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ABSTRACT 
This paper describes a real-time music-arranging system 
that reacts to immediate affective cues from a listener. Data 
was collected on the potential of certain musical dimensions 
to elicit change in a listener’s affective state using sound 
files created explicitly for the experiment through 
composition/production, segmentation, and re-assembly of 
music along these dimensions. Based on listener data, a 
probabilistic state transition model was developed to infer 
the listener’s current affective state. A second model was 
made that would select music segments and re-arrange (‘re-
mix’) them to induce a target affective state. We propose 
that this approach provides a new perspective for 
characterizing musical preference. 
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INTRODUCTION 
For a relatively passive activity, listening to music can be 
remarkably active. Particularly enthused listeners will 
mentally process the music and actively re-synthesize the 
signal in various forms of personal expression. Music may 
inspire physical interpretations such as head-nodding, hand-
tapping, foot-tapping, hand-clapping, mock-performing 
(‘air guitar’), mock-conducting, dancing and other gestures. 
Near-subconscious creation of these physical signals may 
exaggerate the physiological changes that already 
accompany affective change. If music affect is viewed from 
a cognition-arousal perspective [12], a listener’s automatic 
gesturing would be considered part of the physiological 
cues that must be interpreted. 

The affective response of a listener has been shown to 
contain seemingly conflicting data. Intuitively, we would 

expect a listener physically involved in the music to 
respond with greater affective intensity. Studies have 
demonstrated a disparity between the affective response 
that is reported by the listener, and the response that is 
actually aroused. [13] The study of music-inspired listener 
gestures may provide some insight into the apparent gap 
between reported and aroused affects. 

BUILDING A STIMULUS MATRIX 
A variety of affective music recommendation, retrieval and 
composition systems exist to serve many different 
functions. The macroscopic approach will typically return 
music in the form of song lists (playlists) [4], while the 
more microscopic approach of algorithmic music-writing 
systems often return compositions in the form of note and 
timing data [7]. 

Rather than high-level playlists or low-level algorithmic 
compositions, we instead focus on the re-arrangement of 
musical segments. Collecting listener reactions to selected 
music segments provides us with data that represents the 
affective potential of certain musical parameters. A system 
can then be created to take real-time affective cues from a 
listener and automatically re-arrange musical works. In this 
way, physical and physiological signals can be used as a 
means of directing a musical arrangement. 

The goal of the project is to correlate selected musical 
parameters with changes in affective state. Using physical, 
physiological and self-reported data gathered from several 
participating listeners, responses were related to gradual 
changes in particular parameters of the current music. 
Given a musical context and a set of music parameters, a 
concrete picture of musical aesthetic can be drawn 
according to trends in listeners’ responses. 

To build a navigable stimulus matrix, sound segments are 
organized by parameter. The stimulus matrix allows a 
musical arrangement to be created simply by traversing the 
grid and appending segments to the arrangement. Musical 
arrangements can thereby be expressed as vectors in the 
parameter matrix. We now have a state transition model 
that selects a path through the music parameter matrix to 
move from the current to a target affective state. 

MUSIC AND AFFECT: ATTRIBUTION SPACE 
Our goal is to observe how certain musical parameters elicit 
a change in affective response. To acquire useful 
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information, systems for the organization of musical-
parameter data and affective-state data are needed. 

Affective States 
We place a listener’s affective state into a two-dimensional 
space defined by the parameters arousal and valence [11]. 

• Arousal: affective parameter relating the potential 
of the music to elicit a reaction (positive or 
negative) in the listener 

• Valence: affective parameter relating the listener’s 
affinity or aversion to the music 

Music affect can be categorized by arousal-valence [3], 
allowing a vector to be used for describing the change in 
listener affect. Affective states can correspond to arousal-
valence using a set of musically descriptive adjectives 
(Figure 1). 

 Negative valence Positive valence 

High arousal Annoying (S4) Engaging (S1) 

Low arousal Boring (S3) Soothing (S2) 

Figure 1. Affective-state quadrants 

Musical Parameters 
We place audio segments in a two-dimensional space 
defined by the independent musical parameters vertical 
layering and horizontal complexity: 

• Vertical layering: musical parameter describing 
the thickness of layering within the piece 

• Horizontal complexity: musical parameter 
describing the amount of rhythmic complexity 

As musicians we know to use these dimensions carefully, 
observing that each can influence the other. However, as 
representative of two unique aspects of thematic 
development throughout a musical work, the parameters 
layering and complexity will move independently of one 
another. We produced the music for this experiment with 
these domains in mind. 

The parameters layering and complexity were selected 
because they provide a general framework in which to 
compose and arrange music in a variety of styles. Musical 
arrangement can safely be regarded as a simpler cognitive 
operation for humans to perform. Naturally, designing an 
arrangement-only system enables the use of higher-level 
musical structures than would be necessary in a system 
designed for algorithmic composition. 

By shaping a pre-conceived musical composition, thematic 
material need not be generated by a machine. The flexibility 
of the parameters layering and complexity allow music to 
be composed, organized and arranged in a musically 
intuitive way. 

Preparation of Music Clips 
Pieces with constant tempi were made in five musical styles 
representing jazz, jazz-funk, rock, electronic and dance 
music. Original tracks were composed for the purposes of 
this experiment, so listeners had never heard the musical 
examples. Music was produced in various multi-track audio 
environments, allowing for horizontal and vertical layout of 
each piece.  

Short Music Clips 
Short looping audio segments (5 to 15 seconds each) 
representing a complete musical phrase, were extracted 
from each piece to reflect incremental navigation through 
the musical parameters layering and complexity. In the 
production of the short segments, care was taken to 
exaggerate the distinction between harmonic layering and 
rhythmic complexity as much as possible within the piece.  

Music Parameter Matrix: Layering/complexity 
Sixteen of the short music clips were arranged into a 4x4 
table, creating a navigable map of sounds organized by 
relative layering/complexity strength. Audio segments in 
each matrix consisted exclusively of segments from a single 
composition.  

Long Music Clips 
Four longer audio clips (30 to 45 seconds) were assembled 
by incrementally traversing the matrix: 

• Increasing horizontal complexity 
• Increasing vertical layering 
• Decreasing horizontal complexity 
• Decreasing vertical layering 
Each resulting sound file represents a one-dimensional 
vector starting at one side of the matrix and ending at the 
opposite side. For each of four directions, we listened to 
each of the four possible starting points of the vector, and 
chose the one that most clearly exposed the changing 
parameter. The selected matrix vectors were rendered as 
sound files. Four clips were assembled for each of the five 
musical styles, providing 20 clips total, each lasting 
between 30 and 45 seconds. 

DATA COLLECTION 
Eight subjects (students, 5 male/3 female, ages 25-40) 
listened to 20 audio clips (30 to 45 seconds each). The 
experiment took approximately 35-45 minutes to complete, 
including 5-10 minutes for setup and instruction. 

Affect Data 
Listener’s Galvanic Skin Response (GSR), foot-tapping and 
subjective evaluation data were recorded, representing 
physiological, physical, and self-report data, respectively. 
Three unique sets of data were selected to provide diverse 
measures of affective response. While a subject’s GSR has 
been shown to be a relatively reliable indicator of arousal 
level [10], foot-tapping does not yet have any such 
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empirical evidence. While foot-tapping should rightly be 
considered a physical signal, one could argue that the 
unconscious foot-tapping of an enthusiastic listener 
approaches being a physiological signal. 

Physiological Data (skin arousal) 
A Galvactivator [9] reported the GSR of each subject, 
which was then sampled and recorded. After setup and 
instruction, they were asked to relax for a minute to 
normalize their GSR before listening. 

Physical Data (foot-tapping) 
To gather foot-tapping data, a microphone was placed to 
capture the sound of the listener’s feet. The audio signal 
was routed to a beat-tracking algorithm programmed in 
MAX/MSP. The tempo and velocity of the listener’s foot-
tapping were recorded. Participants were told they could tap 
their feet if this seemed a natural response. 

Self-reported Data (subjective evaluation) 
Subjects completed a quick subjective evaluation twice 
during each clip, recording separate initial and final 
reactions to the music. Each musical example corresponded 
to a set of questions on the form provided to listeners. 
Subjects were asked to provide their initial reaction as soon 
as the music began, and their reaction again at the 
conclusion of the musical example. 

 
Figure 2. Self-report data example 

Affect Data Mapping 
Music affect was self-reported by the listener using a pair of 
7-point scales. Results of each rating in the survey were 
mapped to integers from -3 to +3, where a value of 0 
corresponds to no reaction. Listeners first rated how much 
they liked or disliked the music (valence). Depending on 
the valence score, they reported their arousal score (Figure 
2). For positive reactions, the clip was scored on an 
engaging-soothing scale, while negative reactions prompted 
an annoying-boring score. Listeners reporting a valence 
score of 0 could proceed to either of the two following 
arousal scales. The valence (like/dislike) score was mapped 
to the x-axis, while arousal (engaging/soothing or 
annoying/boring) ratings were mapped to the y-axis. The 
distance between the coordinates related to initial and final 
reaction were stored as vectors. The resulting data reflects 
correlations between music parameter changes and affective 
response. 

DATA ANALYSIS 
The experiment provided two levels of data interpretation, 
regarding affective states and musical parameters. 

 

Figure 3. Affective distribution of foot-tapping and GSR 

Foot-tapping presence was sampled every two seconds as a 
1-bit representation of the similarity between the listener’s 
foot-tapping tempo and the music tempo. Each music 
example was split into two, the first half as initial affective 
state, and the second half as induced (final) state. For each 
section, foot-tapping presence and GSR averages were 
calculated, and normalized to the range [5, -5]. This data 
was plotted for all four affective states (Figure 3). 

As shown in Figure 3, if the listener reports a 
boring/annoying mood, they tap less than their overall 
average. This suggests that valence can be disambiguated 
based on a listener’s body movements (Figure 4). 

 
Figure 4. Statistical significance of foot-tapping between 

positive and negative valence 

Initial and final GSR means were compared and related to 
self-reported state transitions. The relationship between 
transition probabilities of rising/falling GSR and user’s self-
reported affective states appeared inconclusive (Figure 5).  
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(a) GSR falling 

 

 

(b) GSR rising 

 
Figure 5. State transition chain of GSR falling and rising: S1-

Engaging, S2-Soothing, S3-Boring, S4-Annoying  

Through the survey, we tried to determine which of the four 
actions (increase/decrease layering, increase/decrease 
complexity) would be most likely to induce a goal state 
based on the current affective state. For each action, we 
derived a state transition probability distribution table based 
on the corresponding listener data. 

 
(a) State-transition probabilities 

 

(b) State-transition Markov chain:  
S1-Engaging, S2-Soothing, S3-Boring, S4-Annoying 

Figure 6.  Summary of state-transition probabilities 

Figure 6 shows overall trends in listener state transitions. 
Intuitively, we would expect positively-valenced music to 
continue to elicit a positive reaction as the music develops. 
Similarly, we expect the inverse to be true. The current data 
shows an exception in the case of music classified as boring. 
Listeners who found the music boring had a greater chance 
of becoming engaged than of staying bored. 

The state transition summary suggests the existence of 
boundaries between affective states. Because of the 
differences in boundary thicknesses between affective states, 
the best path to a goal state may involve transitional states. 

STATE TRANSITION MODELS 
The Affective Remixer uses a state transition model in 
order to move towards a target state. The real-time arranger 
navigates through a pre-arranged matrix of music organized 
by the parameters layering and complexity. Data gathered 
from the user (GSR, foot-tapping, and self-report) is applied 
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as input. To arrive at a target state, the Affective Remixer 
chooses a path through the music matrix that will most 
likely achieve the goal. 

The action is appended to the current musical arrangement, 
new music is played for the listener. The listener’s affective 
response to the new music is again fed back to the system. 

 

Figure 7. System diagram 

BUILDING THE MODEL 
Affective state transition model consists of two components, 
an affect-detection model and an action-chooser model. The 
models are derived from data collected from subjects in the 
listening experiment. 

Affect-detection model 
The affect-detection model is used to analyze input signals 
foot-tapping and GSR, and infer the affective state of the 
listener. The model consists of two sets of Markov chains:  

1. Markov chains that infer valence state-changes 
(engaging/soothing vs. annoying/boring) based on 
an increasing or decreasing amount of foot-tapping.  

2. Markov chains that infer arousal state-changes 
(engaging/annoying vs. soothing/boring) based on 
rising or falling GSR.  

The user’s valence level is determined by real-time 
comparison between the average level of foot-tapping 
during the first and second halves of the music. If the 
average amount of foot-tapping increases in the second half 
of the music clip, the system uses the Markov chain 
associated with increased foot-tapping to determine the 

subject’s current valence level. Similarly, if the average 
foot-tapping decreases, the corresponding Markov chain is 
used. 

The user’s arousal level is determined by real-time 
comparison between the average GSR level during the first 
and second halves of the music clip. As in the valence 
model, two Markov chains corresponding to GSR 
rising/falling are constructed. If the average GSR increases, 
the system uses the Markov chain associated with rising 
GSR to infer the listener’s valence. Alternatively, if the 
average GSR falls, the corresponding Markov chain is used. 
Through the processes of detecting valence and arousal, we 
are able to construct the model to detect affective states of a 
listener. 

Action-chooser model 
The action-chooser model is used to determine the action 
most likely to achieve the target affective state. Possible 
actions include increasing or decreasing the level of 
complexity, and increasing or decreasing the instrumental 
layering of the music. The appropriate action is determined 
based on the listener’s current affective state (as determined 
by the affect-detection model) and a target state provided 
by the listener. 

Based on listener data, we derived four Markov chains, 
each corresponding to an action in the music matrix: 

1. Increasing complexity 

2. Decreasing complexity 

3. Increasing layering 

4. Decreasing layering 

Each Markov chain describes the affective-state-transition 
for its corresponding action. When the listener’s current 
state is determined from the affect-detection model, state-
transition probabilities (from the current state to goal states) 
are compared between the four action models. The action of 
highest probability will be selected to determine the 
direction the system navigates through the music matrix. 
The music corresponding to the chosen action will be added 
to the arrangement, starting at the end of the clip currently 
being played. 

CONCLUSION 
A predictive music-arrangement system was conceived and 
constructed using state transition models based on collected 
affective response data. Final analysis of the data posed 
some unique questions in musical aesthetics.  

For example, the data shows that if a listener becomes 
bored by the music, subsequently, they are most likely to 
become engaged. Additionally, if a listener finds the music 
soothing, there is very little chance that succeeding music 
will annoy the listener. These particular conclusions are 
based on data collected from the listening experiment and 
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are intuitive to those accustomed to thinking about music 
preference and emotion. 

Based on the results, authors are able to provide evidence 
suggesting that foot-tapping is a useful indicator of a 
subject’s valence response to music stimuli. 

Examination of data collected from the experiment reveal 
inconsistencies in the correlation between GSR and arousal 
level. One possibility for the apparent discrepancy is that of 
serial correlation. In context of recording emotional 
response to music, Emery Schubert defines serial 
correlation as “a dependency of one data point (such as 
quantified, current emotional response) to another data 
point occurring at a previous point in time (such as a recent 
emotional response).” [15] Serial correlation may influence 
the subjects of the current study to continue liking or 
disliking the music depending on their initial response. 
While this was partly the intention of the experiment 
design, serial correlation is a strong force for listeners to 
overcome. Listeners may become too attached to their 
initial reaction to evaluate the second half of the music 
without bias. To overcome the natural bias of the previous 
emotional state, the experiment could be redesigned to 
include silence between the first and second halves of the 
long clips. 

FUTURE WORK 
To improve prediction accuracy, additional listener data 
might include musical preference considerations. Access to 
similarly-produced music by other composers would allow 
for a more comprehensive study. 

Further investigation is required on finding correlation 
between musical cognitive perception and physiological 
reaction. 
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