/DOWN

next”, and “back” to

buttons are used to skip to previous and next songs m the play list.

42.4. Chat (C/C++)

Ideally Chat would be a synchronous voice conferencing type of application. However, due to the
difficulty in mixing audio, the Chat application implemented in IMPROMPTU 1s an asynchronous chat
application. Chat 1s a multi-user application where a group of people (your family members or your
friends) can join mn any time freely over the wireless connection and hold a voice conversation. The chat
contents are recorded and available to be browsed chronologically. Users can enter the chat room and
hear previous chat content that has been recorded so that they may catch up on what has been missed
mstead of having to mterrupt the people in the current chat. This 1s a feature that has been adopted from
normal text chat applications. If the user needs to step out from a chat, the user can easily catch up again

using this background “history” chat feature.

When the user activates the chat application, he/she may start talking to the users currently online, or the
user may wish to browse through the previous chat recordings. The user presses the UP or DOWN
buttons to browse. The DOWN button goes to the more recent messages. In our current
mmplementation, each recording contains a message left from a single user just like the postings on the
web bulletin boards. If there are multiple users online, any new message that gets posted by a user will be
broadcasted to all the active users. If the other users are not doing anything, the message will play back
mmmediately, but if they are browsing or recording, they will hear an alert and the message will be played
back immediately after the user stops browsing or recording. The messages get queued up for play back

when they are busy doing something in the Chat application.

42.5. Recorder (C/C++)

The recorder application serves as a personal audio note taker or as a means to record audio from other
applications. It allows users to record personal voice memos, browse through the recordings, record the
content of another application, and allow other applications to record. For example, Super Phone uses

the Recorder to provide voice mail functionality to the users. The audio is transported using TCP. If the

44

user activates the Recorder, the user uses it as a personal recorder. If another application 1s running and
the user presses the record button, the audio from the application 1s saved to the recorder without
activating the recorder. In the recorder application, this is saved mnto the userID/appID directory.

22 <<

Users can browse through the recordings by using UP/DOWN buttons or by saying “next”, “repeat”
and “back” and the recordings will be played back sequentially. Users can also press the FUNCTION

button or say “delete” to delete the current recording,

When the user activates the recorder, it does not start automatically, unlike other applications. The user
has to manually press the record button or say “record” to start recording. The Application Manager
mterprets the record button press and checks to see if the Recorder application 1s online. If it 1s online,
it forwards the button press event to the Recorder, which then starts recording. If the application 1s not
online, the button press event 1s ignored. If 1t 1s online, the client forwards the audio that is being played

back on the client to the Recorder to save the live audio.

4.2.6. Radio (Java)

The Radio application streams real time radio from a tuner that is connected to the application host. The
application uses TCP audio connections and it 18 a one-way, send only application. When the user
activates 1t, radio will be streamed in real time. Multiple users can access the application, but there 1s only

one tuner so they will all be listening to the same channel.

In order to support multiple radio channels on different frequencies, a separate tuner 1s needed due to
the lack of a computer-to-tuner interface. With an adequate computer-to-tuner control interface, there
could be more elaborate ways to implement this application to allow users to switch channels. Radio
applications can also obtain content from an Internet radio station if the audio content can be decoded

(e.g. RealAudio type to PCM).

4.2.7. Audio Book (Java)

The Audio Book allows the user to browse through more structured audio content. One way to
mmplement the application 1s using the text to speech engine to stream structured text content. However,

the content streamed from the text to speech engine 1s not pleasant to listen to for long periods of time.

45

Human voice recorded content 1s necessary i order to provide users with adequate listening experience

for those who access the application frequently for long periods of time while on the move.

As long as the content 1s sequentially structured (segments of wave files divided mto paragraphs or
chapters), users can use the speech service to navigate using speech or using the buttons. Currently, we
have several segments of audio books and a book marking functionality has been implemented. While a
user 1s listening to a book and 1s mnterrupted to attend to another task for a while, the Audio Book
application keeps track of where the user stopped listening. When the user returns to that book; it starts
playing back from about twenty seconds ahead of where the user left off. This allows the user to recall
the last parts of the story where he/she stopped. Users can switch books by using UP/DOWN buttons

or using speech commands “next” and “previous”.

4.2.8. Baby Monitor (Java)

The Baby Monitor uses the “always on” connection to monitor environments such as a baby’s room and
deliver the audio data to the user who 1s always connected and subscribed to the application. This is a
special use of a more general monitoring application. The administrator of a monitoring application may
restrict access to certamn users or broadcast the audio to everybody in a community. Moreover, the
application can alert the user when sudden changes occur i the environment. In the case of the Baby
Monitor, 1t 1s activated when the volume level captured from the monitor’s microphone goes above a
certain level. A baby’s crymng immediately alerts the users and opens a real time audio channel to her

mother or father, depending on the application settings.

Some monitors may have only a one-way channel established and some may have a two-way channel
established so that the user can talk back to calm down the baby. Once the user activates it, the monitor
starts streaming audio captured by the microphone. When the environment’s audio level changes 1t
would alert the user for attention. Such a monitoring application can also be continuously streaming in
the background of the current active application 1f audio mixing 1s available, so the user can be constantly
aware of certain places or certain people. The application provides a level of awareness in voice
communication before an actual interaction is established, which is not possible with the traditional

telephony.

46

429. Super Phone — Enhanced Telephony (C/C++)

This application enables new ways of connecting to people to have real time conversations. Users can
use the IMPROMPTU client to make outgoing calls to and recetve incoming calls from real phones.
Users can also call each other on their iPags. While normal telephones only support three distinct states
of either being connected, alerting or disconnected, IMPROMPTU allows alternative ways of getting

connected to people using mobile devices by leveraging the always connectedness of IP network.

As Chris Schmandt suggested, the IP network introduces different levels of commumnication where one
has many more alternative ways of communicating with another person. As there are means to
communicate textually with different expressions through postcards and letters, one can leave a voice
mail directly not to disturb or send a text message mnstead of trying to reach a person using voice to avoid
mtrusive alerting. IMPROMPTU extends this and allows different levels of connectedness including a

background awareness communication channel between the caller and the recetver.

IMPROMPTU mmproves the limited alerting and call setup model i traditional telephony by notifying
users with different alerts for different connection states established between the caller and the recetver.

The following diagram describes the different connection states.

Caller Receiver

Approach Accept
Retreat Deny

Disconnected Garble Phone Receiver monitors Whisper state Fully connected
or alerting state the caller Receiver may be state
Caller may hear Caller can start screening the voice
garbled audio if the hearing garbled mail for urgency of
caller has permissions audio or continue the call. The receiver
or just plain ring hearing garbled may decide to
if the caller does not audio. connect or ignore.
have any permissions.

Figure 5. States of the caller and the receiver in the Super Phone application.

47

The application uses the normal person-to-person physical interaction metaphor and models it over the
mobile devices. The caller approaches to, or retreats from the receiver whom the caller wants to talk to,
while potentially examining the receiver’s state. This 1s similar to approaching a person to try to get
his/her attention. If the person seems to be too busy, one may retreat and come back later. In the same
way, if the person seems to be busy from the garbled awareness channel, the caller may decide to retreat.
The recerver may decide to observe what the caller says before deciding to drop what one 1s doing and
get connected. If the recerver 1s busy, the application lets the caller go to voice mail, but even at this
point, the recetver can get involved in the call after screening the call. This 1s similar to a real
person-to-person interaction where the recerver could have a view of the person trying to interrupt. The
person being mnterrupted may see some visual signals before being actively interrupted, and if the
mnterrupting party seems to have an urgent message, the recetver may decide to allow the interruption

and talk to the person.

Garble Phone

To provide awareness to trusted friends and families about one’s communication status, audio can be
used to publish presence information to peers. The “always on” connection of the Internet implies that
a user’s device can always be monitoring one’s audio environment. The user can choose to let others
know about one’s status by allowing the device to send out garbled audio to peers|26]. Any peer who
wants to talk to the user will be able to listen to this audio before making a decision to disturb the user.
Such an awareness channel would allow the caller to get a general sense of the recetver’s status, but the
content would be garbled and unmtelligible. As this scenario suggests, the flexibility of the IP network
mtroduces various ways of call control, where call setup decision 1s not only made by the receiving party,
but also by the network services (by consulting the Profiler Service or Presence Service) or by the calling
party through the utilization of the awareness mnformation. In the case when calls are diverted by the

system, auditory or visual cues are used to notify the user about the call state changes.

To protect garbled audio from packet sniffing, the garbling 1s currently done on the client. As the
following diagram illustrates, six segments (currently, 2 Kbytes per segment) of audio are initially read
from the microphone, and the subsequent audio segments are randomly swapped with one of the six

segments before it 1s sent over the network.

48

Select a random segment

l

buffered | [| [| [|

swap
o to destination

1] 1] g

"% capture from mic

Figure 6. Audio garbling algorithm.

Whisper — Call Screening

In presenting audio streams, audio connections can change from non real-time to real-time audio
connections and vice versa depending on the need for the user to respond. Call screening 1s a feature
where the audio connection changes from non real time (delayed real time) to real time audio during the
communication. Initially, when a caller 1s routed to voice mail, non real-time audio can be
stmultancously transmitted to the user to screen the call. At this point, the user can decide that 1t 1s
mportant to talk to the caller and decde to get connected. This makes the audio that has been
forwarded through the voice mail to be directly routed to the user, and the connection will change to a

real ime connection.

In the current implementation however, the audio does not get forwarded through the voice mail, but
the client serves as a proxy to forward the audio from the Super Phone or another client to the voice
mail. The Recorder provides the voice mail functionality to the Super Phone. The Super Phone signals
with 2 RECORD message when the caller is trying to leave a voice mail. When the Application Manager
recetves this message, it signals the Recorder to start recording and the client starts forwarding audio to
the Recorder. As a result, the call can be effectively screened as it 1s forwarded to the voice mail. While
the user 1s screening, the user can press UP button or say “approach” to get connected. This stops audio
forwarding and recording and establishes a full duplex connection with the caller. The advantage of this
mplementation 1s that there 1s no additional delay when screening the call. The disadvantage s that it

uses up client’s bandwidth.

49

The Super Phone application has the most complex user interface among all the applications. Users can
dial a number using the software keyboard, dial by voice or dial by browsing. When the user activates
the telephony application, he/she has the choice of reaching another IMPROMPTU user or a phone
number. When a phone number is entered using the software keyboard, 1t 1s just like a normal phone call
and connects to that phone number. However, if someone dials from a phone to an IMPROMPTU
user, the enhanced telephony features are available, including garble phone and call screening. In order
to call IMPROMPTU users, one can browse through the list of users provided by the application using
the UP and DOWN buttons. As one browses through the list, the client plays distinct alerts for each
user in order to distinguish between different users. If the user says “call” at this point, the client starts
establishing a connection to that user. One can also activate a connection by pressing the FUNCTION
key or by manually typing the user ID. IMPROMPTU users that are connected may also be called using
voice. To call John, one can just say “Call John” from the Super Phone and that would establish a

connection to him.

The approach/retreat metaphor is used to control the call setup process. By approaching, the caller
obtains 2 more intimate/superior connection. By retreating, the connection becomes less intimate. The
caller approaches a user by going UP (pressing UP button) and retreat by going DOWN. Users can also
say “approach” and “retreat.” 'The following state diagram illustrates more clearly the different

transitions that occur during a call.

50

Caller : A
Receiver: B

Users can call by browsing and activating
from the user list, by typing in a phone
number, or by using voice ("Call John”).

on caller’s side

A,DOWN

Plays ring or garbled audio

If a phone makes an incoming call to

an IMPROMPTU client, it immediately goes
into CALLING state and proceeds

similar to an iPaq to iPagq call.

Just forward audio to voice mail

State is VMAIL until A,DOWN is pressed
When A,DOWN is pressed it goes to IDLE.
If an iPaq makes a call to a phone it will just
act like a normal phone call.

Caller is prompted
to leave voice
mail (play url)

Disconnected
go to IDLE state

Caller hears
garbled audio
B,DOWN
A,UP B,DOWN
or A,DOWN

B,up @NECT
ING

B,UP

B,UP
Application sends Receiver B hears -Receiver B is Garbling deactivated and
alert to receiver B everything from the alerted that the plain channel established
caller caller is leaving
A,LEFTRIGHT Receiver can respond a voice mail
-Recording starts
Play alert for each user _Receiver can
Application keeps track of screen the voice
the active user mail
Buttons
z ACTIVATE
-q\"'q.‘* ! e *
i 2 DEACTIVATE \When the receiver is alerted, if the receiver was not active
’ in Super Phone application, the receiver presses ACTIVATE
LEFT k) RIGHT and the call is transitioned fo MONITORING state. If the
> user was active in Super Phone application, the receiver
L presses UP button to transition to MONITORING state.

Figure 7. Enhanced telephony with Garble Phone and Whisper.

IDLE state 1s when there 1s no active connection and when users can make calls. When the user makes
anormal phone call from the IMPROMPTU client, it transitions from IDLE to CALLING state. When
the recetver picks up the phone, it transitions to CONNECTED state. This 1s exactly the same as a

normal phone call.

When the caller calls a user on the IMPROMPTU client, the caller has the enhanced telephony features
available. If the caller calls and has permissions during CALLING state, the caller hears garbled audio
from the receiver side. Based on this audio, the caller may decide to approach further (UP) or retreat
(DOWN). If the caller approaches further, the caller 1s transitioned to the VMAIL state. The recetver
may actively respond to any imncoming call at any point during the transition. If the recetver accepts the
call by moving up during the CALLING state, the call 1s transitioned to the MONITORING state
where the recetver can listen to the caller’s audio in a clear channel. At this point, the recerver may decide

to accept the call or send it to voice mail. If the call 1s in VMAIL state, the recetver may press UP to

51

screen the call. Based on the screening, the receiver may decide to get connected for a live conversation

or ignore.

4.2.10. Summary

The various applications described m this section have all been implemented and are functional. It
llustrates the flexibility of the IMPROMPTU architecture to support various types of audio applications.
The speech interface provides all the application specific commands. The button mterface
complements the speech interface to provide sertal navigation functionality and some special operations

using the FUNCTION key.

52

CHAPTER 5. SYSTEM SERVICES AND ARCHITECTURE

This chapter describes the underlying system services, architecture and the protocol that supports the
applications and the user interactions described in the previous chapter. The IMPROMPTU
architecture consists of several distributed services and distributed applications that are accessed using
the IMPROMPTU client. The client 1s designed to be as thin as possible and the Application Manager
for the client handles most of the resource management required to support the applications. It also
arbitrates the activation and deactivation of applications. All applications are always on, but may not be
sendmg any audio data smce only one application can usually be active at a single moment due to the

client’s single audio mput (microphone) and output (speakers) channels.

This chapter 1s divided into four sections. The first section describes the architecture of the
IMPROMPTU system, mcluding the high-level design and functionality of different components i the
architecture. In the second section, an overview of the software architecture is presented with details of
system implementation. The third section details the messaging protocol used among the distributed
components of IMPROMPTU. Finally, the fourth section examines how the distributed components

operate together to provide application services to the user.

5.1. High Level Architecture

This section provides a high level architectural overview of the components of IMPROMPTU. The
IMPROMPTU system consists of several distributed components that cooperate to provide application
services to the user client. What these components are and what they do will be presented. The
following diagram 1llustrates the different components and how they are mnterconnected to provide

service to the client.

53

Audio
Text
------ Control

L4
0’,
L Database
¢"

’
”
.

1
1
1
1
1
L}
1
! Sup ane
- 1
’ ‘ H . -
e Presence Service ' Profiler Service
k'
. v

-

Applications

Speech
Recognition
Speech
5.1.1. Lookup Service

The Lookup Service 1s a global service in IMPROMPTU, which 1s shared by all users. There 1s only one

Figure 8. High-level architecture diagram.

mstance of the Lookup Service in the IMPROMPTU network and it maintains mnformation about the
users and the applications that are online. It handles the resource registration and resource discovery in
the IMPROMPTU network. Users need to register and authenticate with the Lookup Service when they
join the IMPROMPTU network. When applications come online and register with the Lookup Service,
they obtain mnformation about the users that are online and which Application Managers to contact to
register with those users. When a user client comes online, the Lookup Service provides a reference to

an Application Manager that can serve the client.

54

5.1.2. Application Manager

The Application Manager 1s the core component of the IMPROMPTU architecture that handles client
requests and manages applications for the client. It also communicates with the user’s personal services
(Speech, Presence and Profiler Services). Therefore, 1t serves as a communication hub for the client,
applications and personal services. When the client mitially logs on to the Application Manager, it
registers with the user’s personal services and contacts the Lookup Service for online applications. The
Presence Service provides a list of applications that the user 1s subscribed to. Depending on the
mmplementation of the application, the Application Manager needs to mitialize them differently since
C/C++ applications use a text messaging protocol for signaling, while Java applications use Remote
Method Invocation (RMI). RMI allows Java components to transparently call methods of other Java
components over the network without worrying about the networking details. However these calls are
Iimited only to Java components. Please refer to the Software Architecture section(pg. 59) for details of

how this 1s implemented.

When newly subscribed applications come online, they register with the Application Manager, which
sets up the control channel with these applications. The Application Manager then notifies the client
that these applications are online. Once the client 1s notitied, audio connections are setup between the

client and the application, allowing the client to access these applications immediately.

The Application Manager handles user inputs and other events from the client and application. When
necessary, it forwards appropriate messages to cither entity. The Applicatton Manager also
communicates with the user’s personal services when needed. When an application that requires speech
recognition 1s activated, the Application Manager sends the appropriate activation commands to the
Speech Service. The Application Manager may also communicate with the Profiler Service to log the

user’s activities as the user accesses different applications.

5.1.3. Client

The following four major elements were the requirements for a right platform for the mobile audio

client. The device had to:

1. Be programmable in order to support different types of applications.

55

2. Support wireless LAN to provide mobility and IP based communication.

3. Supportt full duplex audio to support real time two-way communication.

4. Be of a small form factor so that it is mobile without being bulky.

Various mobile computing devices and notebook computers have been explored. However, mobile
phones had almost zero programmability. Handheld computers rarely possessed good audio capabilities.
Many of them could just play very simple low quality audio snippets and some supported half duplex
audio at most. This indicated how primitive the auditory user mnterfaces were on these mobile devices.
Wireless LAN connectivity was also difficult to obtain on these devices. As for the notebook computers,
although they supported full duplex high quality audio and wireless bandwidth, they were always too big.
As a result, the Compagq 1Paq was chosen as the hardware platform for the IMPROMPTU client since it

met the audio, network, programmability, and form factor requirements.

The IMPROMPTU client runs on a Compaq 1Paq with Familiar Linux 0.4[29] distribution - a
distribution ported to support the 200 MHz Intel StrongARM[30] processor on the 1Paq. The 1Paq
supports full duplex audio capabilities, and high bandwidth wircless connectivity through a standard
802.11b wircless LAN card. However, it has some Iimitations i terms of the audio playback and record
capabilities. It does not support audio at 8 kHz or 8 bits, making it not possible to save bandwidth by
sending lower quality audio for certain applications. The 1Paq can only playback 16-bit audio at sampling
rates above 16 klHz. The IMPROMPTU client currently uses 22050 Hz, 16 bit mono audio by default,

but the format can be changed dynamically depending on the active application settings.

The client software 1s a framework that supports different types of audio applications developed for the
IMPROMPTU architecture. The client supports multiple applications through a common interface to
the remote applications. The microphone and the speakers are shared resources on the client and the
active application has access to these audio resources along with receiving user input from the client.
The user mput is captured and forwarded through the Application Manager and a text messagimg

protocol 1s used to communicate with the Application Manager.

56

5.1.4. Speech Service

IMPROMPTU uses the IBM ViaVoice speech recognizer and text to speech synthesis, running on the
Linux operating system. We developed an audio library for these engines to handle audio mput from the
network, and a Java layer to mntegrate it with other IMPROMPTU components. The speech recognizer
can use different vocabularies and grammars. It processes Application Manager commands (such as
activating applications using voice) and application specific commands that are loaded when applications

are activated.

When a user logs on to the Application Manager, the Speech Service 1s activated along with other
services. 'The user ID that 1s passed to the Speech Service identifies the user it will be serving. The
Speech Service builds a vocabulary of applications from the application names that it obtains from the
Application Manager. It also builds the application specific vocabularies from the applications’

vocabulary URLs (a web accessible XML file) so that the client may access the applications using speech.

When the client activates an application that requires the Speech Service, the Application Manager
activates the application by passing the Speech Service mnformation that includes the IP addresses and
port numbers of the speech recognizer and the text to speech engine. The application uses this
mformation to connect to the speech resources. The Speech Service 1s subsequently activated with the
user 1D and the activated application information. The Speech Service makes a decision whether to
activate both the speech recognition and the text to speech or just one of them. It also lets the speech
recognition engine know the application specific vocabulary. The recognition engine finds the socket
connections of the client and the application from the hash table. It then recetves mput from the client
to be recognized and sends the recognized text to the application. The text to speech engine operates in
the opposite way. After finding the socket connections, it starts recetving text from the application to
synthesize 1t and stream 1t to the client. The speech recognition engine has a push-to-talk interface, so it

only recetves input from the user when he/she pushes the push-to-talk button.

Applications may use just a dynamic vocabulary, just a grammar, or a grammar and a dynamic
vocabulary. A grammar 1s a set of rules for recognizing phrases with certain patterns. For example, in
order to recognize “call <someone>" we use a grammar that matches anything that starts with “call”
and ends with a user name. Grammars require the speech recognizer to have a compiled grammar file
accessible locally to the speech recognizer. We use the network file system (NES) to make application

spectfic grammar files accessible to the recognizer, but a file transfer protocol could be used to transfer

57

the compiled grammar to the speech recognizer during activation. But, this would delay mutialization of
the speech recognizer due to downloading time. Dynamic vocabularies are just a list of words that can

be recognized and they can be dynamically loaded or unloaded. Commands such as “start”, “stop” and

“next” make up an application’s vocabulary and they are defined through a vocabulary XML file.

5.1.5. Profiler Service

The Profiler Service profiles a user’s activities through the client device by monitoring his/her
application usage. It also maintains the priority of applications and peers according to their usage
patterns and activity. This information is also used for prioritizing incoming requests by preventing
certain peers or applications from interrupting when one 1s busy. Users can easily sctup their profiles
through IMPROMPTU’s web mterface. Currently applications and users are ranked i four levels, VIP,
TRUSTED, NORMAL, and UNTRUSTED. The rule for mterruption 1s that the applications on the
same level or below can be mterrupted, while any application with higher trust level cannot be

mterrupted.

The Profiler Service 1s important for mobile communication due to the need to control nformation
overload and manage interruptions for mobile users[31]. The user’s personal profile can be used to
provide a more customized service to the user. Currently, the Profiler Service 1s very simple, but the
architecture supports any extensions to it. For example, providing context awareness to mobile phones
1s an active research area|32], and the Profiler Service may implement the functionality that analyzes data
about the context of the user and provides a means to the Application Manager to use that information

for intelligent management of the applications.

5.1.6. Presence Service

The Presence Service keeps track of subscribed users and applications and also notifies other users when
a subscribed user’s communication state changes. Users can ask for subscriptions to different users and

applications through the Presence Service.

Presence 1s defined in [33] as subscription to and notification of changes in the communication state of

auser. This communication state consists of the set of communication means, communication address,

58

and status of that user. A presence protocol 1s a protocol for providing such a service over the Internet

or any [P network|34].

5.1.7. Database

InstantDB, an open source database from Enhydra (http://www.enhydra.org), 1s used to store various

user settings and application settings of IMPROMPTU. The database 1s implemented 100% 1 Java
making it easy to integrate with the Java components of IMPROMPTU. It supports the standard Java
Database Connectivity (JDBC) API and 1s RMI enabled, allowing the database to be run on a separate
machine from other IMPROMPTU components.

The database stores user authentication information, user settings, application settings, subscription
information and profiles of users. Authentication information consists of a user ID and a password.
User settings are the user’s full name, RMI URL’s of the user’s personal services, and the user’s personal
alert URL. The alert URL 1s the HT'T'P URL of a WAV audio file where the alert 1s stored. Application
settings are application 1D, application name, and the application alert URL. The subscription
mformation mdicates the user’s subscribed applications and the user’s buddy list. Finally, the database
also monitors application usage of the user, which 1s used to prioritize applications. The mformation in
the database 1s currently accessible from the IMPROMPTU admuistration website at
http:/ /luz.mediamit.edu:8080/impromptu. Users can modify their personal information and view their
access logs. 'The administrator mamtains application settings and subscription approval to the

applications.

5.2. Software Architecture

This section provides more details about the lower level implementations of the system. Different

components are described and what modules constitute them.

5.2.1. Applications
The applications are implemented cither in Java or C/C++. The architecture 1s similar for both
implementations, but Java applications use RMI to communicate with the Application Manager, while

the C/C++ applications usc text messaging over plain sockets to communicate with the Application

59

http://www.enhydra.org/

Manager and Lookup Service. The applications can be implemented in either language. Java application

development 1s simpler, but audio handling in Java is slower and less powerful than in C/C++.

Java Applications

Java applications inherit the impromptu.application.ApplicationBase class. The base class
mplements a common interface impromptu.application.IApplication. The
ApplicationBase implements registration/unregistration methods, activation/deactivation
methods, subscription/unsubscription methods and audio resource setup methods. The actual
application mbherits from the ApplicationBase and implements individual user handling logic and

application specific activation/deactivation methods.

Once the user 1s registered, the client makes necessary audio connection with the application and the
network connection is stored i the ConnectionInfo class, which the application maintains m the
m_currentConns hash map. When users activate the application, the application accesses the

connection information to send or recetve audio from the user.

C/C++ Applications

The C/C++ application architecture 1s similar to the Java application architecture, but 1t 1s a little more
complex duc to the lack of RMI for network communication. ‘The applications inherit
ApplicationBase, which provides similar functionality as the Java ApplicationBase. Ituses the
MessageSocket class wrapped with the IManager class mn order to communicate with the

Application Managers.

The ApplicationBase class also has two listener threads if an application supports audio
connections and only one if it does not. The application needs a listener thread to accept connections
from the Application Managers and to receive control messages from the client. The second listener

would listen for incoming audio connections.

For each user that connects to the application, there is a corresponding IManager stored in a hash map
(m_currentUsers). Applications can send messages and respond to client requests by using the

IManager mterface stored mn this data structure.

For each active user (a user who has activated the application at least once), a user handler thread is

created and the user specific mformation and thread controlling parameters (UserConnInfo) are

60

stored mn a hash map (m_activeUsers) that maps user ID’s to the UserConnInfo based objects.
UserConnInfo contains various public members ncluding user specific data and user thread control
parameters. Applications will usually create an application specific class that mhents from

UserConnInfo to store application specific data used when handling users.

Applnfo

Applications use the AppInfo class to initialize application properties. The application 1D, the
application name, the RMI URL of the application (for Java applications), the IP address of the machine
where the application 1s running, and the port that the application listens to for audio connections, the
alert URL of the application, whether the application requires TCP or UDP audio connection, and
whether the application sends or recetves audio from client are all setup when the AppInfo object 1s
mitialized(Table 2). The audio format can be specified explicitly by assigning the sampling rate and
number of channels. If they are not specified, 22050 Hz and mono channel 1s used by default. Currently
only 16 bit audio 1s supported. Also, the application’s usage of local audio resources can be specified 1f 1t
requires recording from local audio mput or playing back to speakers on the local machine that the
application is running. If 1t 1s not specified, the application 1s assumed not to consume any local audio
resources. Finally, the speech requirements of the application and the vocabulary URL are specified if 1t

1s needed. If this 1s not specified, the application 1s assumed to not require any speech resources.

5.2.2. Client

The client keeps track of active applications mn a circular list. The active application pointer is used to
mteract with the application. Each application 1s encapsulated with the Application class. The
Application class maintains the properties of the application and 1s used to send audio to, and receive

audio from, the application.

There are four threads: user input thread, messaging thread, read and playback audio thread, and record
and write audio thread. The user mput thread captures input from the user and processes browsing,
activation/deactivation, recording, and application specific inputs. The messaging thread processes
messages recetved from the Application Manager and it also receives recognized text from the speech
recognizer. The read/playback audio thread recetves audio from the network and plays back to the
speakers. The record/write audio thread captures input from the microphone and sends audio to the

network. The client may send audio to the application, to another entity signaled by the application, or

61

the speech recognizer. When the push-to-talk button is pressed, the audio 1s sent to the speech

recognizer and the playback of audio 1s disabled.

Alerting 15 done through the Splay module, which is an open source WAV and MP3 streaming audio
player. When alerts are played, it requires opening the sound device independently, so it uses condition

vartables along with other threads to share access to the audio resources.

5.2.3. Lookup Service

The Lookup Service consists of

impromptu.lookup.LookupService
impromptu.util.Listener
impromptu.lookup.LookupMsgHandler
impromptu.lookup.LookupInfo

The Listener class accepts connections from the client and applications and lets the
LookupMsgHandler handle messages from them. The client only registers with the Lookup Service,
while the applications register and unregister with it. Client unregistration 1s handled by the Application
Manager when the client goes offline. During mitialization, the LookupService checks to see if the IP
address in lookup.xml 1s the IP address of the machine it is being deployed. The lookup.xml is
accessible through an HT'TP server. The LookupInfo class provides methods to obtain Lookup
Service mformation from lookup . xml. This 1s a consistency check to prevent other components from
not finding the Lookup Service, since the other components locate the Lookup Service through the
lookup.xml. The Lookup Service maintains a list of Application Managers that are available to serve
the users, a map of user ID’s to Application Managers and a map of applications that are online. When
a new user comes online, the Lookup Service authenticates the user and maps an available Application
Manager to the user. The Lookup Service 1s connected to the database in order to handle user

authentication.

5.2.4. Application Manager

The main components of the Application Manager are

impromptu.manager . AppManager
impromptu.util.Listener

62

impromptu.manager .ManagerMsgHandler
impromptu.application.CApplication

The AppManager class contains registration methods to register with the Lookup Service,
activation/deactivation methods that also activate the Speech Service when necessary,
subscription/unsubscription methods that communicate with the Presence Service and logging
methods that communicate with the Profiler Service. The AppManager class also keeps track of a

user’s subscribed applications in a hash map.

The Listener listens for incoming connections from the client and C/C++ applications. Java
applications use RMI, so there are no plain socket connections to the Application Manager. Once a
connection from a C/C++ application 1s accepted, the Application Manager registers the application
and creates a CApplication object, which 1s a thread that abstracts messaging through plam sockets
between the Application Manager and the application. When a message to the application 1s recerved
from the client, the Application Manager accesses the application through objects implementing the
IApplication mterface from the m _applications hash map, and forwards the message to the
application. 'The Java applications implement IApplication and the CApplication class
mplements IApplication, providing a common mterface for the Application Manager to interact

with the application regardless of the implementation.

5.2.5. Speech Service

The Speech Service consists of three distributed components. The Speech Service Interface Layer
(impromptu. speech. SpeechService), which is considered the Speech Service to the Application
Manager, manages communication with the speech recognition engine and the text to speech engine.
We use the IBM’s ViaVoice speech recognition and text to speech engines. The engines are
mplemented m C, but we modified them to accept audio mput from network sockets mstead of a
microphone. We also developed Java layers and Java RMI enabled them|35] to make them accessible
remotely from different components of IMPROMPTU.

63

Other

Components
h j
Java Wrapper (SREngine.java)
Control llessage &
.‘ '. H
Native Implementation
Liudio inpat fromm Socket

h Custom

Figure 9. Speech Recognition Component|35].

The above diagram illustrates the different modules of the speech recognizer. The text to speech engine

shares a similar architecture.

5.3. Messaging Protocol

The message protocol 1s described in this section. All messages consist of a command and a list of
parameters. The command is in all capital letters and the parameters are strings separated by commas,
followed by a new line indicating the end of the message. Currently the command and the parameters
are delimited by commas, but since the message handling functionality has been modularly

mplemented, the messaging format can be easily modified.

5.3.1. Client and Lookup Service

The client obtains the IP address and the port number of the Lookup Service from the default
lookup . xml, available through HT'TP.

ONLINE, <userID>, <password>
Example) ONLINE, kwan@media.mit.edu, kwan

64

1s sent to the Lookup Service m order to notify that the user has come online.

The Lookup Service returns the IP address and the port number of an Application Manager that 1s

online and available to serve the user. The following message:

MANAGER,

<manager URL>,

<manager IP address>,

<manager port numbers,

<user’s full name>

Ex) MANAGER,//luz.media.mit.edu/kwan.mngr,18.85.45.60,2343,Kwan Lee
provides the client with which Application Manager to connect to. The <manager URL> 1s the RMI
URL of the Application Manager, which is not used for our default client implemented in C/C++. Java
clients will be able to make use of this 1n order to make remote method invocations to the Application

Manager. The Lookup Service obtamns the user’s full name from the database after authenticating the

uscr.

5.3.2. Client and Application Manager

The client then connects to the Application Manager that 1s specified by the message. It sends:

ONLINE, <userIDs>, <password>, <user’s full name>

to the Application Manager.

The Application Manager registers the client and obtains the RMI URLs of the personal services of the
user from the database. The personal services are the Speech Service, Presence Service, and the Profiler
Service, which have been described previously. The Application Manager makes connection to these
services and also acquires the list of applications that are online. It also lets the applications know that
the user has come online. The Application Manager responds back to the client with the Speech Service

Information

SPEECH,

<IP address of speech recognizers,
<port number of speech recognizers,
<IP address of text to speechs,
<port number of text to speechs>

65

In addition, information about the applications that are online 1s sent to the chient. The number of

applications that are online is sent first.
NUMAPPS, <number of applicationss>
Then a REGISTER message 1s sent to the client for each application.

REGISTER,

<application ID>,

<application names,

<application IP addresss>,

<application ports,

<application alertURLs>,

<application transport types,

<application IO type>,

<application sampling rates,

<application channelss>,

<application speech requirements>
Audio connections to the applications are setup at this time (if a connection 1s required to the
application) using the application information obtained from the applications. The client creates an
Application object for cach application information that it receives from the Application Manager. The
Application objects are placed into a circular list, which 1s browsed serially through button presses. Each
application name 1s added to the speech recognizer vocabulary to enable random access to applications

through voice activation.

5.3.3. Applications and the Lookup Service

When an application comes online or starts up, it needs to register with the Lookup Service so that
future users may be notified about the application’s presence. The application registers with the Lookup
Service by sending its application information (AppInfo) to the Lookup Service. For Java applications,
the remote method registerApp () in the ILookupService interface 1s used. For C/C++
applications it sends a REGISTER message to the Lookup Service. The REGISTER message sent by the

C/C++ applications 1s of the following format.

REGISTER,

<application ID>,
<application names,
<application IP addresss>,

66

<application ports,

<application alert URL>,

<application transport types,
<application IO types>,

<application control ports,

<application sampling rates,

<application number of channelss,
<application speech requirements,
<optional: speech recognition vocabularys>

<application control ports is the application port where the Application Manager makes a TCP

connection to send control messages to the application.

The Lookup Service responds with the information about the Application Managers that are handling
the users that are online. A MANAGER message 1s sent for each Application Manager that 1s serving an
active user. ‘This information is used by the application to notify its presence to those users. C/C++
applications have a one to one mapping of the IManager object to the Application Managers to

mterface with each Application Manager.

5.3.4. M

The text messaging protocols used here apply only to C/C++ applications since Java applications use
RMI to communicate with the Application Manager. When an application comes online, it registers
with the Application Managers so that online users may be notified about the applications that have
come online. The same REGISTER message that 1s sent to the L.ookup Service 1s sent to the Application
Manager. The Application Manager then sends a REGISTER message to the client as described above to
notify that the application has come online and the client can establish a connection with the new

application.

If the application is a C/C++ application, the Application Manager creates a CApplication object
that abstracts the socket communication for controlling the application. CApplication object
implements the IApplication mterface just as the Java applications, which provides a common
mterface for the Application Manager to mteract with the applications, regardless of the application’s

mplementation.

If a client comes online after the application, the Application Manager creates the CApplication

object after acquiring the application information from the Lookup Service. However, 1t waits to recetve

67

UDPPORT, <application ID>,<port numbers>

message from the application, if the application uses UDP for audio connections. This updates the
UDP port number in the AppInfo object in the Application Manager so that the client may connect to

that port. This is required since UDP audio applications bind to a new UDP port for cach user.
GETINFO, <application ID>

message 1s sent by the application in order to obtain the user mnformation from the Application Manager.

The Application Manager responds with a GETINFO message.

GETINFO,

<user ID>,

<user name>,

<IP address of user clients,
<UDP port numbers,

<TCP port numbers,

<alert URL>,

<user status>

5.3.5. Client and Application

All control messages from the client to the applications and vice versa are forwarded through the
Application Manager. The Application Manager replaces <application ID> with <user ID> forall
messages that are sent from the client to the application. All audio connections are made between two

end points i order to reduce any delays that might be caused by forwarding it.

When the client browses through different applications, the applications are automatically activated.
The client can go mnto the sleep application (a dummy application that does not do anything) in order to

enter into an mactive state. Once an application 1s activated, the client sends

ACTIVATE, <application ID>

message to the Application Manager. The Application Manager then sends

ACTIVATE, <user ID>

68

to the application to notify that the user with <user ID> has activated the application. Once the
application 1s active, all input from the user 1s considered to be application specific, except for the

browse buttons. When user mnput 1s detected by the client, the client sends an
APP, <application ID>,<inputs>

message to the Application Manager. This 1s forwarded to the application in the following format:
APP, <user ID>,<input>

The application 1D is replaced with the user 1D by the Application Manager. The application interprets

the <inputs.

Applications may send application specific messages to the client. These messages are also forwarded by
the Application Manager. The following are some application specific messages, which are nterpreted

by the client.
UI,<application ID>,<list of items separated by commas>

The UT message s used by the applications to ask the client to display any application specific

mformation (<1ist of itemss>) on the client’s screen.

ALERT, <application ID>, <audio URL>

This message 1s used by the applications to alert the user. The client queues the application when it
receives this message requesting the user’s attention. The user can explicitly activate it or ignore it. After
the user ignores the application for more than 20 seconds, the Application Manager sends a POP

message to notify the client to remove the application from the alert queue.

POP, <application ID>

When applications like the music player want to ask the client to play a longer piece of audio such as

music, the application sends a PLAY message.

PLAY, <application ID>,<audio URL>

69

This message 1s different from the ALERT message because the client responds with an APP message

when it 1s done playing the audio.

When an application would like the client to record audio streamed by the application, such as Super

Phone requesting voicemail to be recorded, it sends
RECORD, <application ID>,<l or 0>

The application 1D is the application requesting recording and 1 s to start and 0 1s to stop recording.
When the Application Manager receives this message, 1t first checks if the Recorder application is

available and sends
APP, <user ID>,<application ID>

to the recorder. This tells the Recorder to record audio for <user ID> and that the audio 1s originating
from the <application ID>. The Recorder keeps track of the recording state, so no 1 or 0 needs to

be transmitted. The audio is actually forwarded by the client to the Recorder application.

When the application would like to ask the client to make specific audio connections during the use of

the application, it sends

START,

<application ID>,

<number of connections: 0, 1 or 2>/[,

<transport type:UDP or TCP>,

<io type:duplex, send only or receive onlys>,

<IP address>,

<port numbers,

(optionally: <IP address>,<port numbers)]
If the number of connections 1s 0, then the parameters are ignored. A START, <application ID>, 0
message would be sent by applications that do not require the client to send or recerve audio as soon as
the application 1s activated, such as the Super Phone application. The client will start reading and writing

to the default connection to the application when it receives this message. The optional IP address and

port number 1s to mndicate that the input and output channels require separate network connections.

STOP, <application ID>

70

1s sent by the application 1 order to tell the client to stop sendmng and recetving audio.
When an application would like the client to garble audio, it sends a GARBLE message to the client.

GARBLE, <application ID>,<l1 or 0>

1 1s for activating garbling and 0 1s for deactivating garbling.

Once the user starts browsing (after the user 15 done with the current application), the current

application 1s automatically deactivated. The client sends

DEACTIVATE, <application ID>

message to the Application Manager. The Application Manager forwards the message to the application

with the <application ID> replaced by <user IDs.

5.3.6. Application Manager and Personal Services
All communication between the Application Manager and the personal services (Speech Service, Profiler
Service, and the Presence Service) 1s done through RMI since they are all implemented in Java. Please

refer to online documentation|36] for the details of these methods.

Speech Service and Application Manager
Register and unregister methods, activate and deactivate methods, and vocabulary manipulation

methods are available to the Application Manager.

Presence Service and Application Manager
Subscription related methods, querying for subscription methods and status update methods are

available to the Application Manager.

Profiler Service and Application Manager

Logging methods on usage and prioritization query methods are available to the Application Manager.

71

5.4. Operation

5.4.1. Registration and Setup Process

When the client mitially comes online, it obtamns the IP address and port number of the global Lookup
Service from an HTTP server such as http://www.media.mit.edu/~kwan/mmpromptu/lookup.xml.
This 1s to allow flexibility in where the Lookup Service can be deployed. When the client connects to the
Lookup Service and authenticates itself, the Lookup Service returns the IP address and port number of
an available Application Manager that can serve the client. The client registers to this Application
Manager, which signals the Application Manager to mitialize and register with the user’s Presence,
Profiler, and Speech Services. The Speech Service establishes connections with the speech recognition
engine and text to speech engine at this ttme. The Application Manager also obtamns the list of

subscribed applications available from the Lookup Service.

The Application Manager creates a CApplication object with the AppInfo object obtained from the
Lookup Service if the application 1s a C/C++ application. Then CApplication.connect () is
called, which establishes control connections with the applications. If the application requires a UDP
audio connection, a new datagram port (getNewDgrmPort ()) is obtained. The CApplication
object explicitly recetves a UDPPORT message from the application. The Application Manager then
notifies the applications that the user has come online and shares the user mformation with the
application (registerUser()). CApplication's registerUser() method does not do
anything when the Application Manager notifies the applications about the user, since the applications
obtain the UserInfo from the Application Manager immediately after the Application Manager
connects. This 1s required since the application needs the user 1D in order to maintain a map of the

connections to the Application Managers.

During registration, the client also establishes audio connections with the applications that require static
audio connections directly with the application itself. Some applications will require dynamic audio
connections that require the client to setup connections dynamically during the use of the application.
The connections may be to the application or to another entity. End points of a static connection
remain unchanged during the use of the application while with dynamic connections the destination of
where the audio 1s sent 1s changed during the usage. For those applications requiring dynamic audio

connections such as the Super Phone application, audio connections are not setup during registration.

72

Therefore, the client would not know where to send or receive data from when initially the application 1s

activated. However, as the user calls someone the application notifies the client where to send audio.

When an application comes online, 1t goes through a similar registration process. It first registers with
the Lookup Service and acquires a list of subscribed users that are online. The Lookup Service returns
Application Manager mnformation for these users and the application uses it to establish control
connections with the Application Managers. The application sends the application mformation
(AppInfo) to the Application Manager during registration. If the application requires UDP audio
connections, the application mformation contamns the new UDP port number. When the client 1s
notified that the application has come online, the client establishes any static audio connections that are
required for the application. Once an Application Manager connects to the application, an Application
Manager wrapper class (IManager) is instantiated by the application to communicate with the
Application Manager without worrying about the lower level sockets. Fach IManager on the

application side communicates with a CApplication object on the Application Manager side.

The Application Managers register with the Lookup Service when they are mstantiated. These
Application Managers are made available to clients that come online. The Application Manager uses the
client’s user 1D to obtamn personal settings for the user from the database. Fach user 1s identified by an
e-mail like ID. FEach application in IMPROMPTU 1s also identified by an e-mail like ID (e.g
radio@media.mit.edu).

5.4.2. Activation and Deactivation

Once the client 1s fully registered, the user 1s ready to access different applications. As the user browses
through the list of applications, the applications are immediately activated. When an application 1s
activated, applications may start sending or recetving audio immediately, or wait for some user mput. If
the application 1s capable of speech based mteraction, the Application Manager requests the Speech
Service to load the application specific vocabulary. The XMI. vocabulary 1s loaded by the Speech Service
when the application first registers, since building a vocabulary from the XML file takes quite a lot of
time. The built vocabulary is sent to the speech recognizer when the application is activated. When the
user switches to another application, the Speech Service unloads the vocabulary of the deactivated

application.

73

mailto:radio@media.mit.edu

Applications usually maintain separate threads for each user or at least a separate data structure that
keeps track of the state of the user’s application usage. If an application 1s a UDP application that sends
audio to the client, it sends the audio to the user’s datagram port. The client binds to only one datagram
port (6040 by default) and recetves all datagrams through this port. The application recetves audio from
the client at the port number specified by the application during registration. For TCP based

applications, a stream channel 1s setup between all clients and all applications.

5.4.3. Going Offline

When a user goes offline, the Application Manager that used to serve the user becomes available to other
users that come online. The Application Manager information 1s returned to the queue in the Lookup
Service and the user mformation 1s removed from the Lookup Service. When an application goes offline,

the Lookup Service removes the application mformation from its hash table.

Applications remove user specific resources (data structures and user handling threads) when the user
unregisters from the application and goes offline. When applications go offline, the Application
Manager cleans up the application specific resources and notities the client to remove the application

from 1ts application list.

5.5. Summary

This chapter presented the details of IMPROMPTU’s design and implementation. The system has been
designed to support different types of applications and to operate n a distributed manner. Applications
with different characteristics and different resource requirements have been abstracted on the
IMPROMPTU client into stmilar application entities, to be accessible by the user in a coherent manner.
In addition, new applications that conform to the IMPROMPTU architecture can be deployed eastly to

make them available to the users.

74

CHAPTER 6. EVALUATION

This chapter presents some evaluations on the user mterface, the system architecture, and the system
performance of IMPROMPTU. The system went through several iterations of design, implementation
and testing. The users that tested the system and the user mterface include my advisor, three graduate
students 1n the Speech Interface Group and two undergraduate students who worked with me 1n the
mplementation. The evaluation presented here are lessons we learned as we mformally tested the
system during the different phases of the development. No formal user studies or usability testing have
been performed. Current imitations of the system are presented along with some future improvements

that could be made.

6.1. User Interface

6.1.1. Appropriate Alerting

Inutially we had several random alerts for different events. Each application had alerts, but they were just
random alerts and people got really confused because many different sounds were occurring,
continuously overloading their auditory senses. The alert length also varied from short (0.5 seconds) to
very long that ran for four seconds. After some feedback, we refined our alerts and made them around
one second or less, and made their sound relate to the content of the application. The users seemed to

have a better experience and less confusion when the alerts occurred.

Synchronizing alerts with different events that occur was sometimes difficult to do. Sometimes it takes a
few seconds for a thread to unlock the play thread and that delays the play back of the waiting thread.
Currently, applications may send ALERT messages to alert the user and play audio cues on the client.
When playing audio cues, it 1s sometimes better to just stream the cues instead of sending an ALERT
message to synchronize with the content being played back on the client. For example, when using the
Recorder, an audio cue 1s played to inform the user that it has finished playing back a recording. Initally,
an ALERT message was sent when the Recorder tried to indicate the end of a play back of a message.
However, the streamed message did not finish playing back to the speakers when the client received the

ALERT message. As a result, the alert was played, interrupting the play back of the message and the

75

remarming message (about one second of audio) finished playing back after the alert. We fixed this by
streaming the audio cue from the application after it finished streaming the recorded message. In this
case, the audio cue was played back at the right time when the play back of the message finished. One
solution to alleviate this problem is by storing the audio alert locally on the device. Since alert audio files

are small, they could be cached locally for quicker playback when necessary.

6.1.2. Speech Interface

Using the speech interface for controlling the applications was frustrating when the speech recognizer
performed poorly. There were two main problems that resulted in such low recognition rates (under
10%). The first problem occurred because the speech recognizer was not recetving all the data that the
client was sending. The Java layer recetved audio from the client and forwarded the audio data to the
native recognizer, but wrong number of bytes was getting forwarded making the recognition impossible.
The second problem was caused by audio data with the wrong sampling rate. The speech recognizer
accepts audio only at 22050 Hz, but for some applications, the audio device’s sampling frequency 1s
modified to accommodate different qualities. For example, the Music application requires 44100 Hz
audio. When one tried to send a speech command while accessing the application, 44100 Hz audio was
sent instead of 22050 Hz audio. This occurred because the audio device was not reset when the
push-to-talk button was pressed. These problems were detected and resolved by recording and listening
to the audio that was recerved by the speech recognizer. With these problems resolved, the speech

recognition rate went up and eyes free navigation through the applications became possible.

Initially, the speech recognition was ecither always on or off depending on the application. If the
application required speech recognition, all audio input from the microphone was sent to the speech
recognizer. As a result, applications that required direct audio mput from the user could not access the
speech mterfaces. “Push to talk” functionality was implemented m order to allow more control over
when the audio got sent to the speech recognition instead of the application. However, mutially the push
to talk button toggled the recognition state with each button press without giving the users feedback on
the current state of the speech recognition. Many users pressed the button too hard and the input was
mnterpreted as pressing it multiple times. When using this toggle button, users got confused whether the
speech recognition was listening to them or not. The visual output was the only indication on whether

the recognition was on and whether there was anything being recognized.

76

This was completely redesigned into a push to talk button with audio feedback when a word was
recognized. The button had to be held down to do recognition and released to stop recognition. The
tactile and audio feedback gave a better sense about the state of the recognition. When the button 1s
pressed down, audio is forwarded to the speech recognizer for recognition and when something 1s
recognized, a short chime indicates positive recognition. If the users do not hear a chime 1n a second,
they can conclude that the recognition failed. Additionally, the output audio from the client 1s silenced

when the push to talk button 1s pressed to reduce any interference during recognition.

Speech recognition 1s very sensitive to the notse level of the surrounding environment, but unfortunately
we cannot use an alternative microphone due to hardware limitations. Better noise canceling
microphones can be used in the future to enhance speech recognition results. The speech recognition
rate also depended heavily on the recording volume level and the position of the device relative to the

mouth. Usually such adjustment had to be made intuitively.

Loading vocabulary from an XML file takes from five to ten seconds. As a result, applications that used
vocabulary could not be accessed immediately when they were activated because the initial design loaded
the vocabulary when the user first activated the application. This created significant delays to play the
first information, such as in the News Headle application, since the activation call was synchronous
and it involved loading the vocabulary. This was modified so that the vocabulary loads up when the
application registers and the vocabulary loading was performed in a separate thread to eliminate any
delays of client being notified, during application registration. Unless the user activates the application as

soon as the application comes online, the delay problem 1s unnoticeable.

Synchronizing between events that occur on the client such as button press and text to speech being
streamed was difficult. Once some text is fed mto text to speech, the text to speech does not have
mechanism to abort the synthesis. Consequently, while one 1s listening to a news headline and decides to
skip to the next one, the user has to wait for the whole headline to be played before the next headline can
be played back. Initsally, text was streamed from the application every time it got a “continue” message
from the text to speech engine. The “continue” message indicated that the text to speech finished
processing the text mnput. However, since the speech output speed on the client is slower than the text to
speech synthests speed, when the user gave a command to the application, the command was processed
m reference to several headlines ahead of when the user executed the command. As a result, the

application had to incorporate some delays before sending text to the text-to-speech engine. The delay

77

was relative to the number of characters of the output text that was sent to the text to speech engine.
This resulted in a more adequate response to the user commands and avoided overflow of

text-to-speech output on the client.

6.1.3. Enhanced Telephony

Initial impressions regarding Garble Phone(Section 4.2.9) were skeptical among visitors and sponsors
who were concerned with privacy ssues. But after it was understood that such feature would be used
among trusted groups of people and after hearing the quality of the garbled audio, 1t was better accepted.
Origmally we used a simple algorithm that just swapped the audio packets as they were captured from
the microphone, but this was unacceptable since the resulting audio content was still understandable.
Consequently, we tried garbling audio with four segments of buffering and swapping each segment read
from the microphone with a random one among the four segments. Later we compared the garbled
audio with six segments of buffering, and we adopted this because it sounded less mtelligible while

providing similar state mnformation about the receiver.

Some users also noted that the MONITORING state in the Super Phone i1s too explicit and
transitioning the call to voice mail at the recetver’s request from MONITORING state was socially
awkward, since 1t resembles someone closing their doors on a visitor’s face. It was suggested that the
transition to MONITORING state be made less explicit so that the caller does not notice that he/she 1s
being monitored, or make the transition to VMAIL state, upon recetver’s request, more kindly so that
the caller 1s informed with a message ndicating that the recetver s really busy and cannot take the call.
Another option 1s to make the MONITORING state available only to trusted callers. A long term user

testing would be necessary to evaluate the performance of garbling and the usability of the Super Phone.

6.14. Modes of Control

The sertal browsing 1s scalable 1n the sense that new applications do not change how the user browses
through the applications, although 1t will require more browse time on the average to reach the desired
application. The speech interface makes random access navigation scalable, although the applications
should be named well in order for effective speech recognition. We had applications such as News and
Music that would confuse the speech recognizer. Furthermore, when dynamically loaded vocabulary

words were not part of normal English(e.g. proper nouns), the speech recognizer performed very poorly.

78

In order to solve this problem, a vocabulary pool of user names was created. With the existence of the
vocabulary pool, the recognizer could recognize the user names pretty well. This was a buit mn

functionality of the speech recognizer that we nitially did not know about.

Initially, navigating through the applications was the only way of knowmg which application one was
active and what were the online applications. As a result, two speech commands “Where am [?” and
“What are the applications?” were added to provide better overview of the status of the applications. As
the number of the applications mcreases, the user will have more difficulty keeping track of available
applications. During the testing stage, there were several occasions when users tried to access
unavailable applications. The user mitially thought the speech recognition was having problems, but
actually the application was offline. This 1s because users would know whether something has come
online or gone offline with distinct alerts, but they would not know which application actually came
online or went offline. This was modified so that the application specific alerts were mncorporated into
“coming online” and “going offline” alerts to give the users a better sense of the changing status of the

applications.

There are only a limited number of buttons available on the iPaq to be used for application specific
commands: UP, DOWN and FUNCTION. On the other hand, the speech interface was much more
scalable and new commands could be added very easily. As a result, these buttons were used to
complement the speech interface to help navigation and implement specific operations for the
applications. The buttons can especially be used to access the applications when speech interface 1s not

effective due to the noise in the environment.

6.1.5. Audio Processing

[37] made a comparison of mteractions between using voice over IP and using normal phones for
customer service. The study found that voice delay affected users’ perceptions of the ease of speech
mteractton. On the average, it took 45% more time to complete customer service tasks. Currently, in
IMPROMPTU, the audio delays in applications such as the Super Phone make the user experience less
adequate than a normal phone although it uses higher quality audio and provides more features. Initially
the delays were 1n the range of 500 msec to about a second. Network traffic also mtroduces intermittent
breaks in audio. However, we discovered there was buffering on the sound device of the client that was

causing the delay. With buffer adjustments (decreased buffer size) the audio delay between 1Paq to 1Paq

79

full duplex voice communication was brought down to about 200 msec. In the current IMPROMPTU
client, we are using one buffer size for all the applications and the buffer settings should be modified for
different applications in order to adjust better for their communication requirements. Sometimes we
also experience an asymmetric delay between communication entities as in Baby Monitor. The delayed
audio 1s less of a problem for the monitoring application than a phone application, and in order to make
real time communication acceptable on IMPROMPTU, delay problem needs to be investigated further

and resolved.

Currently, there 1s no encoding done on the audio sent over the network since the network we used
supports up to 11 Mbps and normally 2 Mbps of wireless bandwidth. IMPROMPTU seemed more
limited by computational power than bandwidth. Initially, when the MP3’s were decoded on the client,
there were a lot of audio breaks. When just an MP3 player was run on the client, the player ran without
trouble. However, in the IMPROMPTU client there are other threads that are running in the
background and that seemed to mterrupt the play back of streamed audio. When the same
IMPROMPTU client code was compiled and run on a Pentum IIT 850 MIz PC with 512 MB of
memory, it ran perfectly. However, when it was run on a Penttum Pro 200 MHz PC with 128 MB of
memory, we observed the same behavior as on the 1Paq with 32 MB of memory. As a result, we have
concluded that the problem was more dependent on the current iPaq’s processing power than
bandwidth or memory. In the current state of the real world, it 1s more reasonable to assume that there
will be more computation available on the devices before more wireless bandwidth would be available

and 1n this case, encoding would be necessary to save wireless bandwidth.

These problems all relate to buffering problem on the IMPROMPTU client. As a result, 1 have
concluded that a more dynamic buffering scheme needs to be implemented on the client to adjust to

each application’s audio requirements.

6.2. Architecture

6.2.1. System Design
The current IMPROMPTU architecture is able to support multiple audio applications i a seamless way.
We have implemented eight applications with different characteristics. They are all supported through

the same system components and messaging protocol. Since the applications are characterized by their

80

properties, these properties could be modified or additional properties could be added if necessary to

support different types of applications.

The distributed architecture allows flexibility in deploying the system. Each component can be deployed
anywhere as long as it knows where the Lookup Service 1s. The personal services require modification of
user settings in the database in order to deploy them elsewhere, since these settings are used by the

Application Managers to locate the services after user authentication.

6.2.2. Extensibility and Scalability
IMPROMPTU can support different types of applications and practically any number of applications

due to its support for distributed applications. The application properties could be extended to support
new types of applications and the messaging protocol can be extended to support new types of

messages.

There are several 1ssues in terms of scalability: the number of applications that the system can support,
the number of users that the system can support and the number of users the applications can support.
In supporting multiple applications, the main bottleneck would be the Application Manager and the
client’s memory. Although the client 1s made as thin as possible, it needs to keep track of the audio

connections to each application and few other states that are needed.

The system has also been designed to support multiple users as long as there are computing resources
available to deploy the components necessary to serve each user. Every component can be run on a
different host. However, personal services are not shared between users. Separate speech recognition
and text to speech components are needed for each user. All the components are distributed so each
user can deploy their own services independently from cach other. However, the Lookup Service
becomes a bottleneck since it 1s a centralized service, and the scalability of the system would be limited
by the physical memory available on the host machine of the Lookup Service. This could be resolved by

making the Lookup Service a distributed system or by using a peer-to-peer computing model.

Fach application also currently supports multiple users through multithreading. However, there 1s a
limit to multithreading. Possibly, the same application may be deployed with a different 11D’s and allow
different users to subscribe to cach other. For a commercial deployment, an automatic load balancing

mechanism would be a necessary to support multiple users.

81

6.2.3. Shared Resources

The applications compete to access the microphone and the speakers of the client device. There are also
multiple threads that handle messages from the applications and user mnputs that require access to the
audio resources. This required locking critical sections in the program, which also imntroduced deadlock
problems. Many of these problems have been resolved currently, but it still remains to be seen where the

client may hang.

6.2.4. Software Reliability
A major challenge 1n the development of IMPROMPTU was debugging the distributed system because

the point of failure could be anywhere. The complexity was multiplied due to components that were
multithreaded. Currently, IMPROMPTU supports multiple applications pretty well, although it locks up
once in a while. The lock up usually occurs due to some blocking request in the network. Timeouts and

selects are used to overcome this and to prevent blocking of reads and writes to sockets.

Recovering from failures 1s an ssue that has not really been dealt well during the development of
IMPROMPTU due to time constraints. The Lookup Service for example 1s currently the single point of
failure, and it requires restarting of the whole system when it crashes. A graceful recovery mechanism 1s
needed so that the system does not have to be brought down completely when one component fails.

This would require maintaining consistent states in the system when a component fails.

82

CHAPTER 7. CONCLUSION

7.1. Contributions

IMPROMPTU shows the feasibility and desirability of one device that can handle various audio
applications. 'The result 1s a multi-functional audio appliance that scamlessly gives access to networked
audio applications. IMPROMPTU architecture developed in this thesis provides guidelines for
managing multiple applications on a mobile device that supports sufficient wireless bandwidth for
streaming audio over the IP network. The auditory user mterface provides means to distinguish between
different applications and to manage the state of current interaction with different applications. Distinct
audio cues for each application allow a user to distinguish between different applications as they are
navigating through the applications. When applications are m the background, they may alert the user for
attention and a one-touch interface 1s available to the user to bring these alerting applications to the
foreground. The design criteria for the user interface required making access to audio information and
communication as stmple as possible for the users. Two ways of selecting applications are provided.
One 1s through buttons where one can serially browse through the list of applications. The second

method 1s by using voice activation for random access to the applications.

Eight different applications were mplemented to prove the feasibility of the architecture. News
Headline application uses speech recognition and text to speech to deliver updated news headlines.
Baby Monitor 1s an awareness application that allows parents to monitor their baby’s that are out of their
sight. Radio application streams real time radio to the users. Personal MP3 music collection can be
enjoyed through the Music Player. Audio Book allows users to listen to different audio books with the
capability to bookmark each book. Recorder allows users to record personal memos or record audio
from different applications. Chat 1s an asynchronous multi-user application that makes chat history
available to the users. Finally, the Super Phone implements new ways of setting up calls by providing
Garble Phone and call screening functionality that gives the users more flexibility during call setup

negotiation.

IMPROMPTU client 1s designed to be an easy to use appliance to access all these applications through

speech and tactile interfaces. Through iterative design and testing, the user mterfaces such as the

83

push-to-talk button, Applicatton Manager and application level speech commands and auditory cues
were tuned to make the appliance more usable. Although, several iterations of testing and debugging

have made the system pretty usable, 1t is still not reliable enough to be used in the real world

environment. However, lessons learned from the implementation of IMPROMPTU can provide
guidelines for designing user interfaces and an extensible architecture and protocols for IP based mobile

devices that will i the near future support multiple audio based applications.

7.2. Future Work

The following is a list of future works that would make IMPROMPTU client a more exciting and

entertamning appliance to have.

= As there 1s no need for large screen space with IMPROMPTU, the actual device could
be reduced to a much smaller size as long as it supports wircless IP connection and full
duplex audio. Currently, the size and weight are constrained by the wircless LAN
mterface and the battery. However, since the device does not have to support such a
nice screen as the one on the 1Paq, the battery size could be reduced and the battery life

mproved.

= Current system 1s stable enough to run some short-term formal user evaluations of the
user mterface. Such an evaluation would provide valuable feedback on what should be

redesigned or improved.

= Relability of the system needs to be improved so that long term user testing could be
performed. Daily usage of IMPROMPTU and its social impact would be a very
mteresting research issue. This will also provide what mteractions really work and what

really do not work.

= Choosing approprate alerting 1s difficult especially with increasmg number of
applications. However, Mynatt’s research[38] indicates that users want to choose their
own alerts. So, we have allowed users to customize application alerts through the web
mterface. It would be mnteresting to observe what kind of alerts get chosen by different
people. Tnitially, during development, we were not too annoyed with long alerts and

some interesting alerts were used for entertainment.

84

Dynamic prioritization that changes the priority of the applications with the time of the
day or the location of usage would be mteresting. For example, the News application
might take priority during commute hours in the mornings and the evenings while it

becomes less important during the work hours and at night.

Different audio applications would require smart caching capabilities to make some
spectfic contents available offline. Determining criteria for what to store locally and
what to update periodically to conserve bandwidth 1s an mnteresting question. Sean
Wheeler in the Speech Interface Group 1s mvestigating these 1ssues.

Capability to mux audio efficiently would allow more interesting interactions. Chat
application could implement real time mixing for synchronous chat. Audio on chent
could be presented more efficiently by mixing audio and presenting it simultaneously.
Currently everything 1s played sequentially and requires mterruption of current play back
when an alerting occurs.

Audio encoding would be beneficial especially for varying network connectivity where
high bandwidth 1s not always available. However, as seen from the client side MP3
decoding experiment, it might require more computational power to handle audio

encoding well.

Several users have suggested that a visual mterface would greatly complement the
current interfaces. Visual pop up windows would mdicate more clearly what is
happening. Currently online applications could be more casily accessible through a
visual interface rather than asking for 1t and listening to the list of applications. Visual
mterfaces would enforce the audio cues and help indicate different status of the

applications.

Further user testing can reveal when Garble Phone and call screening functionality really
work well and where it really does not work well. Currently, we believe that it works well
among people with pretty close and intimate relationships.

Implementing time scaling capabilitics on the applications would allow more flexibility
when users need to browse through audio content, such as when they have to browse

through chat history. A related issue involves efficiently summarizing an audio content.

85

= Synchronizing visual mterfaces with sound mnterfaces was an issue that was dealt with
during the development of Desktop Audio. If visual mnterfaces are developed for

IMPROMPTU applications, similar issues will have to be resolved.

= The distributed architecture of the Speech Service implies that speech engines from
other languages could be utilized to provide multilingual capability to IMPROMPTU.

= [mally, Norman suggested that “free sharing of information 1s critical to the appliance

>

vision.” Currently, audio 1s shared as a medum of delivery, but the data 1s not easily
shared. The closest to this kind of mteraction occurs during recording an application’s
content with the Recorder application. The NFS or the HTTP server serves as an
infrastructure that makes archived audio accessible to other remote applications. A

better sharing of data would allow me to share my music with a friend while I converse

over the Super Phone.

Most appliances we use today are passtve. We use it when we need it. If we do not use a microwave, 1t
will not alert me for attention to use it unless an alarm 1s set. It just sits there waiting to be used.
However, communication appliances are always alerting and always making noise. Especially with the
emergence of the Internet, communication and mnformation has become much more flexible and
dynamic. The world of information and communication changes more rapidly than what normal
humans can keep up with. In the telecom world, as mobility becomes more commonplace, people need
to carry around different devices (pagers, mobile phones, palms), for different types and levels of
communication. These devices independently try to get user’s attention and these devices do not share
the same channel of information, making certain data such as e-mail maccessible when you do not have

your two-way pager.

IMPROMPTU 1s an architecture that mtegrates these different communication channels and mstead of
having to attend to several devices, 1t allows the users to access numerous applications from one device.
One device handles all their audio communication, mformation access and entertamnment. Through a
stmple auditory interface, it also makes 1t very easy to attend to these applications when they ask for
user’s attention. Audio has been a ubiquitous medium for communication and information access and
as computing becomes more ubiquitous along with the Internet Protocol becoming the standard
protocol for information exchange and communication, IMPROMPTU will allow users to more casily
manage and access what they want, whenever they want, while constantly and conveniently being

connected with their loved ones not through text but through a richer medum.

86

CHAPTER 8. APPENDICES

8.1. Software Setup

When running Java based services, the CLASSPATH environment variable need to be setup correctly.
Also JDK 1.3 or above must be mstalled with the PATH environment variable pomting to
/usr/java/jdkl.3/bin which contamns JDK 1.3 executables (rmiregistry, java) required to

run Java applications.

The following libraries are required to compile Java components.

Tritonus Java Sound (http://www.tritonus.org) - is an open source implementation of

Java Sound that allows access to sound resources from Java applications.

» JDOM (http://www.jdom.org) and Xerces parser (http://xmlapache.org) are Java

based XML parsers and APD’s that are used to parse vocabularies and setup information.

= Ant s a build tool like “make” that 1s used to build Java applications.

= Rmifdbc (rmijdbc.jar) 1s the remote interface for accessing the database from remote

Java components.

= InstantDB libraries (1db.jar) are Instant DB related Java classes.

The following libraries are needed for C/C++ development.

s XML 2 library 1s used to parse XML documents from the applications.
= Pthread library 1s used to support multi-threading from the applications.
= AudioFile library 1s used to read and write WAV files on the disk.

= Splay library 1s used to play streaming WAV and MP3 files.

8.2. Notes on Development

The services are all implemented 1 Java, and Remote Method Invocation (RMLI) 1s used to communicate
among the distributed services. The Application Manager 1s also implemented 1n Java and it follows the

application architecture for RMI. The stubs (components that translate remote method calls to lower

87

http://www.tritonus.org/
http://www.jdom.org/
http://xml.apache.org/

level socket calls and vice versa) are located at an HT'TP server in order for the components to get access
to the stubs of each distributed components when they make remote calls. These stubs are placed into

http://www.media.mit.edu/~kwan/classes when they are built.

All the source files are currently mamtained mn the CVS (Concurrent Versions System) repository hosted
on ventoln.media.mit.edu. The files can be viewable through the web browser at
http://ventolin.media.mit.edu. Ant is used to build the Java components and the C/C++ components

are built with the make utility.

8.3. Audio Formats

IMPROMPTU uses 22050 Hz, 16 bit, mono audio by default for most audio communication. For
WAV files, the files need to have audio data that begin at 44 (2c hex) offset. Other offset values will not

work. One can convert the audio on Linux using sox. The command to convert the audio to 16000 Hz

16 bit 1s
sox <input file> -r 16000 -w <output files>

One can check the audio format using the sfinfo program. sfinfo <wav file> prints out the

following information for a WAV file.

File Name yO.wav

File Format MS RIFF WAVE Format (wave)

Data Format 16-bit integer (2’'s complement, little endian)
Audio Data 57344 bytes begins at offset 44 (2c hex)

1 channel, 28672 frames
Sampling Rate 16000.00 Hz
Duration 1.79 seconds

88

CHAPTER 9. REFERENCES

D. Seatls, "Pocketlinux Gives Jabber Its First Hand(held)," I znux Journal, 2001,
http://www.acm.org/pubs/articles /journals /linux/2001-2001-82¢s /a12-searls /a12-searls. html.

"Mobile Phone Usage Up m 2000," 2000,
http://www.advisor.com/Articles.nsf/aidp/ OLSEE108.

W. Forum. "WAP Forum," 2000, http:/ /www.wapforum.org/.
W. W. W. Consorttum. ""Voice Browser" Activity," 2000, http://www.w3.org/Voice/.

F. Rose, "Rocket Monster: How DoCoMo's wireless Internet service went from fad to phenom -
and turned Japan mnto the first post-PC nation," m Wired, vol. 9, 2001, pp. 126~135.

D. A. Norman, The Invisible Computer. Cambridge: MI'T Press, 1998.

D. Hindus, M. §. Ackerman, S. Mainwaring, and B. Starr, "Thunderwire: a field study of an
audio-only media space,” in the proceedings of CSCW, Boston, MA, 1996, pp. 238-247.

E. R. Pedersen and T. Sokoler, "AROMA: Abstract Representation of Presence Supporting
Mutual Awareness," in the proceedings of ACM CHI, Atlanta, GA, 1997, pp. 51~58.

B. Raman, H. |. Wang, J. S. Shih, A. D. Joseph, and R. H. Katz, "The leeberg Project: Defining the
IP and Telecom Intersection,” I'T" Professional, pp. 22~29, 1999,
http:/ /iceberg.cs.berkeley.edu/publications.html.

C. Schmandyt, S. Angebranndt, R. .. Hyde, d. H. Luong, and N. Siravara, "Integrating Audio and
Telephony 1 a Distributed Workstation Environment," i the proceedings of USENIX,
Nashville, Tennessee, 1991, pp. 419~435.

L. 'T. Union, "IP Telephony Workshop," International Telecommunication Union IPTEL/03,
May 29 2000, http://www.itu.int/osg/sec/spu/ni/iptel/ workshop/iptel.doc.

P. K. Jones. "H.323 Information Site," 2000, http://www.packetizer.com/iptel/h323/.

H. Schulzrinne and J. Rosenberg, "Internet Telephony: Architecture and Protocols -- an IETE
perspective," mn Computer Networks, vol. 31, 1999, pp. 237~255.

W. E. Witowsky. "IP Telephone Design and Implementation Issues," 1998,
http://www.telogy.com/promo/white_papers/IP_phone/index.html.

R. Bennett and J. Rosenberg, "Integrating Presence with Multi-Media Communications,”
dynamicsoft, Inc. 2000, http://www.dynamicsoft.com/resources/whitepapers.html.

M. Day, S. Aggarwal, G. Mohr, and]. Vincent. "Instant Messaging/Presence Protocol
Requirements," 2000, http:/ /www.ietf.org/rfc/rfc2779.txt.

N. DoCoMo. "All About -mode," 2000, http:/ /www.nttdocomo.com/1/mndex.html.
TellMe. http:/ /www.tellme.com.

B. A. Nardi, S. Whittaker, and E. Bradner, "Interaction and Outeraction: Instant Messaging in
Action," i the proceedings of CSCW ACM, Philadelphia, PA, 2000, pp. 79~88.

89

IS]

_
N
S

23]

[24]

23]

H. J. Wang, B. Raman, C.-N. Chuah, R. Biswas, R. Gummads, B. Hohlt, X. Hong, F. Kiciman, 7.
Mao, J. S. Shih, L. Subramanian, B. Y. Zhao, A. D. Joseph, and R. H. Katz, "ICEBERG: An
Internet-core Network Architecture for Integrated Communications,” in [2EE Personal
Communications (2000): Special Issue on 1P-based Mobile Telecommunication Networks, vol. 7, 2000, pp.
10~19.

M. L. Dertouzos, "The Oxygen Project : The Future of Computing," in Scentsfic American, 1999.

R.W. DeVaul and S. Pentland, "The Ektara Architecture: The Right Framework for
Context-Aware Wearable and Ubiquitous Computing Applications," The Media Laboratory,
Massachusetts Institute of Technology 2000, http:/ /www.media.mit.edu/ ~rich/DPiswc00.pdf.

M. Wesser, "Some Computer Science Problems in Ubiquitous Computing," in Commmunications of the
ACM, vol. 36, 1993, pp. 75~84.

N. Sawhney, "Contextual Awareness, Messaging and Communication in Nomadic Audio
Environments," M.S. Thesis, Massachusetts Institute of Technology (1998).
D. K. Roy and C. Schmandt, "NewsComm: a hand-held mterface for mteractive access to

structured audio,” in the proceedings of Human Factors in Computing Systems, Vancouver,
Canada, 1996, pp. 173~180.

S. Marti, N. Sawhney, and C. Schmandt. "GarblePhone : Auditory Lurking," 1998,
http://www.media.mit.edu/speech/projects/garblephone.html.

N. Sawhney and C. Schmandt, "Nomadic Radio: Scaleable and Contextual Notification for
Wearable Audio Messaging," in the proceedings of ACM SIGCHI, Pittsburgh, Pennsylvania,
1999, pp. 96~103.

M. Hedin. "Splay (A software that plays MP3 on Linux)," 2001,

ftp:// ftp.arm.linux.org.uk/pub/armlinux/people/nico/old/splay-0.8.2-fp1.tgz.

A. Guy, C. Worth, and K. Causey. "the Familiar Project,”" 2001, http://familiar.handhelds.org/ .

J. G. Dorsey, "ARM Linux on the Intel Assabet Development Board," Department of Electrical
Engineering and Computer Engmneering, Carnegie Mellon University, Pittsburgh, ICES 0x-yy-00,
September 11 2000, http:/ /www.cs.cmu.edu/~wearable/software/assabet.html.

P. J. Rankin, "Context-Aware Mobile Phones: The difference between pull and push, Restoring
the importance of place," in the proceedings of HCI International, New Otrleans, LA, 2001,

H.-W. Gellersen, M. Beigl, and A. Schmidt, "Sensor-based Context-Awareness for Situated
Computing," in the proceedings of International Conference on Software Engmneering, Limerick,
Ireland, 2000, http://www.teco.edu/ ~albrecht/publication/sewpc00/sensor-based-context.pdf.

M. Day, |. Rosenberg, and H. Sugano. "A Model for Presence and Instant Messaging," 2000,
http://www.ietf.org/rfc/rfc2778.txt.

J. Rosenberg, D. Willis, R. Sparks, B. Campbell, H. Schulzrinne,]. Lennox, B. Aboba, C. Huitema,
D. Gurle, and D. Oran. "SIP Extensions for Presence," 2000,
http://www.ietf.org/internet-drafts/ draft-rosenberg-impp-presence-00. txt.

J. S. Kim, "Impromptu Speech Service:Distributed Speech Recognition and Text to Speech
Servers," Massachusetts Institute of Technology, Cambridge, AUP Paper 2001,
http://www.media.mit.edu/~jangkim/Research/ AUP.pdf.

90

[36] K. H. Lee. "Impromptu Online APT Documentation,” 2001, http://impromptu.media.mit.edu.

[37] Q. Zhang, C. G. Wolf, S. Dasjavad, and M. Touma, "Talking to Customers on the Web: A
Comparison of Three Voice Alternatives,” in the proceedings of CSCW ACM, Seattle, WA, 1998,
pp. 109~117.

[38] E.D. Mynatt, M. Back, R. Want, M. Baer, and |. B. Ellis, "Designing Audio Aura," in the
proceedings of ACM CHI, Los Angeles, CA, 1998, pp. 566~573.

91

	Baby Monitor
	Multiple Applications
	Enhanced Telephony
	Summary
	Connectedness
	Alerting and Priority
	Chat Application
	Summary
	Telephony Reinvented
	Another Application: Radio
	Summary
	Browsing Applications
	Buttons
	Alerting and Interruption
	Push to Talk
	Speech Commands
	Application User Interface
	Characteristics of the Applications
	News Headlines (Java)
	Music Player (Java)
	Chat (C/C++)
	Recorder (C/C++)
	Radio (Java)
	Audio Book (Java)
	Baby Monitor (Java)
	Super Phone – Enhanced Telephony (C/C++)
	Garble Phone
	Whisper – Call Screening

	Summary
	Lookup Service
	Application Manager
	Client
	Speech Service
	Profiler Service
	Presence Service
	Database
	Applications
	Java Applications
	C/C++ Applications
	AppInfo

	Client
	Lookup Service
	Application Manager
	Speech Service
	Client and Lookup Service
	Client and Application Manager
	Applications and the Lookup Service
	Applications and the Application Manager
	Client and Application
	Application Manager and Personal Services
	Speech Service and Application Manager
	Presence Service and Application Manager
	Profiler Service and Application Manager

	Registration and Setup Process
	Activation and Deactivation
	Going Offline
	Appropriate Alerting
	Speech Interface
	Enhanced Telephony
	Modes of Control
	Audio Processing
	System Design
	Extensibility and Scalability
	Shared Resources
	Software Reliability

