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Abstract

The practical demands of modern life obligate people to spend time physically seper-
ated from the people they care about. To cope, people turn to communications tech-
nology like the telephone, e-mail, and instant messaging (IM) to maintain a connec-
tion with social contacts. These communication modalities are limited in their ability
to provide social-connectedness by their failure to balance expressiveness, overhead,
and social obligation. Clique Here is a mobile communications platform that at-
tempts to address this limitation and support a higher degree of social-connectedness
by complementing mobile telephone capability with media rich awareness and multi-
ple lightweight communication modes. The Clique Here system consists of a mobile
client, implemented on a camera embedded mobile handset, a home client, imple-
mented on a wireless web tablet, and communication between clients is facillitated
by an application server.
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Chapter 1

Introduction

Mobile communication continues to proliferate and expand in capability. Far-reaching

cellular voice networks provide the potential for people to make themselves available

for phone calls with any person, at any time. Domestic mobile data networks have

become more practical in coverage and bandwidth, fostering improvement in offerings

that seek to bring the successful communication modalities of the fixed Internet (e-

mail, the World Wide Web, instant messaging) to the mobile domain.

The advance of mobile hardware has kept pace with that of mobile infrastructure.

Modern handsets ship with high-resolution color displays, processing power on par

with lower-end PDAs, polyphonic sound, and most notably, an increasing number of

these devices contain integrated digital cameras. InfoTrends Research Group reports

that worldwide sales of camera embedded mobile phones will reach 150 Million units

in 2004, 25% of the total mobile phone market [7]. While the telecommunications

industry has been in the business of connecting people for nearly a century, the

rich mobile media, high bandwidth, and ubiquitous connectivity available to today’s

mobile phones makes it possible for these devices to connect us with the people we

care about to an unprecedented degree.

In the past, mobile communications research focused primarily on the use of mobile

devices in the professional setting [8, 18, 21], rather than the use of these devices to

support social relationships. While the results of many such contributions do further

the understanding of mobile communications in the social context, extracting the full
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potential mobile devices have for supporting social relationships calls for research to

focus on the unique requirements of this context. A research segment that heeds

this call is gaining in popularity as a number of recent projects have explored mobile

mediated social communication [6, 22, 3, 14, 13]. These projects, focusing on the

mobile element of social communication, complement and coexist with work in a

more general, burgeoning category addressing social communication mediated by any

form of computing technology [12, 16, 4, 9].

Maintaining healthy social relationships leads to the satisfaction of basic human

needs. Further, the health of a social relationship between two people depends on

the degree of social-connectedness they feel toward each other [12], where social-

connectedness is defined here as a feeling of inclusion within a contact’s social life. The

first of two primary factors that promote social-connectedness is awareness. Aware-

ness, in this context, describes the knowledge a person has, gained by observation,

about the state of a social contact’s life (e.g. activity, availability, mood). When cur-

rent awareness information is available to a person’s contacts, the general knowledge

contacts have of this person’s life may allow them to make inferences and expand

on the observed awareness. This up-to-date knowledge of a person’s life will lead

social contacts to feel in-touch with this person, and to feel included in his life. The

second primary factor promoting social-connectedness is communication. When two

social contacts communicate, they are being directly included in each other’s life.

The resulting feeling of social-connectedness depends on the amount of practical and

emotional information shared, which is dependent on the expressiveness of the com-

munication channel.

When two people share the same physical space, a high degree of social-connectedness

is easily achieved. All five senses can be utilized for observation, leading to precise

awareness. Communication is more probable since it is easy to identify appropriate

moments for communication, communication can be initiated and completed quickly,

and real-time aural and visual interactions provide channels for communication un-

matched in expressiveness.

The practical demands of modern life, however, require the closest of social group
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members to spend a substantial amount of time physically separated. For any level of

social connectedness to exist, communication will need to be mediated by a channel

that transcends physical space. Beyond the spatial requirement, systems mediating

social communication must employ media types expressive enough to convey the af-

fective nature of this form of communication, but they must also present the recipient

with this content with minimal disruption and without introducing social obligation.

Conventional communication systems fail to balance these two requirements. Syn-

chronous phone calls can certainly be expressive, but the overhead for the sender and

the intrusiveness imposed on the recipient become barriers to use for communicating

simple affective thoughts such as “I love you” or “I was thinking about you” [4].

In their insightful paper on the expected and unexpected uses of text instant mes-

saging (IM) observed in practice [17], Nardi et.al. showed that the lightweight nature

of IM makes communicating simple affective thoughts reasonable, and the ambiguity

of message reception creates plausible deniability, shielding the recipient from social

obligation and giving her better control over incoming communication. Text IM users

do manage to achieve a notable level of expressiveness through evolving conventions

[6]. However, the potential for expressiveness of the rich media available for cap-

ture with modern mobile devices, specifically photographs and audio recordings, far

exceeds text.

While lightweight communication modes are crucial for effectively mediating so-

cial communication, powerful non-verbal communications that are possible when the

same space is shared, such as a smile or a wave, are not effectively mediated by tradi-

tional lightweight communication. Marmasse et.al. [14] have demonstrated how mo-

bile communications systems can mediate such non-verbal interactions through their

work on the WatchMe project. WatchMe is a personal communicator that combines

sophisticated mobile awareness capability with lightweight modes of communication.

In the WatchMe system, when an inquiring user observes the details of another user’s

availability information, this indicates that the inquiring user is currently thinking

about the observed user. If the two users shared the same space, this “thinking of

you” message could be conveyed through a smile. The WatchMe system replicates
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this interaction by temporarily displaying a picture of the inquiring user on the screen

of the observed user, a communication channel referred to simply as a smile.

Clique Here is a mobile messaging system supporting a higher degree of social con-

nectedness by complimenting mobile telephone capability with media rich awareness

and several lightweight communication modes. When direct communication is not

possible, users can feel included in the lives of their contacts by browsing the images

and audio clips their contacts have captured for the purpose of conveying awareness.

The interest of the user browsing this awareness information is automatically con-

veyed to the observed user with a Marmasse smile. This rich awareness might entice

direct communication, made possible among the constraints of professional life by

lightweight communication modes (text IM, voice IM, image messaging). Finally,

any combination of these interactions may serve as an evolutionary path to an oppor-

tunistic phone call between two social contacts. Clique here makes communication

between physically separated social contacts more probable, more expressive, and

more welcome.

1.1 A Clique Here Scenario

As the members of contemporary family units age, the dynamics of their interpersonal

communication evolve as members make transitions into the different stages of their

lives. A son leaving home to attend college at a distant university is an example of

a transition that results in a significant shift in family dynamics. This will likely be

the first time that the child will spend several months physically removed from the

home. The following scenario illustrates how Clique Here could enable such a family

to maintain social connectedness, despite the physical separation.

Susan, a mother of three children, has found herself emotional over the recent

departure of her son, Josh, to an out of state university. Josh is not the first child to

leave the home, but it still does not come easy, and she is adjusting to the absence of

the ’little things’ that she could enjoy when Josh lived in the house. Josh was a busy

person in high school, but many times they could have a quick chat as he packed up
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to head to practice or work, or maybe there would just be time for a hug, and he’d

be on his way. Once these few minutes in which they could interact as they crossed

paths during a busy day were gone, it was clear how valuable they had been. Even

more valuable were the times when they both happened to have some free time, and

they could take the opportunity to catch up on each other’s life.

At school, Josh has been having the typical experiences of any college freshman.

He has met a lot of new people, he’s found that he has to spend a lot more time doing

school work than he did in high school, and he’s found that he can enjoy himself a

bit more now that he’s in charge of his own supervision. Even with all of these new

experiences to keep him occupied, Josh still misses his family back home.

On a Saturday, Josh and some friends manage to get their hands on bleacher

seats at the afternoon baseball game. As the guys find their seats, and they begin to

absorb the unique energy that comes from sitting in a major league ball park, Josh

remembers he needs to let some people know where he’s at, and he won’t mind letting

it be known that he scored tickets to the game. So, he pulls out his mobile phone

and snaps a picture of the field with the embedded camera and, by default, he sends

the image to all of his contacts, all with just a couple of clicks.

Back at home, Susan is sitting with her husband, Jim, and their conversation

reminds them of Josh. When their older daughter went away to school, Susan and

Jim were also often reminded of her, but they resisted the urge to call her, knowing

she might be busy, and instead limited their communication to their weekly Sunday

phone call. Today, these parents no longer feel this limit. As Susan and Jim are

reminded of their son, Susan pulls out her mobile phone. She scans her contact list,

one of which who is Josh, of course, and sees that he has recently sent a new picture.

When zooming in on the picture, the parents realize that Josh is at the game. Susan

wants to call Josh to hear about it, but Jim tells her to let him enjoy the game, since

it’s about to start. Before the two can finish the debate, they get a call from Josh.

On his own mobile phone, Josh was informed that his mother took the time to check

out his image message, and he decided to give them a call in the five minutes before

the game got started.
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After the fourth inning, a friend of Josh’s has seen his picture message and calls

him to check on the score, express some jealousy, and to let him know that he is

heading to the local bars to meet up with some people for a drink. After the game,

Josh looks at his contact list, and sees that his friend has sent an image showing the

bar the group has decided on, and knowing it is probably too loud in the bar for a

phone call anyway, Josh and his friends head directly to the bar to meet up with the

group.

Clique Here allowed the characters of this scenario to maintain social-connectedness,

despite physical separation. The mother did not have to wait until the Sunday phone

call to hear about the baseball game. Instead, she was made aware of it in real time,

with little effort from her son. Even more important, since the son was also aware

that his mother was thinking of him, by her looking at his image message, it led to

an opportunistic interaction.
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Chapter 2

User Interaction

This chapter describes the user interaction experience of the Clique Here system.

The system has been designed with the goal of supporting a high degree of social

connectedness by leveraging the expressiveness of mobile multi-media, by mapping the

successful principles of IM to the constraints of the mobile domain, and by introducing

novel non-verbal channels of communication. Clique Here optimizes for the control

of availability information due to the lack of automatic sensors on the mobile phone

that could provide this information, and to mitigate privacy related issues. According

to the overhead vs. control scale characterized by Milewski, the cost of giving users

the control to set awareness information is that the overhead of maintaining the

information is transfered to the user. While users have a social incentive to utilize the

expressiveness of the multi-media awareness channels to share the interesting events

in their life, the user-interface must be designed to minimize the input burden if the

users are to be expected to act on these incentives and keep availability information

current.

The system contains two client devices, one designed for the mobile user, imple-

mented on a mobile phone, and one designed for users in the home, implemented on

a wireless web browsing device. Communication between all clients is mediated by a

server. The mobile client contains the bulk of the features supporting the goal of main-

taining social-connectedness. The home client focuses on providing the home users

a social-awareness of their contacts outside of the home. Each client was designed
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with a particular user segment in mind. While considerable effort and iteration was

devoted to maximizing the usability of the mobile interface, it was decided that the

technology barriers may still be too great for user segments containing middle aged

parents, or even grandparents. The home client provides such users with a simple

way to view image messages from their loved ones, allowing them to infer availability

from a rich medium, and if desired initiate a synchronous interaction via the home

phone.

The following sections discuss the details of Clique Here user interaction by first

describing the communication channels available through the system, and going on

to describe how each client supports these channels and optimizes their ability to

maintain social-connectedness.

2.1 Communication Channels

Clique Here offers several communication channels with varying levels of attentional

demand, overhead in establishment, and expressiveness. These options give users the

flexibility to match the appropriate communication channel with contact availability,

inferred using Clique Here awareness information. These options also allow the user

to make incremental steps toward more heavyweight communication channels.

2.1.1 The Phone Call

The mobile Clique Here client is implemented on a mobile handset, and the system ac-

knowledges the fact that the venerable phone call remains an important channel for

the purposes of task-oriented-communication and social-communication alike. The

synchronicity of the full-duplex phone call, along with the expressiveness of audio, re-

sults in information exchange capabilities that approach real-time, face-to-face verbal

interactions. The attentional demands of the phone call for both parties, however,

along with the overhead of establishing the communication, make it important for

people to effectively manage their phone communications. The importance of man-

aging communication over the phone is further emphasized as the pervasiveness of
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mobile phone service makes it possible for people to be reached through this channel

at nearly every moment of their day. Clique Here allows people to better manage tele-

phone engagements with their social contacts by providing availability information,

which may enable smarter choices on when and how to initiate communication. In

addition, Clique Here provides alternate communication channels, which may be just

as effective as the phone call in achieving certain communication goals, but might be

less burdensom to the parties involved.

2.1.2 Asynchronous Multimedia

Clique Here augments the traditional capabilities of instant messaging by including

image and audio media as new data types. Adding such media to the lightweight

communication framework of IM affords the use of this media as a means of com-

munication. Clique Here users can take advantage of the minimal input burden of

capturing image and audio media, and avoid the text input limitations of mobile

devices1, to send lightweight, expressive messages to their contacts. In addition, be-

cause they can send pictures, voice, and/or text, senders can tailor their messages to

best capture the content they wish to communicate, and choose a form that is most

appropriate in terms of the recipient’s availability.

2.1.3 Non-Verbal Channels

A Clique Here user may browse a contact’s awareness and availability information for

several reasons. He may wish to know if the contact is available for communication,

and if so what might be the most appropriate channel. Alternatively, he may just wish

to know what this person is up to. People sharing the same space make similar queries

to maintain social-awareness and determine availability, with similar motivations.

When the same space is shared, however, these non-verbal queries can be interac-

1The most prevalent text input method on mobile phones is multi-tap, a method where each
numeral key maps to the letters of the alphabet printed on the keys. Tapping the numeral once will
input the first letter on the key. Tapping the numeral twice quickly will enter the second letter, and
so on.
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tive. Natalia Marmasse’s [14] scenario of the exchange of smiles between two people

sitting on a couch is a perfect example. One person may glance at the other out

of curiosity, to determine their mood or to determine their availability. The other

person may notice, look up, and smile at the other person, or perhaps never notice

it at all. If the person that has been glanced at should look up and smile, the other

might choose, based on his inference of non-verbal cues, to smile back, and go about

his business, or strike up a casual conversation.

Clique Here provides two non-verbal communication channels, smiles and waves,

to replicate non-verbal interactions that naturally take place when the same physical

space is shared. When a user uses either the home or the mobile client to observe

the details of a contact’s awareness information, this generates a smile. The observed

contact is notified of this event on his mobile client by a temporary pop-up displaying

the latest image received from the inquiring user. Waves are created by a Clique Here

user when he wishes to directly query a contact to determine if he is available for

communication, and do so in as lightweight of a form as possible. Contacts receiving

wave events are also notified by a temporary pop-up screen that displays the latest

image received from the waving user, but the screen does not timeout and must

be manually dismissed. This image displayed in the pop-up may provide the wave

recipient with an intuition of the sender’s current situation, and help him to better

decide if he wants to engage in communication. Sections 2.2.1 and 2.2.4 describe the

appearance of both smiles and waves within Clique Here screens.

2.2 Mobile Client

The most valuable aspect of Clique Here is the mobile client. A Nokia 6600 smart-

phone was selected as the hardware platform for the mobile client (Figure 2-1). With

no keyboard input and an above average, but still cramped 176X208 pixel display,

the 6600 imposes the same user interface design constraints as most mobile phones.

The handset has an embedded VGA resolution digital camera and captured images

can be clearly displayed on the 16-bit color display. The 6600 also features audio
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Figure 2-1: The Nokia 6600 displaying the Clique Here Contact List Screen.

capture and playback functionality, utilizing the embedded microphone and speaker.

The Nokia 6600 is a Symbian Series 60 device and it provides open APIs for native

Symbian in C++ and the Java MIDP 2.0 platform. The MIDP 2.0 platform was

chosen for development because its javax.microedition.lcdui toolkit provided the

best balance between efficiency, flexibility, and extensibility. An important addition

to MIDP 2.0 from its predecessor, MIDP 1.0, is the CustomItem class. This abstract

class allows items with custom painting and behavior requirements to be added to

Forms, and in doing so combines the efficiency of the high-level Form API with the

flexible low-level Canvas constructs. The MIDP 2.0 high-level (form based) UI API

supports both traversal based selection and pen based selection for mobiles with

pointing devices. However, the Nokia 6600 has no such device; instead, the five-way

navigation button allows users to traverse and select the standard GUI components

(e.g. text boxes, buttons, lists) that lie on a given form. This selection limitation

makes button-based commands less than ideal, since a user would have to navigate

to the button in a serial fashion before he could invoke a command, and the issue

becomes worse as the size of the form increases. For this reason, Clique Here com-

mand and control is accomplished through the soft-key menu interface provided by

the 6600. Like many MIDP devices with soft-keys, the Nokia 6600, incorporates the
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program specified Command objects, which encapsulate the actions available to the

current screen or selected item in the program, into their soft-key menu interface.

The Nokia 6600 soft-key implementation, fortunately, was done relatively well. The

5-way 6600 joystick enables quick selection of soft-key menu items, and if a command

is associated with an item that has been selected, pressing the “fire” button displays

a pop-up menu listing those options associated with this particular item.

The following sections describe the mobile client user interface each screen at a

time, along with descriptions of the relationships between the screens.

2.2.1 Contact List Screen

Once successfully logged onto the Clique Here application, users are presented with

the Contact List Screen. Figure 2-2 shows the Contact List Screen on the Nokia

6600. The structure of this screen is very similar to the buddy-list concept seen in

traditional IM systems. Each user has a unique roster of contacts on the Clique Here

system. For each contact on the user’s roster, the Contact List Screen contains a

Contact List Item, a selectable area displaying the contact’s username, along with

several icons and visual variables, each of which will be discussed in this section.

The general purpose of the Contact List Screen is to serve as the entry point for

communication with each contact, and provide a breadth of contact awareness and

availability information across the roster.

Clique Here incorporates the awareness and availability information offered by

traditional IM systems, e.g. online/offline status and idle/active state. Clique Here

defines a user as offline when they are not logged into any client application; if a

logged in user has temporarily lost wireless service, they are not considered to be

offline. If a contact is on a user’s roster, but currently offline, such as the Joseph

contact in Figure 2-2, the background of the contact’s Contact List Item becomes

gray and the contact username is displayed in plain black italic font. In contrast, the

Contact List Item background is drawn with a light color when the user is online,

and their username is displayed in bold black font if the user is active, and gray

bold otherwise. The Assaf, Natalia, and Chris contacts in Figure 2-2 are examples of

24



Figure 2-2: The Contact List Screen (on left) provides availability information. The
options menu for this screen is on the right.

online contacts.

Unlike traditional IM systems, Clique Here users can send messages to their con-

tacts, even if they are offline. Upon logging onto the system, the user can quickly

scan each Contact List Item for the envelope icon, which indicates that a new mes-

sage has been received from this contact. To the right of the icon, a number indicates

how many new messages have been received, and the contact who sent the original

message need not be currently online in order for the user to retrieve messages that

have been sent. In its example view of the Contact List Screen, Figure 2-2 provides

an example of the envelope icon’s appearance in the interface.

When browsing the Contact List Item of a particular contact, the usernames of

online contacts are proceeded by an icon indicating the type of client they are logged

on to. If a user is logged in from a Clique Here mobile client, such as the Natalia

contact from Figure 2-2, a small mobile phone icon appears. If a user is logged in

from a Clique Here home client, such as the Chris contact from Figure 2-2, a small

house icon appears. Knowing this single bit of information, along with knowledge

of the daily habits of close contacts, could allow users to make important inferences
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about availability.

The most visible component of each Contact List Item is a thumbnail image,

appearing at the far left. This thumbnail displays the most recent image sent to the

user as part of a Clique Here message. This thumbnail is updated in real time as new

messages arrive to the user from each contact, which means that the user may be

able to infer current availability based on the contents of the picture. The newness of

the thumbnail is communicated through the saturation level of the thumbnail border.

When the image is brand new, the border is a fully saturated blue, and the saturation

decreases linearly in time, leaving the border color gray after 1 hour. The thumbnail

image displayed for the Natalia contact in Figure 2-2 is quite new since the image is

bordered with an almost completely saturated blue.

From the Contact List Screen, the user can navigate to the Message Detail Screen

to observe a more detailed view of a contact’s availability. The navigation to this

screen by a user, will create one of the smile events described in Section 2.1.3. The

smile is communicated to the contact that has been observed through a Picture Alert

Screen pop-up appearing on his mobile client display. After this screen is dismissed,

or after it times out on its own, the observed contact can determine that he has been

smiled at from his Contact List Screen, as a smiley face icon appears on the far right

of the Contact List Item associated with the smiling contact. Adjacent to the icon is

an integer that reflects the number of minutes that have passed since the smile took

place. The smile icon disappears after 15 minutes. The smile icon is kept visible for

15 minutes to make the user aware of the smile within a time frame when it might

be useful as a means to infer availability, augmenting other availability information

provided, or it may provide value simply as an indication that the sender was thinking

of them.

As described in Section 2.1.3, Clique Here allows the user to wave to a contact,

and in contrast to the smile, the wave is manually initiated by the sender. A wave,

by convention, has a stronger connotation in terms of the sender’s desire for verbal

communication. Acting as a lightweight preamble to verbal communication, the wave

is an unintrusive way to deal with any ambiguity left after making inferences based
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on availability information. When a user has been waved at, just as with the smile,

the user is notified via a Picture Alert Screen pop-up appearing on their mobile client.

However, in the case of the wave, this screen does not time out; it appears until the

user dismisses it.

From the Contact List Screen, users can navigate to other screens and access

additional Clique Here functionality using the options menu, shown if Figure 2-2.

The “Roster message” option will bring up the Roster Message Screen, allowing the

user to send a Clique Here message to everyone on his roster. The remainder of the

commands on the option menu are associated with the Contact List Item currently

selected. Selecting “View details” will open the Message Detail Screen, which will

display the full details of the selected contact’s thumbnailed message. If the user

wishes to exchange Clique Here messages with a selected contact, invoking the “Chat

with user” command will cause the Chat Screen to appear. These screens, along

with screens that support their intended purpose (e.g. Audio Capture Screen, Image

Capture Screen), will be described in full detail in the following sections.

2.2.2 Image Capture Screen

An important goal of Clique Here is to enable images captured on a camera phone to

be used as a means for communication. To this end, the Image Capture Screen was

designed to capture images in as few clicks as possible. When the screen first appears,

the viewfinder video feed is displayed in the center of the screen, surrounded by a red

border (Figure 2-3). The user can capture the image shown in the viewfinder at any

moment simply by pressing the fire button, or they can select the “Capture” command

from the options menu. The captured image will then be shown in a preview mode,

shown in Figure 2-4, but some latency exists between the point when the capture

command is invoked and when the image preview appears. This latency is masked

with an animated progress indicator.

In preview mode, the captured image is shown in the center of the screen. If the

user is dissatisfied with the image, he may select the “Re-take” command, and return

to capture mode. Otherwise, the user can choose to accept the image by pressing the
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Figure 2-3: Capture mode of the Image Capture Screen displays the video viewfinder
on the majority of the available screen.

fire button or selecting the “Accept” command from the options menu. Invoking the

“Accept” command will take the user back to either the Roster Message Screen or

Chat Screen, whichever was navigated from to create this image. At that point, the

image will be added to a Clique Here message which is being composed. Alternatively,

if the user wishes to accept the photo and automatically send the CliqueHere message

being composed, they may select the “Accept & Send” command from the options

menu, and the image will become part of a Clique Here message.

2.2.3 Audio Capture Screen

Analogous to the image capture requirements, it was crucial to ensure users could

capture audio media as simply as possible. The Audio Capture Screen went through

significant iteration in order to meet this requirement. The earliest versions relied on

GUI drawn buttons to invoke commands. However, with the 6600 only supporting

traversal based selection, this approach had serious usability issues.

The next iteration moved the commands to the options menu, and the user would

select the “record” command from the menu to begin audio capture. Capture would
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Figure 2-4: Preview mode of the Image Capture Screen displays the image that has
been captured, giving the user the option to accept the picture or re-take it.

end when the user selected the “stop” command from the menu, or after a specified

maximum time. The user could then review the message by selecting “play”, and

send the message by selecting “send”. This approach took too much time for the user

to end the audio capture, since she had to both open the options menu, and select

“stop”. Also, allowing the user to replay the message after it was recorded added an

extra step with marginal value. The common use of voice-mail shows that people are

used to recording audio and sending it without review.

The current iteration simplifies the process further. To begin recording audio,

users press, and hold the fire button. Recording is stopped by releasing the fire

button, or automatically if a maximum duration is reached. Once capture completes,

the clip is automatically accepted, and as in the Image Capture Screen, the clip is

added to the Clique Here message being composed from either the Roster Message

Screen, or the Chat Screen. At these screens, the user has the option to review the

audio message, and discard it if they wish. This means that if they still want an

audio clip included in the Clique Here message, then they will have to re-navigate

to the Audio Capture Screen. Note that the differences in how audio and photos are
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Figure 2-5: The Audio Capture Screen was designed for speed and simplicity. Users
start recording audio by pressing and holding the fire button, and release it when
they are finished.

accepted reflects the observations that users are much more likely to get an audio

recording right the first time.

2.2.4 Picture Alert Screen

When a user receives a smile, wave, or a Clique Here message (sent only to him),

he is alerted via the Picture Alert Screen, shown in Figure 2-6. The behavior of this

screen is slightly different for each of these three events, but the common feature

shared by each is that the screen pops-up and displays a near screen sized image,

leaving room for additional information above it. The image displayed is the most

recent image received from the user that has sent the smile, wave, or Clique Here

message. Above the image, a string reads “<username> smiles(or waves)”. For a

smile, the alert dismisses itself after 5 seconds, but a wave causes the Picture Alert

Screen to remain visible until the user manually dismisses it. When receiving a Clique

Here message from a contact, the Picture Alert Screen displays icons indicating if the

message contains an image, audio clip, or text. These icons are followed by the string
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Figure 2-6: The Picture Alert Screen notifies the user of incoming smiles, waves, and
Clique Here messages (if sent directly to the user).

“Msg from: <username>”.

2.2.5 Chat Screen

Users wishing to communicate one-on-one with a contact may navigate to the Chat

Screen from the Contact List Screen by selecting the “Chat with user” command

from the options menu. The Chat Screen, shown in Figure 2-7, serves two primary

functions: first, to display the history of Clique Here messages sent to and received

from this contact, and second, to provide an interface for composing new Clique Here

messages to be sent to this contact. Message history information appears at the

bottom of the screen. Messages are sorted chronologically with the most recent at

the top. Each message entry features the username of the message sender, written

in red font if the sender was the local user, and blue if the contact sent the message.

A timestamp follows the sender username, indicating the time the message was sent.

On the lines below, a thumbnail image appears if the message included an image

attachment, a black loudspeaker icon appears if the message included an audio clip

attachment, and any text that was included with the message appears.
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Figure 2-7: The Chat Screen is similar to a traditional fixed-Internet IM chat window,
but it has been optimized for the limited mobile device display and augmented to
support multi-media messaging.

Users browsing the Clique Here message list can view the image attachment, if

one exists, at full screen and listen to the audio clip, if one exists, by selecting the

“View details” command from the options menu. This takes the user to the Message

Detail Screen. Also, the entire message history can be cleared by the user by selecting

the “Clear conv.” command from the options menu.

The top portion of the screen is dedicated to message composition. A standard

text box appears, allowing the user to enter a text message. Multi-media components

may be added to the message by invoking either the “Image message” or “Audio
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message” commands from the options menu. These commands bring up the media

capture screens described in the sections above. As long as at least one media type

(text, image, or audio) is added to the outgoing message, it may be sent via the

“Send” command.

2.2.6 Message Detail Screen

Abbreviated representations of Clique Here messages appear both in the Contact List

Item of the Contact List Screen and in the message history list of the Chat Screen.

Selecting the “View details” command while either of these abbreviated forms are

selected brings up the Message Detail Screen, shown in Figure 2-8. This screen

allows the user to view the full detail of a Clique Here message. The top line of

the screen displays the sender username, followed by the message timestamp. Clique

Here message content appears below this line. If the message contains an audio

clip, a loudspeaker icon appears to indicate the attachment’s existence, and the user

can hear the clip by selecting “Play voice IM” from the options menu. The next

component that may appear is a full-screen version of the image attachment, if one

exists. Finally, if a text component of the Clique Here message exists, it will appear

at the bottom of the screen.

2.2.7 Roster Message Screen

Clique Here allows users to communicate with all of their contacts in an unintrusive

fashion using text, audio, and image media to provide expressive availability infor-

mation, to share important events, or to share a random glimpse into their daily life.

This broadcast function is provided to the user through the Roster Message Screen.

This screen is a simplified version of the top portion of the Chat Screen, allowing

users to quickly create and add content to Clique Here messages. The important

difference in the function of this screen is that these Roster Messages are intended to

communicate information to all of the user’s social contacts, and thus the messages

are delivered to each contact on the user’s roster. Also, when a contact receives a
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Figure 2-8: The Message Detail Screen presents all components appearing in a given
Clique Here message (image, audio, or text).

Roster Message, the Picture Alert Screen is not displayed because it would be dis-

tracting to do so in response to each broadcast message. The user’s Contact List Item

is updated, but the recipient is not interrupted with an alert. This way, recipients

will notice the information when they are interested in the user’s availability and they

decide to browse the user’s Contact List Item.

2.3 Home Client

The Clique Here home client interface was designed to address the low technology

threshold of its target usergroup, parents and grandparents. Both Mynatt et.al. in

the Digital Family Portraits project [16] and Lakshmipathy et.al. in the TalkBack

answering machine project [10] make use of a public display, in the form factor of a

typical picture frame, to minimize the technology barriers of their systems. Incorpo-

rating the user interface into a familiar household object makes the presentation of

information natural and unobtrusive. The Clique Here mobile client has adopted this

user interface concept.

The home client runs on a wireless tablet-style device, shown in Figure 3.5 that
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Figure 2-9: The Roster Message Screen allows the user to quickly create a Clique
Here message and send it to the contacts on his roster.

was originally designed to provide consumers with a convenient, portable way to

browse the web. With the touch-screen and the ability to run custom Java applets,

this tablet device was an ideal candidate to support a simple, accessible home client.

Ideally, the client would be placed in a visible, but out-of-the-way, place in the home,

allowing the content being displayed to provide awareness, without being intrusive.

Once logged onto the home client, the latest images sent from each of the user’s

contacts are part of a looping slide-show that runs full-screen on the device. Below

each image, the contact username is printed, followed by a text message, if one was

included in the Clique Here message. If no text message was attached, the contact

username is followed by a timestamp indicating when the message was created. When

a new message arrives, a subtle audio icon is played, to notify the user, in case they’re

available and interested. Should the user wish to inspect a particular message, they

simply touch the client screen when the image message appears. This will halt the

image scrolling, and any audio attached to the message will be played. When the

user touches the screen a second time, the normal scrolling mode continues.
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Figure 2-10: The Clique Here home client.

Figure 2-11: If a user has included text in a Clique Here message, it will be shown in
the Clique Here home client below the user’s current image.
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Chapter 3

Design and Implementation

This chapter describes the software architecture of the Clique Here system. At a

high level, Clique Here is a client-server messaging system. Many systems fitting

the same description have been designed very well and implemented for the fixed

Internet. As a multi-media messaging application for the mobile Internet, the Clique

Here design space is less mature. Many of the Clique Here system requirements map

to computational, bandwidth, and API capabilities that have only recently become

available, and thus, few best practices exist to assist design decisions.

This chapter is divided into five sections. The first section discusses system-wide

design decisions and rationale at the software level. The second section discusses

design decisions at the protocol level, and the relationship between these decisions

and decisions presented in section 3.1. The third section begins the discussion of each

Clique Here component by introducing the Clique Here server. The fourth section

describes the focus of the design effort for this project, the design of the Clique Here

mobile client. Finally, this chapter concludes by explaining the Clique Here home

client design.

3.1 System Wide Constructs

The Clique Here system is a 100% pure Java implementation. The Clique Here

server is implemented with Java Servlets, the Clique Here home client is a Java
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Applet, and the Clique Here mobile client is a Java MIDlet. Details on the design

and implementation of each of these individual components is provided in sections to

follow. In this section, we discuss the system constructs that reap the design benefits

of Clique Here’s consistent use of Java.

3.1.1 Java Package Structure

Figure 3-1 shows the Java package structure of the Clique Here system. The pure

Java system implementation allowed classes used by all components to be “factored

out”, and placed in the cliquehere package. Component classes are placed in pack-

ages below the cliquehere package, each depends on the cliquehere package, but

there are no dependencies between component packages. Component packages also

depend on the cliquehere.exceptions package. Each component compiles with a

different JDK, J2ME MIDP 2.0 for the mobile client, J2SE 1.3 for the home client,

and J2EE 1.4 for the server. This Clique Here package structure simplifies system

builds and incremental updates to shared classes since if an update is made to a

shared class, the change does not have to be copied somewhere so that other compo-

nents can build against the change. Instead, components build the source within their

package with their respective JDK, as well as the source in the shared cliquehere

and cliquehere.exceptions packages.

3.1.2 ChatConstants Interface

The Clique Here package structure not only allows the system to share important

classes for reuse and modularity, but it also provides a mechanism to maintain consis-

tency in constant values that must be used throughout the system. The ChatConstants

interface does exactly that. Several classes in each component package implement the

ChatConstants interface to gain access to Clique Here globals.
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Figure 3-1: The Clique Here package structure takes advantage of the fact that each
Clique Here component has been implemented in some form of Java.

3.1.3 ComPackage Class

The ComPackage class encapsulates the different forms of data that must be com-

municated between client and server to support the functionality of the system. In

general, a ComPackage has two components, a package type and payload data. The

package type identifies the purpose for the communication, and the payload data

may be different, depending on the package type. For example, when a client sends a

ComPackage of type SMILE MSG to another client, via the server, there is now payload

data added to it, but when the recipient processes the packages, the semantics of the

package are clear just from the type. Also, if a client sends a NORMAL MSG to another

client, via the server, when the recipient processes the message, she will know tho

expect a HeavyMessage object as payload. Table 3.1 lists each possible ComPackage

type, and the entities that send and receive each. MIDP 2.0 Objects do not provide

their own serialization. To cope, serialization methods were defined manually for

ComPackage objects, and for all objects contained within.

The functionality the the ComPackage class provides is a classic fit for utilizing

the power of object-oriented design with inheritance. Instead of these ComPackage
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Type ID: Sent By: Sent To:
GROUP MSG client group of clients 1

NORMAL MSG client one contact client
SMILE MSG client one contact client
WAVE MSG client one contact client
ROSTER REQUEST client server
ROSTER server client
SERVER MSG UIDS REQUEST client server
SERVER MSG UIDS server client
COM PAK BATCH client OR server server OR client 2

POLL FOR NEW COM client server
RETRIEVE OFFLINE MSGS client server
LOGIN client server
QUERY ERROR server client
RETRIEVE MSG client server
DELETE MSGS client server
MSGS DELETED server client
ACK server client

Table 3.1: ComPackage types and their movement.

objects having a type field, and different payload objects that are dependent on this

field, each package type could be implemented as a subclass of ComPackage. This

approach was not selected, however, because it would result in approximately twenty

more classes to be added to the system. Issues relating the number of classes in the

system to JAR file size and performance are discussed in Section 3.4.

3.1.4 HeavyMessage Class

In contrast to ComPackage objects that support communication between client and

server, HeavyMessage objects encapsulate the data that makes up a Clique Here

message. ComPackages of type GROUP MSG and NORMAL MSG contain a HeavyMessage

object as payload. Each of the Clique Here system components (server, mobile client,

home client) depend on HeavyMessage objects to move Clique Here messages between

each other. Image, audio, and text attachments are stored as member variables,

along with meta-data (e.g. sender, timestamp, etc.). Since HeavyMessage objects

store the multi-media attachments as member variables, they consume a significant

40



amount of heap resources. To address this, clients implement a wrapper class around

HeavyMessage, which will be discussed in section 3.4.

3.1.5 Exception Strategy

With the complexity of the Clique Here system, error handling and exception strategy

could not be an afterthought if the system was to be maintainable. In Java, exceptions

are the subject of many debates. The language construct offers a powerful tool for

dealing with error conditions, but exceptions are not used consistently in practice.

In an article published on JavaWorld [5], Brian Goetz presents a novel technique

he calls “Exception Chaining” to balance the trade-offs between different exception

strategies.

All Java exceptions inherit from the class Exception. Progeny of this class may

be general, such as the IllegalStateException or they may be very specific, as in

the NoRouteToHostException. The issue addressed by the article is the relationship

between the specificity of exceptions thrown by developers in the methods they write,

and the burden placed on developers who call these methods.

It is cumbersome to catch several exceptions when calling a method. If the burden

is too great, it could lead to the poor programming practice of catching the superclass

Exception. However, if more general exceptions are thrown, then crucial information

describing the error condition will not be available at runtime. Exception chaining

resolves this issue by allowing more general exceptions to be thrown, while preserv-

ing import debugging information. This is done by writing a wrapper around the

Exception class. This class has the same interface as the Exception class, except

for an additional constructor that can take an exception as an argument. In Clique

Here, this wrapper class is ClientException, and all other user defined exceptions

in the system are sub-classes.

With exception chaining, a developer implementing a method can catch the spe-

cific exception thrown in his code, and translate it to something more general by using

that exception as an argument to construct a ClientException, or one of its sub-

classes. If the exception is thrown at runtime, the stack-trace of the general exception
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will include the stack-trace of the translated, specific exception as well.

3.2 Communication Protocol

This section describes the protocols selected for client-server communication.

3.2.1 Network Transport Protocol: HTTP vs. Sockets

Clique Here is a client-server messaging application. Clients must send messages

asynchronously to the server for routing, and appropriately, recipient clients must

receive these messages asynchronously from the server. For these basic requirements

to be met, Clique Here clients need both a pull and a push from the server. This

need alone points the Clique Here network transport protocol choice toward two-

way channels such as TCP sockets; instant messaging solutions of the fixed-Internet

have gone this route. However, this choice required a careful evaluation against the

important design constraint created by the limited data capabilities of the mobile

device.

TCP is a connection-based protocols, meaning that even when application data is

not moving between client and server, bits will be moving to maintain the connection.

This is undesirable when bandwidth is small and costly, as with the mobile device. A

second issue with TCP is their support is only optional in the MIDP 2.0 specification,

the API used to develop the mobile client. The Clique Here mobile client hardware

does claim to support sockets, but developer forums have cited many issues in practice.

Also, mobile data connections do not maintain consistent availability. Walking into

basements, elevators, or some buildings can cause the connection to be lost. Since

TCP sockets need to maintain a constant connection, if the network is not available,

the socket connection will be lost, and the connection will have to be re-established

when the device has better data service.

HTTP support, however, is required for devices implementing the MIDP 2.0 spec-

ification, and connections are terminated after after the request-response exchange is

complete. This means that the protocol will fail more elegantly when the network
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connection is unavailable; if an HTTP request fails, it can simply be resent periodi-

cally, until it does become available. Also, many MIDP 2.0 forums recommend the

use of HTTP over TCP or UDP for client server applications. The difficulty with

HTTP is that it does not provide a mechanism for the server to push data to the

client asynchronously. Considering each of these trade-offs, HTTP was selected as

the network transport protocol for Clique Here, and the application uses a common

technique to resolve the push issue. The client polls the server at short ( 5s) intervals

to determine if new data is waiting, and if so, the data is downloaded. The means

that bits are moving across the connection, event when data isn’t being sent, just

like with TCP sockets. With HTTP polling, however, the application has control

of this data movement, which is important because should it be desired for network

resources to be conserved, for example, the polling interval could be increased.

3.2.2 Application Protocol: Binary vs. XML-RPC

Two major directions for the Clique Here application protocol were considered. The

first was to implement a custom binary protocol, and the second was to leverage

popular XML based open message passing protocols such as SOAP or XML-RPC.

The trade-off between these choices is overhead versus flexibility and extensibility.

XML driven protocols create overhead in two different areas. First, an XML parser

does not ship with MIDP 2.0 implementing devices, and thus one must be added to

the application package. This will add approximately 100k to the jar file size[19].

The second area of increased overhead is in the size of messages. With these XML

protocols, a message with zero data payload, even with XML compression standards

such as WBXML, the message size will still be on the order of one kilobyte in size[19].

This is a significant issue since the choice of HTTP as a network transport layer

requires the Clique Here client to poll the server with a minimal data message, every

few seconds. After reviewing the trade-offs between these two directions, it was

determined that the flexibility benefits of these XML protocols did not outweigh the

costs. Thus, Clique Here implements a custom binary application protocol designed

to preserve as much flexibility as possible.
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3.2.3 Recursive Serialization

A ComPackage may have the type COM PAK BATCH. In this case, the payload of the

ComPackage is a vector of other ComPackages. This allows many ComPackages to

be sent as one request. This becomes important when communicating over HTTP

because the round-trip time per request is a significant cost, 8s on the Nokia 6600

to the server when only a trivial amount of data is sent. Batching these packages

limits the round-trip cost to one request. When a COM PAK BATCH package arrives at

the client or server, it is deserialized to extract the payload ComPackages, then these

are individually sent to the switch statement for processing based on type.

3.3 Clique Here Server

The choice to use J2ME MIDP 2.0 to develop the Clique Here mobile client was

based on an evaluation of that API against the project requirements. The Clique

Here server platform choice, J2EE 1.4 Servlets, was made to best support the client

API decision. Compared to the Clique Here client implementation, the Clique Here

server is rather simple, serving two primary purposes, to appropriately route Clique

Here messages, and to store Clique Here message state.

The server is deployed with the Apache Tomcat 4.0 application server. Tomcat

is open-source software that offers typical webserver functionality, though not opti-

mally, and supports client-server applications developed with either Java Servlets or

JavaServer Pages.

With HTTP selected as the Clique Here network transport protocol, and with

serialized ComPackage objects selected as the application protocol, the general com-

munication flow is as follows. All requests made by the client to the server are

done via HTTP Posts, and a serialized ComPackage object is written to the output

stream. The ComPackage type may be any of those listed in Table 3.1 which are

indicated as being sent by the client, or if the client has no particular request to

make, POLL FOR NEW COM requests will be made at a periodic interval. The server will

receive the request, deserialize the bytes into a ComPackage object, and identify its

44



Figure 3-2: This Module Dependency Diagram shows the uses, implements, and
extends relationships between the classes making up the Clique Here Server.

type. Based on its type, the server will perform the requested action, if provided valid

data. The server closes the loop by creating the appropriate response ComPackage,

serializing it, and writing the bytes to the response stream.

This section describes the role that relevant Clique Here server classes have in the

process described above, implementation details of the server, and provides rationale

for design decisions.

3.3.1 CliqueHereServlet Class

Receiving and responding to HTTP requests is done by the CliqueHereServlet class,

which extends Servlet. Java Servlets give you multi-threading for free, meaning that

with each new request, a new thread of execution is forked off to handle and respond

to the request. When the CliqueHereServlet object receives an HTTP request, it

quickly passes the input and output streams to the ClientProtocolHandler, where

the processing of the request is done. Once the ClientProtocolHandler has pro-

cessed the ComPackage and written the response to the output stream, execution is

returned to the servlet class, and the thread terminates.
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3.3.2 ClientProtocolHandler Class

To hand-off ComPackage processing to the ClientProtocolHandler, the CliqueHereServlet

calls the handler’s doPost() method. The handler first reads the bytes from the in-

put stream and deserializes them into a ComPackage object. The package type is

then extracted and applied to a large switch statement containing clauses to han-

dle every possible incoming ComPackage request. These handler methods generate

the appropriate ComPackage response, serialize it, and write the bytes to the output

stream.

To support the “virtual push”, accomplished through small interval client polling,

packages sent to a user need to be added to a queue on the server that can be emptied

when a POLL FOR NEW COM request arrives. If the handler receives a package for a user,

and that user is online, then the ComPackage is added to such a queue. When a user

polls for messages, and the queue is not empty, the ComPacakge objects in the queue

are sent to the user as a COM PAK BATCH.

If the recipient is offline, however, the ComPackage is not stored in this queue.

This queue is solely for the purposes of supporting the “virtual push”, and is thus

irrelevant to offline users since they won’t be polling. Regardless of if a user is online

or not, if a package arrives for him that contains a HeavyMessage object, then the

message is stored in the MessageDB object for later retrieval.

3.3.3 Media Transcoding

Audio recorded on the Nokia 6600 is encoded with the 3GPP Adaptive Multi-Rate

(AMR) codec, an open speech codec which significantly compresses the size of speech

audio files. The Clique Here home client hardware can only play 8kHz 8-bit audio,

encoded in Sun’s AU format. To allow audio clip portions of Clique Here messages

to play on the home client, the server transcodes the audio from AMR to the AU

format with the correct parameters.

When the server queues a message for a user, it determines if the user is logged

into a home client, and thus needs the message audio transcoded. If so, the server

46



shells out to two binary audio conversion utilities in serial. First, the server calls

a Sony-Ericsson AMR to WAV converter. Then, the server uses the SOX utility to

make the WAV to AU conversion. The transcoded audio is then copied to a folder

accessible by the webserver so that the home client Applet can retrieve the audio.

Image media may also require transcoding. Images captured on the 6600 have

VGA resolution (640X480). This data is sent to the server at full resolution so that

it may appear with the best possible quality if routed to a home client. However,

contacts logged onto mobile clients have no need to receive the image at full resolution

since their display can only display images as large as 174X143 pixels. Therefore, to

improve resource efficiency, the server scales down images that are addressed to mobile

clients.

3.3.4 MessageDB Class

CliqueHere messages are stored on the server until they are deleted in order to support

the Clique Here message caching strategy, which is described in detail in section 3.4.3.

Message persistence on the server also allows users to retrieve messages received

while offline. The MessageDB class maintains this state. Messages are stored in this

object within a member variable collection object, which means that these persistent

messages are stored on the server heap. This strategy is adequate for the purposes

of this project. However, a production system would need to store its state in a

relational database.

3.3.5 UserDB Class

Like persistent message data, user data is stored in a class object, namely UserDB. The

ClientProtocolHandler object uses data stored in the UserDB object to determining

who is on each person’s roster, what groups contacts are placed in, etc. Again, if this

were a production system, this state would need to be stored in a database.
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3.4 Clique Here Mobile Client

The Clique Here mobile client is implemented as a J2ME MIDP 2.0 MIDlet running

on a Nokia 6600. Among the components of this system, the mobile client has both

the broadest functional requirements and the tightest resource constraints, making it

the most important subject of design in the system. Best practices offered by MIDP

device manufacturers stress the importance of minimizing the size of a MIDlet’s JAR

file[20], a file containing the compiled application. Some older devices will not even

accept a JAR file over 50k. The size of a JAR file, of course, depends on the total

amount of code contained in the file, but more importantly, it also depends on the

number of classes in the file, regardless of the amount of code contained in each

class. For this reason, these best practices suggest avoiding the use of design patterns

that require additional classes and to limit the use of Java interfaces. Unfortunately,

following this best practice would be a severe hindrance to effective software design,

and it would leave an application, of the complexity of the mobile client, inflexible

and unmaintainable.

The approach taken to design the mobile client was to ignore this best practice

regarding JAR file size and to use whatever principles of software design that were

judged to yield a robust, flexible, and maintainable application. The only exception

to this is the implementation of the ComPackage, described in Section 3.1.3. Also, the

catch to this plan was that if performance issues appeared due to the size of the JAR

file, then an effort would be made to combine classes, but only as an optimization step

after the system was functionally complete. In practice, the JAR file size never became

an issue, and the software design efforts that went into the client were preserved.

This section highlights the important design decisions made in the development

of the Clique Here mobile client.

3.4.1 Model View Controller

Model View Controller (MVC) is a popular design pattern among GUI applications.

Introduced by Steve Burbeck at Xerox PARC [1], the pattern calls for the software
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to be separated into three components (Model, View, and Controller) and to allow

only certain dependencies between each component. The role of the model is to

manage the behavior and data of the application domain, respond to requests for

information about its state, and respond to instructions to change state. In terms of

dependencies, the model has no knowledge of either the controller, or the view. The

view component manages the visual display of state provided by the model, and the

controller component manages the user’s interaction with the system.

The Clique Here mobile client implements a common adaptation of the basic MVC

pattern. The view and controller components are combined into one piece. This is

done implicitly because MIDP 2.0, like most modern languages, has a GUI toolkit,

javax.microedition.lcdui, used to create both view and controller functionality,

and the toolkit defines the relationship between the two.

The Clique Here mobile client module dependency diagram, shown in Figure 3-

3, graphically describes the implementation of the MVC pattern. The model and

view/controller are only connected by one dependency, CliqueHereMIDlet, the cen-

tral view/controller class, depends on Client, the central model class. The model does

need to push data to the view/controller in some circumstances, but the MessageListener

interface maintains the abstraction.

The MVC pattern was implemented by the Clique Here mobile client to provide

the application with flexibility. With no dependence existing from the model to the

view/controller, a significant amount of re-use could be achieved if the client had to

be ported to a different MIDP device, especially if that device was a MIDP 1.0 device.

Since most MIDP 2.0 improvements over 1.0 are in UI functionality, porting the client

to a MIDP 1.0 device would require a significant rewrite of the view/controller. The

Clique Here mobile client model, however, only depends on the MIDP 1.0 API, and

it could be completely re-used.

3.4.2 ResourceConsumer and ResourceHandler Classes

As the Clique Here mobile client is used to capture messages, the audio capture

device will be loaded and unloaded several times. Similarly, on many occasions the
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audio playback device will be started, stopped, loaded with new data, etc. The image

capture device goes through similar cycles. The MIDP 2.0 API’s used to control the

states of these multi-media devices are convoluted and inconsistent among devices.

This leads the common task of performing such state changes to be burdensome and

error prone. The ResourceHandler interface was created to address this issue by

providing a clear and consistent interface for setting the state of objects that must

acquire scarce resources, and complying to a consistent contract for the result of such

state changes.

The UNREALIZED state is the lowest resource consuming state of the interface. The

UNREALIZED state is different than the others since the only method that can be called

to promote the object from this state is realize(). This is because, by definition, an

object in the UNREALIZED state is not associated with any state data (e.g. an audio

clip to play, a certain format to use for audio or image capture, etc.). The realize()

method will be called with the required state data as an argument, and since the

object cannot be promoted without this data, realize() is the only method that

can promote the object to the next highest state, REALIZED. The REALIZED state is

defined as the lowest resource consuming state where the object is associated with

the any required state data. The unrealize() method, however, can be called when

the object is in any state, and the result will be that the object is demoted to the

UNREALIZED state.

The prefetch() method promotes the object from the REALIZED state to the

PREFETCHED state. This state is defined as the state where all prefetchable scarce

resources have been acquired, and the thus the state offers the shortest latency for

starting the object. To return to the REALIZED state from the PREFETCHED, the

deallocate() method must be used. The next promotion, from PREFETCHED to

STARTED is achieved by calling the start() method. The STARTED state definition

is intuitive (audio recording, audio playing, image being captured). The object is

demoted back to the PREFETCHED state by calling the stop() method.

In the description of this interface, all method calls have been introduced as either

promoting up one level or demoting one level. The contract for a promotion method,
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however, is that if the current state is less than the promotion state, then the result

of calling the promotion method will be moving the object to the promotion state.

This means that if the object is in the REALIZED state, and the start() method is

called, prefetch() is implicitly called and the object moves to the STARTED state.

The only exception to this, described above, is when the object is promoted from

the UNREALIZED state. Demotions carry an analogous contract. Also, if a demotion

method is called when the object’s current state is less than or equal to the demotion

state, then the call is ignored. The same goes for promotion methods, if the object is

currently in a higher state than the promotion state, the call is ignored.

The ResourceConsumer is intended to be a common interface to screens that

contain the multi-media components. It is almost identical to the ResourceHandler

interface, only it does not support the STARTED and STOPPED states. Screens have this

subset of functionality because it does not make sense for a screen to have a public

start() and stop() method.

3.4.3 Cache Strategy

The Clique Here mobile client provides the user with persistence of their Clique

Here messages. To mitigate the storage burden associated with this feature, while

optimizing the latency users will have to tolerate in order to view their Clique Here

messages, the Clique Here mobile client implements a three level caching strategy

for multi-media messages. When Clique Here messages are transported over the

network, they are delivered to the client as HeavyMessage objects within the payload

of ComPackage objects. The HeavyMessage objects contain multi-media data that

was sent with the message. If the Clique Here mobile client were to simply keep a

collection of HeavyMessage objects to provide users with persistent messages, heap

resources would quickly run low rather quickly. Instead, the mobile client defines a

wrapper class around HeavyMessage, LightMessage.

Soon after HeavyMessages arrive at the Client, a LightMessage is constructed,

using the HeavyMessage as a parameter. The LightMessage object offers the same

interface to the user as the HeavyMessage, but there are two significant differences
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between the classes. First, if the HeavyMessage contains an image, a thumbnail image

is created, and added to the LightMessage. This small amount of image data is

always part of the LightMessage, and can be used to represent the image, regardless

of where the full image is in the cache hierarchy. The second major difference is

that the full-size multi-media may not always be stored as a member variable of the

LightMessage object, and thus stored on the heap. The data will lie in one of three

places in the multi-mdedia data cache hierarchy. Clique Here message persistence is

provided by the Client maintaining a collection of LightMessages. The smallest level

of cache, but most expensive, is the heap. When the LightMessage is first created,

the HeavyMessage object is stored as a member variable. When, the getAudio() or

getImage() methods of LightMessage are called, the LightMessage object simply

calls the methods of the same name in theHeavyMessage object, which is stored as a

member variable. The Client class keeps track of which LightMessages have their

data stored on their heap, and it tracks LRU data. When a new LightMessages is

created, if the maximum number of LightMessages storing their data in the heap

is reached, then the LRU has the HeavyMessage removed from its heap, its member

variable storing the message is set to null.

The second level of cache in the system is local persistent memory. When a

LightMessage is created by a client, if it contains multi-media data, the associated

HeavyMessage object is serialized and written to local memory. The system also has

a maximum number of messages that can be stored in local memory, and again, when

that maximum is reached, the LRU is removed from local memory. If the getImage()

or getAudio() methods are called when the data is stored in local memory cache, the

LightMessage object will first check its local heap to determine if it has the message,

if it does not, then it will call a method from the Client object that will return the

cached HeavyMessage, if it is present.

The third level of cache is storage over the network on the server. Clique Here

messages are stored on the server until they are deleted. A maximum number of

messages could be set for this level as well, and the system could just force the user

to delete messages if the max was reached, but the maximum should be considered to
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be a large number since storage on a server is cheap. If the getAudio() or getImage()

methods of a LightMessage object are called, and the multi-media data is neither

stored on heap as member variable, nor in persistent phone memory, then the Client

sends a RETRIEVE MSG ComPackage to the server, and by contract, the server will

return the appropriate HeavyMessage.

3.4.4 ComEngine Interface and HttpComEngine Class

Section 3.2.1 describes the rationale behind the decision to use HTTP as the network

transport protocol. However to maintain flexibility in the system, the mobile client

was designed to abstract the choice of network protocol. This abstraction is provided

through the ComEngine interface. The Client class depends only on the ComEngine

interface for communications capabilities which provides the Client object with every

function necessary for communicating with the server, but the interface methods are

only dependent on the communication protocol at the application protocol level, since

the interface references ComPackage objects. The HttpComEngine class implements

the ComEngine interface, and provides the actual communication over HTTP. If fu-

ture requirements and capabilities change such that communication over TCP sockets

becomes more advantageous, the flexibility provided by this abstraction would signif-

icantly reduce the programming effort required to update the mobile client software.

3.4.5 Screen Navigation

Windows based OS, found on most desktop computers, allow the application devel-

oper to create modal dialogs, windows that perform a certain function and return

control to a parent window upon completion. Most mobile devices, including the

Nokia 6600 adopt a screen based UI, which is similar in function to a web browser.

Only one screen may occupy the display at a time, and there is no mechanism pro-

vided to support a parent-child relationship between two screens. Many times in the

mobile client UI, however, the user will navigate to a screen and he will wish to return

to the screen he came from once he dismisses his current screen. Small MIDlet appli-
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cations, with few screens, can get away with hard-coding the application’s behavior

upon screen dismissal. The scope of the Clique Here mobile client required a more

general approach.

The Utils.BreadCrumbTrail interface is implemented by every Displayable

class in the mobile client, and by the PresentLifeMIDlet class. Also, when ev-

ery screen is created, it is passed the Displayable object that considered its par-

ent, casted as a Utils.BreadCrumbTrail. The only exception is the root screen,

ContactListScreen, which is passed the PresentLifeMIDlet object, casted as a

Utils.BreadCrumbTrail, when it is created. The PresentLifeMIDlet object main-

tains a stack representing the navigation path between the root screen, ContactListScreen,

and the current screen. The PresentLifeMIDlet object is able to maintain this

navigation history stack because all navigation in the system is done by calling

Utils.BreadCrumbTrail methods. These methods provide several navigation op-

tions (e.g. moving back one screen, moving back to the root screen, moving to a

new screen, moving to a new screen and crushing the history stack, etc.). The imple-

mentation of each of these methods within the Displayable objects is trivial, each

method just calls the same method of its parent BreadCrumbTrail object, this idea

is the source of the name “BreadCrumbTrail”. This means that the method call will

move all the way down the navigation stack until it reaches the CliqueHereMIDlet’s

implementation of Utils.BreadCrumbTrail. At this point, the midlet appropriately

changes the displayed object based on the method call and the navigation history

stack. The bread crumb trail concept has enabled effective screen based navigation

for the Clique Here mobile client, in a general fashion.

3.4.6 StatusAlert Class

Significant latency exists between many events in the mobile client. Sending an HTTP

post to the server with a multi-media containing Clique Here message will take several

seconds. Getting a response from the server will take even longer. Acquiring resources

for audio capture and playback can take several seconds. Even switching to screens

that are not constructed until a user navigates to them will take at least one second
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to load. The mobile client attempts to mask this latency with effective thread use.

If a user starts a high latency process, and his next actions are not dependent on the

results of this process, then the process is forked off into a new thread and control

is returned to the user. An example of this case is when a user sends a large Clique

Here message. The user trusts the the message will be sent successfully, so he does

not have to wait for confirmation that it was. Even if the send did fail, the system

can retry on its own without user intervention.

The client also attempts to mask latency by forking off threads to prefetch scarce

resources when it is probable that they will soon be used. An example of this case

in the client implementation is when the Roster Message Screen is loaded, the audio

capture object is prefetched, since there is a good chance that the it will be needed.

However, many occasions exist where thread usage cannot adequately mask latency.

In these cases, the user must wait until a process finishes before they can move on. If

the length of time the the user waits is greater than 200ms, then the user will notice

the delay and perceive the system to be unresponsive, unless an indicator of system

status exists[2].

The StatusAlert class implements a progress bar that can be used to provide

the user a responsive update of system status during periods of latency. A global

StatusAlert object is created when the system is initiated to allow the screen to be

immediately displayed when needed. The MIDP 2.0 does ship with the Guage class,

which provides minimal progress bar like functionality, but the implementation on

the Nokia 6600 contained known issues that rendered it unusable.

3.5 Clique Here Home Client

The Clique Here home client is implemented on an Intel Web Tablet, a consumer

electronics device that was never released to the marketplace but was made avail-

able to the Media Lab for research purposes. With a wireless networking capability,

embedded speakers, a touch-screen, and a specified ability to display J2SE 1.3 Java

Applets, the device was and ideal fit against the functional requirements of the home
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client application.

While developing the software to run on the web tablet, however, it was discovered

that the web tablet’s implementation of the J2SE 1.3 Java Runtime Environment was

incomplete. Among many minor inconsistencies, two major absences from the J2SE

1.3 specification were the support of Java Swing UI components and support for

socket connections. To work around these issues, the Clique Here home client uses

the older AWT GUI toolkit and communicates with the server via HTTP in a similar

fashion to the mobile client.

The home client runs on the web tablet as an Applet embedded in an HTML

document. The HTML document is deployed from a web server on the same host

that deploys the CliqueHereServlet. Deploying the applet from the host that runs

the server is a requirement because the Java Applet security model will only let

Applets establish connections to the host that deployed the Applet. The home client

is started by sending a request for the HTML document containing the Applet, from

the browser.

3.5.1 HomeApplet Class

The relatively low complexity of the Clique Here home client did not necessitate an

implementation of the MVC pattern, as in the mobile client. Instead, the HomeApplet

class both manages the client state and controls the user-interface. HomeApplet ex-

tends the Applet class, and when the init() method is called, the client logs into the

server the same way the mobile client would. With the simplicity of the design, the

only intended interaction users are to have with the interface is touching the screen to

stop the image scrolling, browsing the selected image, and listening to the associated

audio clip, should any exist. If the user does this, then a smile message will be sent

to the user that is being observed.
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3.5.2 Communication Engine

Communication in the Clique Here home client is done almost exactly as it is in the

mobile client. The HttpComEngine class, the class that provides the client with the

methods to perform server communication, is implemented exactly the same in the

home client, as in the mobile client. The HttpPoster class, the class that actually

sends and receives data via HTTP, however, is different, as the J2SE 1.3 connection

API much different than that of MIDP 2.0.
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Figure 3-3: This Module Dependency Diagram shows the uses, implements, and
extends relationships between the classes making up the Clique Here mobile client.
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Figure 3-4: This Module Dependency Diagram shows the uses, implements, and
extends relationships between the classes making up the Clique Here home client.

59



60



Chapter 4

Related Work

This chapter explores related research in order to ground the motivation for this

thesis.

4.1 Instant Messaging

Instant messaging (IM) has become a popular communication modality used by peo-

ple for social and professional purposes alike. Nardi et.al., in their substantial con-

tribution [17], present results of an ethnographic study observing the expected and

unexpected uses of IM in the workplace. The practical uses of IM show it to com-

plement synchronous modes of communication by fostering a greater efficiency for

particular communication tasks, and by fostering interaction that many not occur at

all without the system.

The study identified several features of IM that, offered together, improve upon

the shortcomings of traditional communication platforms. The list of such features is

paraphrased in the list below.

Awareness: A value of awareness information is that it can assist users in making

better decisions about when to initiate communication, which becomes more im-

portant as the intrusiveness of the desired method of communication increases. IM

systems introduced the concept of a buddy list, a text list containing the usernames

of contacts who are currently logged onto the system. This list is augmented with
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icons and visual variables to indicate if a contact has recently been active on his PC,

termed “idleness” by the system, and if he has set an away message. Together, these

three pieces of data (online status, idleness, away message state) provide IM users

with a sense of awareness of their contacts availability.

Plausible deniability: While the buddy list provides IM users with a sense of aware-

ness of their contacts availability, the exact level of availability remains ambiguous.

This means that if a user sends a message to one of his contacts, but does not get

a reply right away, the instant message recipient could have ignored the message, or

could just be away from his desk. The ambiguity provides the recipient with plau-

sible deniability, and effectively redistributes the control of communication initiation

evenly between sender and receiver, shielding the recipient from social obligation.

Immediacy: Given a capable network connection, instant messages arrive to re-

cipients near instantaneously. When messages arrive, they typically invoke an audio

alert, and a chat window is shown on the foreground of the PC display. Senders

can have confidence that if the recipient is available, they will observe the incoming

message. This offers an advantage over e-mail, where a recipient only sees new mes-

sages when she manually checks her inbox, and it even offers an advantage over the

telephone where callers have to wait for a number of rings before they are connected.

Low attention demand: The asynchronous nature of IM, along with the ambiguity

mentioned above, leads the system to afford multi-tasking. Users could talk on the

phone and IM in parallel, or work directly on their computer and respond to incoming

messages intermittently, as they choose.

The last three features highlighted above denote IM as a lightweight mode of com-

munication. Lightweight communication can be generalized as communication that

places minimal burden, of any kind, on either the sender or recipient. Lightweight

communication makes communicating with social contacts more probable. Even de-

spite the time constraints imposed by deadlines and necessary task oriented commu-

nication at the workplace, a person may find himself thinking about a family member

in a brief moment of free time, but without lightweight communication, the family

member being thought of probably would never know about it. It would be extremely
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difficult for this person to call his family member to connect, but limit the conver-

sation time to one minute. Even if he could, the phone conversation would require

his full attention. Systems supporting lightweight communication, such as IM, en-

able people to make brief connections with their social contacts. Communications as

simple as “good morning” or “I miss you” become reasonable, even in the presence

of work obligations.

Lightweight communication can even make synchronous communication with so-

cial contacts more probable. With no awareness information about a social contact, a

person might hesitate to call, knowing they might be busy, unless they had something

urgent to discuss. Lightweight communication provides a socially acceptable way to

query a contact’s availability in the absence of adequate awareness information. For

example, if a girlfriend IMs her boyfriend at work saying, “I need to ask you some-

thing when you have a chance”, then the boyfriend will not be bothered by the query,

and he can decide for himself how to respond to the communication. If he is very

busy, he can just ignore the message, taking advantage of plausible deniability. He

may also choose to respond via IM to find out more information, and maybe finish the

conversation over IM. Alternatively, the message may have arrived during a period

of free time, in which case he might pick up the phone to engage in a synchronous

conversation.

Though Nardi’s study focused on PC instant messaging clients, the lightweight

and awareness features would be just as valuable to the mobile user. However, it

is important to note that the overhead of text IM communication would depend on

the input method available on a user’s mobile phone. The most prevalent text input

method on mobile phones is multi-tap, a method where each numeral key maps to the

letters of the alphabet printed on the keys. Tapping the numeral once will input the

first letter on the key. Tapping the numeral twice quickly will enter the second letter,

and so on. If multi-tap were the only option, then text IM may require a significant

amount of effort. This is one reason why voice IM was selected as a capability to

include in the system. Of course, text input issues are irrelevant to voice IM, and

it has the added benefit of indicating the emotion and urgency of the message more
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effectively, allowing the recipient of the message to make a more informed choice of

how to respond.

Systems similar to IM deployed in the mobile domain are SMS and MMS. These

systems exhibit the features of lightweight communication, but a significant absence

is the awareness feature. A buddy list concept is not employed, rather SMS and

MMS rely on phone numbers and e-mail addresses to route messages. Despite the

lack of awareness information, SMS has gained significant popularity, especially in

Europe. A study conducted by Grinter et.al. [6] looked at the SMS usage patterns of

teenagers in the UK. This study showed that the immediacy of SMS led many users

to prefer it for communication, just as Nardi showed the same feature to promote

the use of IM for desktop users. The consistency between the value users find in

lightweight communication over SMS and the value IM users find in their system

is not surprising. The absence of awareness support in the most common mobile

messaging platforms, however, leaves a substantial gap in the value offered to users

by these systems. Clique Here seeks to fill this gap by providing both awareness

information and expressive lightweight communication to the mobile user. The next

section describes the Hubbub project, which takes a different approach to filling the

same gap.

4.2 Hubbub

Hubbub is an extension on the traditional instant messaging platform which explores

the use of sound to improve support of awareness and opportunistic conversations [8].

Hubbub introduces two novel uses for sound within the IM context. First, each user

is associated with a unique Sound ID, which provides the user identity in the audio

space. Second, Hubbub clients can send Sound Instant Messages (SIM’s), which are

earcons sent asynchronously between clients through the system, like text IMs, and

by convention, each earcon has an associated meaning. SIM’s have meanings such as

“HI” and “Thanks”. When a SIM is received by a Hubbub client, the sender’s Sound

ID plays, followed by the SIM. Also, when the Sound ID plays, the GUI also displays
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the username of the sender, to help the recipient to learn her contact’s Sound IDs.

Once she has learned these ids, the attentional demand of the system is decreased,

since she does not have to be looking at the display to understand who sent the SIM,

and what the meaning was.

A third new feature in Hubbub that is not offered in traditional IM systems is

an activity meter associated with each bub (contact) on the contact list. Issacs et.

al. cite the conclusions of Bonnie Nardi et. al. [17] that IM conversations commonly

begin with “Are you there?” as and indication that the awareness provided by the

idleness feature of IM is not sufficient. In traditional IM systems, one has to be

inactive for ten minutes in order for their screen-name to appear idle in the buddy

list. This delay does lead to ambiguity since a user may leave his desk, but he will

remain active, according to IM, for the next ten minutes. The Hubbub activity meter

indicates the user’s level of activity within the previous fifteen seconds. Augmenting

activity awareness in this way, however, would not be valuable for Clique Here. A

certain amount of ambiguity in the system is embraced by Clique Here as a tool to

shield users from social obligation, or as Nardi et. al. describe it, plausible deniability.

The strongest conclusion of the Hubbub project that relates to Clique Here is

the fact that participants in the user study expressed that the auditory cues led to

a stronger feeling of connectedness, even when the users were logged in across the

country. This supports a portion of the primary goal of the Clique Here project,

supporting social-connectedness with awareness and communication.

4.3 Live Addressbook

Milewski and Smith [15] defined two important trade-offs for designers of awareness

systems. The trade-off of Overhead vs. Control characterizes the tension between

easing the user burden of maintaining status information with automation and pro-

viding the user with control over the availability information being communicated.

Systems that have chosen to emphasize minimization of user overhead have accom-

plished this by gathering data about the user from sensors and analyzing the data to
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infer availability.

In the Clique Here system, since there will be no external sensors for the auto-

matic inference of availability, the user has been given complete control regarding the

availability information he wishes to communicate. To mitigate the overhead burden

associated with requiring users to manage their own availability data, Clique Here

allows users to communicate their context and availability by taking a picture with

the digital camera equipped mobile device. Taking a picture is quick and easy, and

other members of a user’s social group who know the user very well, and possibly his

surroundings, will be able to extract a rich amount of information from this picture.

To give the user further control, the system will allow him to communicate context

and availability via text and recorded voice.

A second trade-off defined by Milewski and Smith is Informativeness vs. Privacy.

Privacy is an important issue to many users, and the design choice to give users

complete control over their context information allows them to retain as much or as

little privacy as they choose.

4.4 Watchme

The WatchMe project [14] is part of a growing research segment that explores how

mobile communications technology can mediate communication within social groups

and family units [3][4][11]. WatchMe combines detailed awareness information with

multiple modes of lightweight communication to form a personal communicator that

can keep intimate friends and family always connected. A user’s awareness informa-

tion is gathered in a highly automated fashion to minimize user burden. A sensing

and classification module worn by the user tracks location, acceleration, and ambient

audio; this information is then used by machine learning algorithms to determine

current activities. A user’s family members and intimate friends, a group of people

called insiders by Marmasse et. al., can use WatchMe to view these classified activi-

ties in an iconic form and infer availability based on this information. This “always

on” awareness provided by WatchMe enables insiders to initiate communication at
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opportune moments and over the most appropriate channels (e.g. text IM, voice IM,

phone call).

Clique Here draws a large portion of its inspiration from the WatchMe project.

The Clique Here system, like WatchMe, seeks to mediate social communication by

combining awareness capability with multi-mode lightweight communication. Unlike

WatchMe, however, the Clique Here mobile client has been designed as a mobile

phone application, operating on an un-modified mobile handset, rather than a custom

hardware platform. Further, Clique Here focuses on the use of image media as a data

type for communication.

Because Clique Here runs on conventional mobile hardware, the automated cap-

ture of detailed awareness information, provided by sophisticated sensors and machine

learning, is not feasible. Instead, the Clique Here approach to awareness capability is

to provide the user media rich channels to manually convey awareness (e.g. images

and audio). Though this manual capture approach does place a larger burden on

the user for maintaining current awareness information, capturing content for these

multi-media channels is significantly easier than text input on mobile devices, and

the richness of these channels allows a large amount of information to be conveyed

Marmasse et.al. recognized the importance for a person to know when his insid-

ers take a moment within their day to think about him. Knowledge of these events

would lead social group members to feel more connected, and might lead to oppor-

tunistic interactions. Such a simple and possibly frequent event, however, would not

be reasonable for communication over mobile communication channels, even over the

lightweight communication modes offered by both WatchMe and Clique Here. To

address this limitation, Marmasse et. al. developed a non-verbal channel to commu-

nicate the concept of “thinking of you” between physically separated parties. The

idea is that when an inquiring user observes the details of an insider’s availability

information, this indicates that the inquiring user is currently thinking about this

insider. The observed insider’s WatchMe client makes him aware of this event by

displaying a static picture of the inquiring user that will automatically dismiss after

a few minutes. In the excerpt below, Marmasse details four possible outcomes of this
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mediated non-verbal communication.

• The picture popping up may go unnoticed, especially since it disappears after a

couple of minutes, so the “viewing” insider is not interfering with the “viewed”

individual in any way.

• The “viewed” person notices the picture but decides not to reply or divert atten-

tion from his current action.

• The “viewed” individual notices the picture and responds by querying the avail-

ability of the other user, which causes his or her picture to appear on the others

watch, sort of like an exchange of glances without words.

• The “viewed” insider decides to phone the “viewer” or engage in another form

of verbal communication, i.e. text or voice messaging.

The Clique Here system supports the communication of these innovative “think-

ing of you” events, referring to them as smiles, to utilize their ability to maintain

connectedness and entice further communication. Further, because the Clique Here

system uses image data to convey awareness information, these current images replace

the static picture used in WatchMe to indicate a smile.
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Chapter 5

Conclusion

Clique Here has been designed and developed to address current limitations of mo-

bile communication to support social relationships, specifically in terms of maintain-

ing social-connectedness. The Clique Here project has demonstrated the feasability

of implementing a rich media awareness and lightweight messaging platform using

existing mobile technology. In addition, this working, usable system provides a plat-

form for research and discourse on the subject of mediating social connectedness with

mobile devices.

The rapid improvement in camera phone technology, which has been driven by

remarkable market demand, has out paced the development of applications that make

best use of the technology. MMS and other current picture messaging solutions do not

utilize the full potential images have to form an expressive communication channel.

Following an iterative development process, the Clique Here system provides users

with a simple interface to not only share interesting events in their life with social

contacts, but also to use multi-media to make contacts aware of the their day-to-day

life and encourage interaction at opportune moments.

No system that mediates communication will be able to replace the intimacy and

expressiveness of communication within the same physical space. Systems like Clique

Here, however, that support social-connectedness between physically seperated social

contacts diminish the negative consequences of a common pitfall associated with

modern life, a forced absence from those we care about. Today’s parents must leave
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the home more often to travel for business, children frequently leave the home to

attend college, and both parents are employed for an increasing number of households.

The current weak job market may lead young graduates to permanantly move away

from the home to meet their own professional demands. With each of these trends

testing the integrity of the modern family, solutions such as Clique Here will become

crucial to lend support.

Future Work

Clique Here has made a demonstration of feasability, and provides a research platform

that may be used to deepen the understanding of mobile mediated social communi-

cation. Future work on the system would benefit from a user evaluation to validate

the value of Clique Here functionality, to identify areas in the system that need im-

provement, and to identify opportunities in the system for expansion. Subjects of the

study would need to be part of the same social group, and they would need to spend

a substantial amount of time physically apart from each other.

The next logical implementation task for the Clique Here project would be to

develop a PC client. Many people spend a significant number of hours per day in

front of a personal computer. Unlike the home client, the PC client should be designed

for a user with a relatively high technology threshold who is comfortable with PC use.

Unlike the mobile client, the PC client does not have to be designed around resource

constraints and the feature set may be different since the user will not be mobile.

A significant design improvement could be made to the Clique Here system if a

solution better than HTTP polling could be found to yield a push from the Clique

Here server to the mobile client. While the polling strategy meets the functional needs

of the system, in practice, activating the GPRS radio every ten seconds to make

the request results in a noticeable decrease in battery life. Increasing the polling

interval does mitigate the battery life issue, but at the cost of the immediacy of

new message notification. Even when TCP sockets become more widely supported,

the constant connection required may result in the same affect on battery life. One

70



possible alternative might be to incorporate an SMS gateway in the Clique Here

system, and achieve a push to the mobile client by sending an SMS message to

the client handset on a non-standard port. MIDP 2.0 allows MIDlets to request

notification of incoming SMS messages arriving on any specified port.
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