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Abstract  

The aim of wearable computing is to build intelligent machines that provide automatic 

and autonomous support in people's everyday lives. Accurate and comprehensive recog-

nition of a user’s context is an important step towards that goal. In this thesis a light-

weight PDA-based wearable system is presented that classifies in real-time location, 

speech, posture and a number of activities, based on audio and acceleration sensing. 

After a pre-classification step, which is focused on the four categories, a common sense 

model is used to improve overall recognition accuracy in a post-classification step. The 

context information won is used in a diary application to trigger picture taking and audio 

recording of interesting moments of the wearer’s life. 
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Thesis goal 

 

 

The fundamental goal of this thesis is to 

 

• recognize certain dimensions of an individual’s context 

• using acceleration and audio sensors 

• worn unobtrusively on few places on the body  

• in a way suitable for real-world data. 

 

This requires the assembly of a prototype hardware platform, collection of a large amount 

of user data, data analysis, construction of classification algorithms and implementation 

of real-time algorithms on the wearable.  

The selected dimensions of context are location, speech, posture and activities. The la-

bels within these categories are listed below. Labels within a category are regarded as 

mutually exclusive. 

 

Location Speech Posture Activities 

office 

home 

outdoors 

indoors 

restaurant 

car 

street 

shop 

no speech 

user speaking 

other speaker 

distant voices 

loud crowd 

laughter 

unknown 

lying 

sitting 

standing 

walking 

running 

biking 

no activity 

eating 

typing 

shaking hands 

clapping hands 

driving 

brushing teeth 

doing the dishes 

 

One focal point is to make use of “common sense dependencies” between the different 

dimensions of context. For instance, the activity typing is more likely to occur while we 

are sitting, rather than standing. Although sitting does not necessarily infer typing, typing 

does actually infer sitting. Such influences between different dimensions of context must 

be modeled appropriately and taken into account when conceiving a system that is to 

recognize such a diverse notion of context. 

 

One particular motivation for this project is to use the recognized context to predict mo-

ments of interest in a user’s everyday life. This can be used in an automated diary appli-

cation that captures pictures or perhaps video and audio recordings of events interesting 

to the user. 
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The results of my work lead to the following thesis statements: 

 

1. Ambient audio and two accelerometers, worn on hip and wrist, are sufficient to 

successfully classify posture and most of the labels proposed in the categories 

speech and activities. 

 

2. Starting from a set of single classifiers for different types of context (location, 

speech, posture and activities), the overall accuracy in classifying a user’s context 

can be improved by using correlations between those different types of context. 

 

3. A comprehensive classification of a user’s context helps predict moments of inter-

est, which can be used to trigger audio and video recordings. 
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1 Background and related work 

 

 

The basic aim of wearable computing is to build intelligent machines that provide auto-

matic and autonomous support in people's everyday lives. Accurate and comprehensive 

recognition of a user’s context is an important step towards that goal. In the following, 

several applications of wearable computing and their dependence on context recognition 

are discussed. 

 

1.1 Healthcare 
 

A promising field for wearable computing lies in healthcare: Tracking health and wellness, 

from elder care to personal fitness. Extremely high costs of healthcare and an increasing 

shortage of caregivers are the main drivers. Opportunities are long-term monitoring, be-

havior and physiology trending, real-time proactive feedback and alert systems. For di-

agnosis and medical studies a history of continuous sensor readings and activity patterns 

is more accurate than a periodic questionnaire and can very well complement information 

won by verbal discussions with the patient. Medical professionals believe that one of the 

best ways to detect emerging conditions before they become critical is to look for 

changes in the activities of daily living (ADLs, [1]) such as eating, getting in and out of 

bed, toileting, grooming, shopping, and housekeeping. An overview of the group’s current 

effort in healthcare is provided in [2], [3] and [4]. 

 

1.2 Interruptability 
 

A potential of context-aware mobile devices is to proactively present information when 

the user needs it and is least interrupted. An increasing number of devices and applica-

tions are competing for the user’s attention: phone calls, reminders, email notifications, 

voice messages, instant messaging services, news or changes in the stock market. Such 

interruptions quickly become annoying and can decrease work performance. It is thus a 

goal to minimize the perceived interruption burden of proactively delivered messages. 

Knowing about the user’s state of activity can be used to reduce this burden and increase 

the value of receiving a notification. It has been shown that receptivity to interruptions is 

higher if they occur at activity transitions rather than at random times [5]. In [6] accel-

eration, audio and location sensing was used to assess personal and social interruptabil-

ity. Rather than modeling the precise context a combination of tendencies was used to 

find the best notification modality e.g. vibrating or ringing. 
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1.3 Diary applications 
 

Another promise of wearable computing, particularly in combination with today’s mass 

data storage possibilities and ever increasing network bandwidth, are diary applications, 

also known as lifelogs: 

 

Wouldn't it be fantastic if a person could easily recall every moment of his 

or her life? Given that we live in such a technologically advanced society, 

why should a person ever have to forget what happened, when it was, 

where it happened, who was there, why it happened, and how he or she 

felt? If there was a system that could record everything a person sees, 

hears, and feels, how would that enhance our lives? We have enhanced 

our eye sight with prescription glasses, our hearing with hearing aids, and 

our timekeeping ability with watches. Enhancement of personal memories 

seems to be a natural next step [7].  

 

What has been published in 1945 under the name of MEMEX (short for memory extender) 

is the first device for storing information that is electronically linked to a library and able 

to display books and films from the library and automatically follow cross-references from 

one work to another [8]. This “enlarged intimate supplement to memory” is a first form 

of what other people today call myLifeBits [9], Memories for Life [10] or What Was I 

Thinking [11]. A list of projects in this field can be found on the Continuous Archival and 

Retrieval of Personal Experiences (CARPE) website [12]. 

Most of these projects focus on organizing, categorizing and searching a massive load of 

random personal data. Techniques suggested are speech and image recognition, mostly 

in combination with common sense networks or other sorts of data mining as well as au-

dio features that try to capture more the mood of a situation rather than the content. The 

key problem that is tackled lies in filtering information that is relevant and interesting to 

the user. 

Now how about shifting this problem from offline analysis of collected data to online 

evaluation of a user’s current situation? By including the context of a user in this evalua-

tion, variables, which are not available offline, like current location, activity or social in-

teraction, can be taken into account to better predict moments of interest. Audio and 

video recordings with a wearable could then be triggered specifically at those times, re-

sulting in more “interest per recording”. 

One example that follows this approach is the eyeBlog system [13]. Eye contact sensing 

glasses report when people look at their wearer. The system will record video each time 

eye contact is established, resulting in automatically edited conversational video blogs.  
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To the best of knowledge, no work has been published that makes use of context classifi-

cation with acceleration and audio sensors to automatically capture interesting moments 

of life. 

 

1.4 On-body versus environmental sensing 
 

Everyday activities can be broken down into two categories. Some are characterized pri-

marily by the way the human body is being used for example, sitting, standing, walking, 

scrubbing, clapping hands and shaking hands. These activities are best recognized di-

rectly where they occur, using body-worn sensors. Examples for recent work using this 

approach are [6], [14], [15], [16], [17] and [18]. Other activities are clearly defined by 

the usage of certain objects or a sequence of objects for example grooming, cooking, and 

housekeeping. Instead of tracking body movement, sensors incorporated in the environ-

ment could track the movement of objects. This is done in [19], [20] and [21]. While this 

can perform extremely well under certain conditions, it is very costly and does not scale 

to settings outside these augmented environments. The focus of this work is on the for-

mer approach. 

 

1.5 Sensor selection 
 

There are a variety of sensing technologies that could be envisioned for context recogni-

tion for instance audio, video, photography, acceleration, light, air and body temperature, 

heat flux, humidity, pressure, heart rate, strain gauges, galvanic skin response, electro-

cardiograms or electromyograms. Streaming video is overly expensive on bandwidth and 

many physiology sensors require skin contact or special outfits. There is clearly a tradeoff 

between informative and unobtrusive sensing. Other points to consider are battery life 

and price. 

In order to reach user acceptance a wearable must be small and unobtrusive, if possible 

even fashionable. There are several accessories that are nowadays widely accepted, such 

as belts, watches, necklaces, cell phones or pagers on a belt-clip. Miniaturization of 

hardware has made it possible to integrate sensors into such devices. While nobody 

would want to wear sensors strapped around all legs and arms, a belt and a wristband 

would be not more than what most people wear already.  

This work focuses on a minimal set of sensors: audio plus two accelerometers. We be-

lieve that acceleration and audio sensing is sufficient to classify many interesting dimen-

sions of context. This assumption is heavily supported by [18]. Several studies using 

physiology sensors were conducted in [3], the results of which show that most significant 

information was won from movement and audio. It has been shown that recognition rates 

for user activity only drop minimally when reducing the number of acceleration sensors to 

two, worn on hip and wrist [16]. 
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1.6 Data collection and annotation 
 

Activities are numerous and often not clearly defined. Already a simple activity like eating 

can be performed in several fashions by different subjects. Some use both hands holding 

forks and knives, some only use a fork in the right hand, and for eating a sandwich no 

utensils are used at all. Also, meals may be consumed at home, in a restaurant in the 

office or on the go, sometimes quietly without company other times in large groups in-

cluding excited discussions. Furthermore, activities are not always mutually exclusive. 

Typing is usually done sitting. Brushing teeth could be done sitting, standing or walking. 

This shows that finding appropriate context labels and their right granularity is not an 

obvious task, especially if the system is to scale. 

The “context structure” we propose consists of four categories: location, speech, posture 

and activity. These categories are concurrent because they describe different dimensions 

of the user’s context.  Within itself, each category comprises a number of mutually exclu-

sive labels.  

 

Another question is how to train classification models. Only few people suggest com-

pletely unsupervised learning methods (e.g. [22]). Supervised and semi-supervised 

learning requires a certain amount of labeled training data. In [6] and [17] an online la-

beling scheme was used, where the subject repeatedly selected an activity from a list on 

a PDA. The downside is evidently user distraction and impeding natural body movement. 

In [16] subjects were given a list of activities to perform and asked to note the starting 

and stopping times for each activity. No labeling was required for an experiment in [15], 

where the subject followed a strict protocol of subsequent activities. This does of course 

not scale to any general setting. 

Our approach to data collection and annotation is interval-contingent experience sam-

pling. During recordings of several hours, audio clips and an image are recorded once 

every minute. These are then presented to the subject offline with a selection of labels. A 

detailed description of this method follows in Chapter 3.3. 

 

 



  15 

2 Wearable platform 

 

 

The hardware platform used is based on low-cost sensors and leverages off commodity 

hardware. It consists of a PDA, two wireless accelerometers and the matching receiver. 

This provides the following sensing layout:  

 

• Triaxial accelerometer on the left side of the hip (~90Hz, 10bit) 

• Triaxial accelerometer worn on the wrist of the dominant hand (~90Hz, 10bit) 

• Audio recorded from the wearer’s chest (8kHz, 16bit) 

• Images taken from the wearer’s chest (1 per minute) 

• WiFi access point sniffing with the PDA (every 100 seconds) 

 

 

 

Figure 2-1: Sensor placement 

 



  16 

2.1 The PDA 
 

The Sharp Zaurus SL6000L is a very versatile and easy-to-use wearable. The PDA fea-

tures a 400 MHz StrongARM processor, color touch screen, Audio I/O, Serial I/O, SD and 

CF card slots, built-in WiFi and runs the Linux operating system. SD cards of currently up 

to two gigabytes provide ample storage. The CF card enables a rich variety of peripherals 

to be attached, such as image or video cameras, Bluetooth wireless or even a head 

mounted display. The combination of touch screen and Qtopia allow nice and simple 

graphical user interfaces. There is also a vast user community, which becomes a valuable 

help while developing. 

 

 

Sharp Zaurus SL6000L [23] 

 

Linux + Qtopia operating system  

StrongARM processor 400 MHz  

64MB SDRAM  

64MB Flash-ROM  

4 inch transflective TFT 65k color touch screen  

Resolution 480x640 Pixel  

37 key QWERTY keyboard with slide cover  

USB host interface  

Serial interface 

Infrared Interface IrDA (1.2)  

built-in WiFi (IEEE 802.11b) WLAN interface  

1 slot for SD (Smart Digital)  

1 slot for CF (Compact Flash) Cards  

Stereo Headset Jack  

Shock-Resistant Casing  

Lithium ion battery (Sharp EA-BL09 1500 mAh)  

Dimensions: 156 x 80 x 21 mm  

Weight: ca. 280g incl. battery 

Table 2-1: Technical specifications of the PDA 
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Figure 2-2: Hardware setup with PDA, battery,  

microphone, camera and MITe-receiver 

 

 

2.2 Accelerometers 
 

The wireless accelerometers used in this project were developed by the House_n group at 

MIT. Their name MITes stands for MIT environmental sensors. They are designed around 

the nRF24E1 chip by Nordic VLSI Semiconductors, a 2.4GHz low power transceiver with 

built in microcontroller. In this project two triaxial MITes 

were used with the following features: 

 

Sensors: ADXL202 (±2g) 

Sampling-rate: 100Hz each 

Quantization: 60 counts correspond to 1g 

Dimension: 3.4 x 2.5 x 0.6cm (1.3 x 1.0 x 0.25in) 

Weight: 8.1g (including battery) 

Average battery life: 20.5h 

Range: ~30m indoors and 220m outdoors 

 

Figure 2-3: Accelerometer hardware 

A) Receiver  

B) 3D-MITe  

C) 2D-MITe 
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The receiver board contains the same transceiver (nRF24E1), a RS232 level converter 

(MAX3218) and a voltage regulator (MAX8880) for external power supplies between +3.5 

and +12v. The dimensions are 5 x 2.5 x 0.4cm (2 x 1 x 0.2in).  

The receiver is designed to interface with a RS232 serial port, which works fine with a PC 

or laptop. The Zaurus PDA turned out to use a different serial standard, which required 

some alterations of the receiver board. The RS232 level converter was removed and the 

Rx/Tx pins were connected to the transceiver chip, with a logic inverter placed in be-

tween. 

House_n designed a simple serial protocol for receiver configuration and data transfer, 

which was implemented in C++ and adapted to the software systems used on the Zau-

rus. 

A detailed description of the hardware can be found in [24]. 

 

2.3 Audio and images 
 

The Zaurus has a decent built-in microphone which can be sampled in mono at common 

rates from 8kHz to 44.1kHz. For this project the lowest rate of 8kHz was selected. Test-

ing a variety of microphones showed that electret condenser microphones improve audio 

quality. Consequently after several recordings with the built in microphone the Sony 

ECM-T115 omnidirectional electret condenser microphone was used. A detailed compari-

son of the tested microphones can be found in Appendix F 

 

The camera used is the Sharp camera Compact Flash card CE AG06, which features a 

350’000 pixel CMOS imager. The driver software was partially available online. 

Pictures can be captured in several resolutions. Although advertised by some vendors, we 

did not achieve the VGA resolution of 640x480 and settled for 480x480. 

A downside of this camera is the bad wide-angle. Therefore, in order to capture as much 

information as possible we added a 180° door viewer. 
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Figure 2-4: Camera and image examples with and without fisheye lens  

 

 

2.4 WiFi sniffing with Kismet 
 

Kismet is a GPL open source software that uses the built in WiFi card to scan for available 

802.11b networks. It is launched by the recording application in intervals of 100 seconds. 

This frequency was chosen to keep power consumption low. Network names and MAC 

addresses are extracted from a Kismet log-file and compared with entries in a look-up 

table to find location labels. 

 

Apart from detecting WiFi networks, 802.11b can of course also be used to design multi-

node, distributed wearable systems. Even high-bandwidth data such as full audio could 

be streamed to off-body resources, where available. This capability has not been used in 

this project, but is definitely a big potential for future applications. 

  

2.5 Battery life 
 

The internal battery of the Zaurus is not strong enough to power both the PDA and the 

MITes receiver. In order to increase runtime an external battery pack is used (Sony NP-
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F550 7.2V). The 7.2 volts are regulated down to 5 volts, the expected input voltage of 

the Zaurus, using the LM7805C regulator. An inductive coil of 83uH was added in series 

to prevent spikes of high current that can cause the battery to lock in a short-circuit pro-

tection state. 

 

With both the Zaurus and the external battery fully charged, the system operates for 

about 6 hours. This is in fact just the time it takes to fill the 1GB SD-card with data. The 

lifetime of the accelerometers is about 20 hours. 
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3 Data acquisition and annotation 

 

 

In this chapter the process of recording and labeling data is presented. A detailed techni-

cal tutorial can be found in Appendix E 

 

3.1 Signal recording application 
 

A Qtopia application named SignalRecorder was developed to provide a simple graphical 

user interface for data acquisition. In a first step, a session name can be entered and 

sensors can be selected. By pressing the start-button SignalRecorder will take care of 

launching all sub-processes with the right parameters and start logging data onto the SD-

card. 

 

Figure 3-1: Zaurus screenshots. System setup (left) and classifier outputs (right) 

 

At runtime, there is a possibility to give online labels by selecting activities from a list of 

radio buttons. Although implemented, this method was hardly used in this work.  

During the whole recording session battery power and CPU load as well as the log-files 

are monitored periodically. Their sizes are displayed in a status window, and if in two 

consecutive readings any file does not increase in size, a warning is displayed. This was 
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considered very important in order to prevent the annoyance of wasting hours of re-

cording time because of software crashes or malfunctioning sensors. 

As classifiers were implemented, another window was added to the application to control 

the classifiers and display classification results in real-time.  

 

3.2 Accelerometer calibration 
 

The accelerometers used in this project need calibration. A program named MITeCalibrate 

was developed to measure the mean and the scale of acceleration values over all three 

axes. This is done by determining the values corresponding to +/- 1g for each axis, then 

translating the mean to zero and dividing by the difference equivalent to 1g. To find the 

1g-values each accelerometer has to be rotated in each of its six extreme orientations 

and held still for a few seconds. Two rolling averages are computed per axis. One can 

only increase, the other decrease and the learning factor is indirectly proportional to the 

variance over a one-second window. Also the values are median filtered, which further 

reduces the risk of distorting the calibration by shaking. 

 

3.3 Interval-contingent experience sampling 
 

Subjects wear the system for several hours without interacting with it. Audio and accel-

eration signals are recorded continuously. The camera takes pictures once a minute and 

periodically WiFi networks are logged. After the recording session an offline annotation 

tool is used, which presents at a time an image, the corresponding sound clip and a list of 

labels to choose from. This naturalistic approach reflects best the every day life of a user 

and provides apart from the annotated data also statistics on the subject’s activities. Ob-

vious shortcomings are of course the one-minute granularity. A purely naturalistic proto-

col will not capture sufficient samples of certain activities like shaking or clapping hands. 

For these short activities, semi-naturalistic training is necessary.  

 

3.4 Offline annotation tool 
 

The annotation tool developed for this project is web-based and uses PHP and a MySQL 

database to manage annotation sessions. In a preprocessing step, for each image a cor-

responding audio clip is extracted from the audio log-file and saved as a wav-file. The 

clips are 20 seconds long and start at the time the image was taken. A list of image and 

audio pairs is then imported into a SQL table and associated with a session name. It is 

important to mention, that only the filenames are stored on the web server. The images 

and audio files are at all times located on the subject’s hard drive or local network. 
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The labeling process is then as follows. For each clip, the best matching label in each 

category must be selected. If a clip is ambiguous, or the user is not sure, the “confident” 

checkbox is to remain unchecked. This is important for the quality of the labeled data. In 

case of a lot of training data, a few miss-annotations will not cause much harm. However, 

if the data is used for testing, the accuracy of the classifier will depend directly on the 

label the user decided on. Optionally a line of comment can be added. 

When a label is inserted, the next clip will load and the selected labels for the previous 

clip are repeated as a suggestion. This speeds up the annotation significantly. During a 

long bike ride or in front of the computer, most clips are identical and can be clicked 

through rapidly. It is more difficult when many things happen, especially when speech is 

included. Then the whole 20 seconds need to be listened to in order do make sure the 

given labels are valid for the whole clip. In discussions it is very often not the case that 

only the user or somebody else is speaking throughout the clip. For those cases a label 

“Speech, but none of the above” was introduced so that the information on speak-

ing/non-speaking can still be captured. 

 

 

Figure 3-2: Sreenshot of annotation tool 

 

The labels are stored in the database and can be retrieved or changed any time. Buttons 

are provided to navigate through the clips. After labeling all the clips, three output files 

are generated: One with the timestamps and the corresponding labels, a second with the 

comments, and a legend that maps numeric values into the labels as they were pre-

sented on the screen. 
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The time it takes to label data depends very much on its variety. In average it takes 

about one quarter of the recording time to label a dataset. 

 

3.5 The data collected 
 

As this wearable platform was developed from scratch, there were repeated changes in 

hardware and software that made the data collection an iterative process. At first we only 

had 10g accelerometers. In this configuration ten datasets of at least one hour were col-

lected and used to train the first set of classifiers. Analysis of the data showed that accel-

eration levels were predominantly in the +/- 2g range, which suggested that through 

higher quantization of 2g accelerometers better quality data could be recorded. 

A total of about 35 hours of raw data in 14 sessions was collected with 2g accelerome-

ters. Two datasets were unusable because of wrong sensor placement and one because 

of hardware failures. The base for this work is about 24 hours of data from 11 sessions 

with myself as the subject. The dataset includes data from several locations recorded at 

different times of the day and reflects roughly the every-day life of a student. Unfortu-

nately, due to a malfunctioning adapter plug, in 8 of those sessions the built-in micro-

phone of the Zaurus was used instead of the Sony condenser microphone. 

 

3.6 Enhanced sensor configuration 
 

The decision was taken to include yet a different sensor package for future recordings. 

The new configuration includes accelerometers on hip, wrist and head, as well as audio 

from the chest and the wrist. This is to be the setup for the major data collection phase. 

So far 6 sessions have been recorded by 5 different subjects. Unfortunately, it is out of 

the scope of this thesis to elaborate on this new data. 
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 duration instances 

Location   

office 185mins 20 

home 126.5mins 12 

outdoors 16mins 19 

indoors 92mins 8 

restaurant 34mins 8 

car 40mins 4 

street 51mins 16 

shop 20mins 4 

Speech   

no speech 136mins N/A 

user speaking 31mins N/A 

other speaker 91mins N/A 

distant voices 20mins N/A 

loud crowd 12mins N/A 

laughter 8mins 1*** 

Posture   

unknown 9mins 1** 

lying 13mins 1 

sitting 886mins 54 

standing 191mins 52 

walking 30mins 21 

running 4mins 1 

biking 79mins 19 

Activities   

no activity 1000mins 72 

eating 92mins 10 

typing 261mins 33 

shaking hands 8mins 1* 

clapping hands 6mins 1* 

driving 33mins 4 

brushing teeth 8mins 2 

doing the dishes 12mins 2 

Table 3-1: Overview of the data acquired 

 

* Shaking and clapping hands is difficult to capture using the naturalistic approach. 

The training data in these cases were recorded at the lab. 

** There are basically no occasions in everyday life for which posture would be anything 

other than the suggested labels. Nevertheless it is desirable to classify an unknown 

posture if sensor values clearly suggest so e.g. when the sensors are worn the 

wrong way. To emulate an unknown posture, random but realistic signals were gen-

erated. 

*** Again, laughter is hard to capture. To acquire realistic laughing data, we edited sev-

eral recordings carried out in and around the lab, in which we made use of jokes and 

funny videos to provoke laugher. 

 

Note: the labels indoors and outdoors must be understood as in- or outdoors, but none of 

the other labels. 
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4 Classification architecture and implementation 

 

 

4.1 Classification architecture 
 

One goal of this work is to propose an architecture for comprehensive context recogni-

tion.  

The four categories location, speech, posture and activities were chosen to reflect differ-

ent dimensions of context, that all are well defined at any instance of time. The labels 

within the categories are mutually exclusive.  

 

Location Speech Posture Activities 

office 

home 

outdoors 

indoors 

restaurant 

car 

street 

shop 

no speech 

user speaking 

other speaker 

distant voices 

loud crowd 

laughter 

unknown 

lying 

sitting 

standing 

walking 

running 

biking 

no activity 

eating 

typing 

shaking hands 

clapping hands 

driving 

brushing teeth 

doing the dishes 

Table 4-1: The four classification categories with labels 

 

The work in this thesis is in a very exploratory stage and it is still unclear what can be 

classified with the given sensing layout. The labels were chosen to reflect everyday situa-

tions, we believe are well classifiable.  

This choice naturally has shortcomings. It is for instance hard to compare the speech 

label laughter with loud crowd, since both can actually be true at the same time. Also the 

temporal resolution poses problems. For a good recognition of eating, activity patterns 

over about 30 seconds are most meaningful. But then an activity like shaking hands 

might last only 3 seconds. These were lessons learnt and suggestions to improve this 

architecture are given in Chapter 8. 

 

We decided to rely on acceleration for the categories posture and activities and on audio 

for the other two. In a pre-classification step four separate classifiers make a decision in 

their category. Then, in a post-classification step, a common sense model is proposed 

that combines the information from all four categories to output a final classification. This 

architecture is the base for the evaluation in the upcoming chapters and was imple-

mented on the wearable in real-time. 
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Figure 4-1: Classification architecture 

 

Note: WiFi location classification is output on the wearable, but not used for any evalua-

tion in this thesis.  

 

 

4.2 Implementation 
 

The implementation was done in C and C++ and is based on the MIThril 2003 software 

architecture, developed by the group. It is layered on top of standard Linux libraries and 

can be compiled for several processor types. The two main components used are de-

scribed below, for more details see [25]. 

 

The Enchantment Whiteboard is a distributed client/server inter-preprocess communica-

tion system that provides a lightweight, modular framework for applications to communi-

cate. Client processes can post information in the form of nodes on a whiteboard. All 

nodes have a unique node locator (UNL), which is in the form of server-IP:/path. Other 

clients can either poll nodes on a server, or subscribe to a whole set of postings to re-

ceive updates automatically. 

For higher bandwidth signals, like the acceleration and audio data, the Enchantment Sig-

nal system offers point-to-point communications between clients, with signal “handles” 

being posted on the Whiteboard to facilitate discovery and connection. The Signal API 

abstracts away the need for signal producers to know how many, or even if, there are 

any connected signal consumers and who they are. 

All these communication schemes are IP-based and thus network transparent. 

 

The application that provides a graphical user interface and manages the signal reading 

and classifying process is SignalRecorder (see also Chapter 3 on data acquisition). This 

Qtopia application is merely the interface to sub-processes that do the actual classifica-

Posture 

Post-classifier 

Acceleration hip 

Audio 

WiFi 

Activities 

Speech 

Location 

Acceleration wrist 
Common Sense 

Model 

“sitting” 

“eating” 

“laughing” 

“restau-

rant” 

Pre-classifiers sensors 
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tion. It invokes processes for sensor reading, feature generation and classification using 

system calls and takes care of correctly terminating them when done. The whole classifi-

cation procedure could be run from the command line. 

 

The following figure depicts the software structure, showing processes and the flow of 

data though them:  

 

MITeSignal

LinuxAudio
Signal

IClassifier

signals

audio

Enchantment
Server

features
pre-class

location

audio

post-class

AccelFeature

AudioFeature

GClassifier

XML

GClassifier

XML

XML
GClassifier

XML

GClassifier

XML

GClassifier

XML
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XML

GClassifier

XML

GClassifier

XML

posture

activities

speech

accel
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acc2

posture

activities

speech

location

 

Figure 4-2: Software structure of real-time implementation 

 

The light blue boxes represent single processes, the dark blue ovals nodes on the En-

chantment whiteboard. The dashed lines symbolize the logical flow of data. While each 

process reads and posts signal handles on the server, the actual signals flow point-to-

point.  

 

In order to facilitate saving, loading and visualization of models, an XML-based interface 

was developed. Model parameters that are learned in Matlab are exported to file in a 

standard XML format, which can be loaded by the real-time classifiers.  

 

A detailed description of the C-code can be found in Appendix C. 
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5 Pre-classification: focus on each category 

 

 

This chapter explains the classification methods used for each category and gives a de-

tailed evaluation of their performance. 

 

5.1 Classification methods  
 

In view of the selected architecture and considering that the system is to be run in real-

time, the focus of the pre-classifiers was not on reaching highest possible accuracy for 

each category, but rather on speed and flexibility. Because of limited program memory, 

approaches that rely on saved test-data (like k-nearest-neighbors or histogram based 

Bayes classifiers) are not suitable for real-time. The classification methods studied were 

 

• Naive Bayes classifier using Gaussian probability distributions 

• Naive Bayes classifier using mixtures of Gaussians 

• C4.5 decision trees 

• Hidden Markov models 

 

In all cases, classification was based on windowed features computed from the raw sen-

sor data. Several features were tested. They are explained in the corresponding chapters 

further down. Linear discriminant analysis (LDA) was used to visualize the feature space. 

Classification methods using the projected features were tested but were found inferior. 

 

For each category, features were calculated over the entirety of the data. These feature 

vectors were then split into training and testing sets of equal size by choosing every 

other vector for training and testing, respectively. This proceeding needs to be explained. 

 

It can be reasoned that training and testing data should be from completely distinct data-

sets, in order to prove a classifiers generalizing capability. The reason we proceeded dif-

ferently is the following. Data that is recorded and labeled using the experience sampling 

method is very diverse. There are for example 5 recordings of eating. In two of them the 

subject used knives and forks in both hands, in two of them only a fork in the right hand 

and one was eating a sandwich. Clearly, any classifier would perform badly, if it was 

trained exclusively on one way of performing an activity and tested on the other. In other 

words, the activities we are trying to classify are inherently so complex that the training 

data needs to represent the whole diversity of the data. This becomes less an issue if 

there are sufficient recordings in all variations of activities. For our work this was not the 
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case, rather more, the sessions were specifically recorded in different settings. This said, 

we believe interleaving samples is a valid approach for testing and comparing different 

classifiers. To add credibility some cross-validation data was recorded, which is evaluated 

at the end of this chapter. 

 

The Bayes classifier is very simple, fast and intuitive and in the case of a single Gaussian 

PDF nearly immune against overfitting. Hence it serves as a good reference for other ap-

proaches. The performance of the Bayes classifier did not improve much using mixtures 

of Gaussians, except in the category activities. We thus mainly present the results for 

single Gaussian modeling. 

  

The c4.5 decision trees seem to perform better in overall accuracy. However there is not 

much gain in average class accuracy. The algorithm used is implemented in C and origi-

nates from University of Regina, Canada [26]. The decision trees that are generated are 

very big. The tree learned on posture (17990 cases) contained 631 nodes before pruning, 

541 nodes after. This gave reason to believe that the tree is overfitting the data. By 

modifying the source code, the pruning effort was increased. The resulting tree for pos-

ture is now down to 127 nodes with only minor losses in accuracy. It seems that classes 

with only few samples tend to suffer, compared with classes containing numerous exam-

ples. This hints that the pruning algorithm is unfair, or better said that it tries too much 

to maximize the overall accuracy. Until this classifier can be tested against more distinct 

data, it is unclear if the decision tree is still overfitting. 

 

Hidden Markov models (HMMs) were tested on the category activities only. They are dis-

cussed further down. 

 

5.2 Posture 
 

Posture classification is based on acceleration only. The features used are means and 

variances of X, Y and Z axis of both accelerometers, resulting in a 12-dimensional feature 

vector. Other features that were tested but not selected are 

 

• Sum of differences 

• FFTs with and without the DC component over several singles axis and the magni-

tude, with and without Hanning windows. 

• Eigenvalues 

• Principle components of the covariance 

 

All these features were evaluated using a Bayesian Classifier with a Gaussian PDF. The 

performance of the “complicated” features was remarkably poor compared to the simple 



  31 

ones selected. Window sizes were varied over 128 samples (~1.4 seconds), 256, 384 to 

512 samples (~5.7 seconds). Larger windows in general yielded better results, but also 

mean an increase in latency. A window size of 384 samples (~4.4 seconds) was selected.  

 

Already the visualization of the feature space using linear discriminant analysis shows 

that most posture labels can be expected to be easily classified. 

 

 

 

Figure 5-1: Feature space for posture 

 

 

The resulting confusion matrix for the Bayes classifier is shown in the following table: 

 

classified as --> a b c d e f g accuracy 

a = unknown 53 1 5 2 0 0 0 87% 

b = lying 1 89 2 0 0 0 0 97% 

c = sitting 22 3 6241 174 2 0 27 96% 

d = standing 8 0 304 924 43 1 100 67% 

e = walking 0 0 6 16 182 0 6 87% 

f = running 0 0 0 0 1 22 0 96% 

g = biking 0 0 6 17 2 0 547 96% 

 class average: 89.3% 

 overall accuracy: 91.5% 

Table 5-1: Posture confusion matrix, Bayes classifier 
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Six of the seven labels have an accuracy over 85%, which is very pleasing. Only the class 

standing shows major confusions, namely with sitting, walking and biking. We see two 

main reasons for this.  

Firstly, it has to be said that the accuracy of the labels themselves is not 100%. The off-

line annotation introduces labeling errors. The clips for posture (as also for events) were 

aggregated across several minutes. This means that if two consecutive clips have the 

same posture label, then all the data between the clips is labeled the same. This will of 

course mean that if somebody is basically standing, but quickly walks across the room to 

pick up something, this walking data can falsely end up with a standing label. The same 

thing is likely to happen for short pauses while walking. 

This will however not account for all the standing/sitting and standing/biking confusions. 

For these cases we will have to bear with the fact that the positioning of the sensors does 

not allow accurate classification. Without information on the orientation of the thighs, it is 

hard to tell apart standing and sitting. Analysis of the classifications shows that sitting is 

actually best differentiated from standing by the orientation of the wrist. Sitting is as-

sumed as soon as the hands are placed on a table, as in typing and eating. So if the sub-

ject is standing and holding something in his hand, a misclassification is likely. There is 

only little sitting/standing confusion though. This is thanks to a small but noticeable dif-

ference in angle of the hip accelerometer. If the hip is vertical, as in standing, the user 

often has his hand in a typing or eating position. In the case of sitting doing nothing, as 

on a couch for example, there is a much bigger tendency to lean back, which again pro-

hibits classification as standing. 

 

Here is the confusion matrix of the c4.5 decision tree. The overall accuracy is higher, but 

the same tendencies can be noticed as before, except for the unknown class, which is 

classified badly. This is not surprising though because it is randomly generated and there 

is no pattern to model, other than the fact that the samples don’t fit any of the other 

categories. This can seemingly be better captured with the Bayesian approach. 

 

classified as --> a b c d e f g accuracy 

a = unknown 30 2 15 13 1 0 0 49% 

b = lying 0 85 4 0 1 1 0 93% 

c = sitting 0 0 6329 129 3 0 8 98% 

d = standing 0 1 174 1187 9 0 7 86% 

e = walking 0 0 5 26 174 1 1 84% 

f = running 0 0 0 0 1 21 0 95% 

g = biking 0 0 11 22 3 0 535 94% 

 class average: 85.7% 

 overall accuracy: 95.0% 

Table 5-2: Posture confusion matrix, C4.5 classifier 
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5.3 Activities 
 

As posture, activities are classified using acceleration only. This is of course a simplifica-

tion, considered that we also have full audio. We do indeed believe that several activities 

would profit from including audio features in the classification process, especially typing, 

driving or doing the dishes. This will be part of future work. With the current approach, 

audio can still affect the final classification in the sense that the post-classifier will for 

example only output driving if the current location is classified as car. 

 

The same acceleration features were tested as described previously. Findings were simi-

lar, no set of features performed significantly better than the means and variances. A 

difference though was perceived in the results with different window sizes. Larger win-

dows seem to capture more of the dynamics, which are especially slow in the case of eat-

ing. 

For ease of design, we decided to go with the same window size as the posture classifier. 

That way the features must only be computed once.  

The following figure shows the feature space after LDA transformation: 

 

 

Figure 5-2: Feature space for activities 

 

This plot is a reduction of the 12-dimensional into a two dimensional space and thus can 

only give hints on separability of the features. Nevertheless, very distinct movements 

such as clapping hands or brushing teeth can be well distinguished. Activities with small 
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variance values cluster in one cloud. Driving and shaking hands are compact clouds 

within, which should be fine, but eating and typing are pretty scattered. The samples of 

doing the dishes that are well outside the cloud are very likely the ones with scrubbing or 

where silverware was shaken to get the water off. Since “no event” comprises all kinds of 

activities other than the ones with other labels, it is not surprising that the cloud is big 

and surrounds most others (this plot does not quite show this because the blue dots were 

plotted first). 

 

The following two tables show the confusion matrix of the Bayes classifier, first with one, 

then with a mixture of three Gaussian PDFs. 

 

classified as --> a b c d e f g h accuracy 

a = no activity 4494 864 1578 11 2 306 21 24 62% 

b = eating 28 486 145 0 0 10 1 1 72% 

c = typing 95 56 1731 0 0 17 1 0 91% 

d = shaking hands 8 0 0 47 2 0 0 1 81% 

e = clapping hands 1 1 0 1 42 0 0 0 93% 

f = driving 13 1 13 0 0 218 0 0 89% 

g = brushing teeth 7 3 1 0 0 0 44 0 80% 

h = doing dishes 36 0 2 3 0 0 1 44 51% 

 class average: 77.5% 

 overall accuracy: 68.6% 

Table 5-3: Activities confusion matrix, Bayes classifier with single Gaussian 

 

classified as --> a b c d e f g h accuracy 

a = no activity 5585 497 1005 5 1 173 11 23 77% 

b = eating 84 490 95 0 0 0 0 1 73% 

c = typing 177 46 1676 0 0 1 0 0 88% 

d = shaking hands 8 0 0 48 1 0 0 1 83% 

e = clapping hands 1 1 0 2 41 0 0 0 91% 

f = driving 41 1 4 0 0 198 0 0 81% 

g = brushing teeth 5 2 0 0 0 0 48 0 87% 

h = doing dishes 43 0 2 0 0 0 0 41 48% 

 class average: 78.5% 

 overall accuracy: 78.5% 

Table 5-4: Activities confusion matrix, Bayes classifier with mixture of three Gaussians 

 

As expected, activities with distinct movements classify very well. Five of the eight activi-

ties are above 80% using a single Gaussian. However, there is much confusion with the 

garbage class “no activity”, especially many false positives. Every third sample of that 

class is confused with typing. And many are confused with eating and driving. This shows 

that it is difficult to distinguish sitting actions where there is little hand movement in-

volved. 

If we recall that the window size used is about 4.4 seconds, it becomes understandable 

that many eating samples are confused. Eating is an activity that spans several minutes 
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and its characteristic movements often occur at a rate too low to be adequately captured 

by the window used. Viewed on a higher level, it should not be a problem to detect an 

entire meal.  

The same can be said for doing the dishes. It is also likely in this case, that the small 

amount of data did not suffice to capture the complexity of this activity. 

 

The mixture model is about 10% better in overall accuracy. This is solely because of a big 

improvement of the “no activity” class. There are less false positives, but apart from 

brushing teeth, all other classes suffered. This might possibly also be achieved simply by 

giving the “no event” class a higher prior probability. The assumption that a mixture of 

Gaussians would better model the eating class, because of its presumably dissimilar sub-

sets of motions, was not confirmed. This is partly due to overfitting, for there is a consid-

erable difference between training and testing error for the mixture model. 

 

A very good job is done by the c4.5 decision tree: 

 

classified as --> a b c d e f g h accuracy 

a = no activity 6972 105 141 11 3 40 5 19 96% 

b = eating 112 542 14 0 0 0 0 0 81% 

c = typing 252 23 1624 0 0 1 0 0 85% 

d = shaking hands 20 0 0 32 1 0 0 3 57% 

e = clapping hands 5 1 0 0 38 0 0 0 86% 

f = driving 61 0 0 0 0 183 0 0 75% 

g = brushing teeth 16 0 1 0 0 0 38 0 69% 

h = doing dishes 33 0 1 0 0 0 0 51 60% 

 class average: 76.2% 

 overall accuracy: 91.6% 

Table 5-5: Activities confusion matrix, C4.5 classifier 

 

The tree seems to be able to model well eating and “no activity”, the challenging classes 

for the Bayes classifier. Except doing dishes, all other classes perform worse, especially 

shaking hands, which is quite surprising. As mentioned above, this might be due to an 

unfair pruning algorithm. 

 

The typical temporal patterns and characteristic of movements in many of these activities 

suggest modeling with hidden Markov models. Each class was modeled with one ergodic 

HMM containing 2, 3 or 4 latent states with continuous observations modeled by Gaus-

sian distributions. The data was split into classification chunks of about the same length 

as above (~4.4 seconds). Each chunk was split into an equal number of slices. For each 

slice, the same features were calculated as above. The configurations tested were 

 

• 10 samples per slice, 40 slices per chunk; 2, 3 and 4 latent states 

• 32 samples per slice, 12 slices per chunk; 2, 3 and 4 latent states 
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The HMMs were trained with the Baum-Welch EM-learning algorithm using the same 

training data as before. For classification, the class with the highest log-likelihood value 

for the forward algorithm is used. Because some HMMs model certain activities better 

than others, a normalization step is necessary. Using a simple, iterative algorithm, log-

likelihood offsets were learned that are to be added after applying the forward algorithm. 

This can be compared to assigning prior probabilities. 

Both configurations tested performed about equally well. In the first configuration, which 

used shorter slices, the performance increased slightly with the number of states used. In 

the second configuration there was no significant difference. We thus chose to present 

the results for 2-state HMMs using 12 slices of 32 samples for each classification chunk: 

 

classified as --> a b c d e f g h accuracy 

a = no activity 5002 585 736 5 3 185 66 222 74% 

b = eating 68 523 29 0 0 2 0 1 84% 

c = typing 179 65 1504 0 0 15 5 1 85% 

d = shaking hands 1 0 0 46 2 0 0 4 87% 

e = clapping hands 1 1 0 0 39 0 0 0 95% 

f = driving 43 0 0 0 0 184 0 0 81% 

g = brushing teeth 1 2 0 0 0 0 46 2 90% 

h = doing dishes 9 0 1 0 0 0 0 69 87% 

 class average: 85.4% 

 overall accuracy: 76.8% 

Table 5-6: Activities confusion matrix, ergodic 2-state HMMs 

 

While HMMs are prone to overfitting, analysis of the learned models showed that in many 

cases, the states represent fairly well the different subsets within activities. For example, 

the two states in shaking hands typically correspond to the hand hanging down and the 

hand extended and shaking, respectively. We thus believe two-state HMMs to be a good 

approach for this category. The downside, however, are the more expensive calculations 

required. 

 

5.4 Speech 
 

Speech classification is based on a set of voice features previously assessed by our 

group, namely: 

 

• Formant frequency 

• Spectral entropy 

• Value of maximum autocorrelation peak 

• Number of autocorrelation peaks 

• Energy 
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The properties of these basic features are discussed in [27]. They are calculated over 

256-sample windows with 128 samples overlap, which corresponds to a feature-rate 

62.5Hz. For this work, the means and variances of these features were calculated over a 

window of 4.8 seconds, resulting in a 10-dimentional feature vector.  

 

 

Figure 5-3: Feature space for speech 

 

classified as --> a b c d e f accuracy 

a = no speech 785 4 21 4 8 3 95% 

b = user speaking 7 104 65 0 9 2 56% 

c = other speaker 26 6 493 10 21 0 89% 

d = distant voices 76 0 41 6 2 0 5% 

e = loud crowd 16 1 6 1 46 2 64% 

f = laughter 3 4 6 0 3 37 70% 

 class average: 63.0% 

 overall accuracy: 80.9% 

Table 5-7: Speech confusion matrix, Bayes classifier 

 

The overall classification accuracy of 80.9% is descent, but mainly driven by the good 

classification of “no speech”. The distinction of “user speaking” and “other speaker” only 

works in one direction. “Other speaker” seems to be the stronger class. It is understand-

able, though, that distinguishing speakers using ambient audio is a challenging task. 

The fact that “loud crowd” is mainly confused with “no speech” and not the other speech 

classes suggests that other features should be tested than the ones used, which are de-
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signed to capture single voices. The complete misclassification of “distant voices” can be 

attributed to the unclear definition of the label and its inconsistent usage. 

 

If the labels b to f are taken together as one class speech, we obtain an overall accuracy 

in speech recognition of 90.8%:  

 

classified as --> a b accuracy 

a = no speech 785 39 95% 

b = speech 127 858 87% 

 overall accuracy: 90.8% 

Table 5-8: Speaking / non-speaking with Bayes classifier 

 

For this category there is no improvement with the c4.5 classifier. The results are very 

similar: 

 

classified as --> a b c d e f accuracy 

a = no speech 769 5 21 12 16 0 93% 

b = user speaking 15 105 59 1 2 4 56% 

c = other speaker 34 26 466 7 20 1 84% 

d = distant voices 54 1 37 26 5 1 21% 

e = loud crowd 12 1 9 2 45 1 64% 

f = laughter 1 1 2 1 8 38 75% 

 class average: 65.6% 

 overall accuracy: 80.1% 

Table 5-9: Speech confusion matrix, C4.5 classifier 

 

It must be said, again, that the accuracy values in the category speech do are not based 

on 100% correct labels. It is quite often the case that a 20-second clip will contain for 

example 15 seconds of user speech and some seconds of other speaker. Broken down to 

the 4.8-second window used, it is likely that several cases are mislabeled. 

 

5.5 Location 
 

We acknowledge the fact that location detection is an important part of context recogni-

tion. It is however not a focal point of this work for the following reason: For most cases, 

location can be easily and fairly precisely calculated using GPS outdoors and WiFi network 

detection indoors. Several publications in that field can be found in [28].  

However, this does not directly apply to abstract labels like car, street or restaurant. We 

make an attempt in using audio to classify the eight selected labels, fully aware of the 

fact that it will be impossible to distinguish several of them. 

Especially for home and office as well as several restaurants we can already us WiFi and 

a simple look-up table. This is implemented, but has not been taken into account for pre- 

nor post-classification approaches presented here. 
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For reasons of simplicity the same audio features and window sizes were used as for 

speech classification. The feature space is depicted below: 

  

 

Figure 5-4: Feature space for location 

 

All clouds are strongly scattered and most of them are intermingled. Only the label car 

can be completely separated. 

 

classified as --> a b c d e f g h accuracy 

a = office 589 232 2 228 52 3 13 3 52% 

b = home 89 563 3 43 57 1 12 2 73% 

c = outdoors 33 10 9 0 3 8 35 0 9% 

d = indoors 126 64 2 332 16 2 15 1 59% 

e = restaurant 9 12 0 6 176 0 3 2 85% 

f = car 1 0 0 0 0 240 3 0 98% 

g = street 33 41 1 5 23 8 201 1 64% 

h = shop 32 20 0 5 25 1 27 16 13% 

 class average: 56.8% 

 overall accuracy: 61.8% 

Table 5-10: Location confusion matrix, Bayes classifier 

 

As expected, the results in general are pretty poor, with an overall accuracy of 61.8% for 

the Bayes classifier. The classes outdoors and shop fail completely because the are 

mostly confused with office and home, the two classes with the most samples. Only car is 
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classified excellently. Restaurant is surprisingly good with 85%, street is somewhat dis-

appointing with only 64%.  

The c4.5 classifier performs again a bit better, but the comparison provides no new major 

insights. 

 

classified as --> a b c d e f g h accuracy 

a = office 826 157 6 115 11 0 3 1 74% 

b = home 187 519 10 36 4 1 9 2 68% 

c = outdoors 7 20 24 1 4 5 31 4 25% 

d = indoors 180 56 3 272 27 0 17 1 49% 

e = restaurant 5 10 1 12 158 1 11 8 77% 

f = car 0 1 3 0 0 238 2 0 98% 

g = street 7 48 4 4 16 2 214 17 69% 

h = shop 29 37 1 2 3 0 9 43 35% 

 class average: 61.6% 

 overall accuracy: 67.0% 

Table 5-11: Location confusion matrix, c4.5 classifier 

 

5.6 Cross-validation datasets 
 

In order to further cross-validate the classification algorithms and verify their real-time 

implementation, three datasets with a total length of about 4.5 hours were recorded with 

running feature generators and classifiers. 

 

Most real-time calculations are precise compared to the Matlab reference. Only the two 

basic audio features spectral entropy and especially formant frequency sporadically show 

errors greater than 1%. This is due to issues with fix-point FFTs on the wearable which 

cannot be solved without major losses in computation speed. These errors propagate 

through to the classifiers, which differ from the Matlab reference in roughly 10% of the 

time in the category speech. 

 

The classification results presented here have been computed (in Matlab) according to 

same procedures as above, using the Bayes classifier with single Gaussian observations. 

They are comparable to the ones achieved using the interleaved training and testing 

data, which confirms the generalization capability of the classifier. Overall accuracy of 

posture is virtually the same, activities and speech even attained a higher accuracy. Lo-

cation classification failed completely, which strongly suggests using at least a combina-

tion of audio and WiFi, preferably GPS. 
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classified as --> a b c d e f g accuracy 

a = unknown 0 0 0 0 0 0 0 N/A 

b = lying 0 243 0 0 0 0 0 100% 

c = sitting 0 3 3349 12 12 0 2 99% 

d = standing 1 0 322 1001 23 0 40 72% 

e = walking 0 0 11 45 200 0 7 76% 

f = running 0 0 0 0 0 0 0 N/A 

g = biking 0 0 0 8 2 0 540 98% 

 class average: 89.1% 

 overall accuracy: 91.6% 

Table 5-12: Cross-validation posture confusion matrix (Bayes classifier) 

 

classified as --> a b c d e f g h accuracy 

a = no activity 3466 227 147 24 17 0 6 72 88% 

b = eating 73 574 106 0 0 39 2 0 72% 

c = typing 4 36 2455 0 0 0 0 0 98% 

d = shaking hands 0 0 0 0 0 0 0 0 N/A 

e = clapping hands 0 0 0 0 0 0 0 0 N/A 

f = driving 0 0 0 0 0 0 0 0 N/A 

g = brushing teeth 0 0 0 0 0 0 0 0 N/A 

h = doing dishes 68 2 3 0 0 0 0 25 26% 

 class average: 70.9% 

 overall accuracy: 88.8% 

Table 5-13: Cross-validation activities confusion matrix (Bayes classifier) 

 

classified as --> a b c d e f accuracy 

a = no speech 601 3 10 3 16 3 94% 

b = user speaking 1 16 22 0 6 2 34% 

c = other speaker 8 4 91 0 4 1 84% 

d = distant voices 39 0 1 0 0 0 0% 

e = loud crowd 12 0 10 1 17 0 43% 

f = laughter 0 0 0 0 0 0 N/A 

 class average: 51.1% 

 overall accuracy: 83.2% 

Table 5-14: Cross-validation speech confusion matrix (Bayes classifier) 

 

classified as --> a b c d e f g h accuracy 

a = office 84 400 0 17 1 2 1 3 17% 

b = home 1 35 0 4 0 1 6 1 73% 

c = outdoors 47 8 0 0 5 2 29 1 0% 

d = indoors 24 6 0 6 52 0 2 1 7% 

e = restaurant 13 4 0 0 3 0 4 0 13% 

f = car 0 0 0 0 0 0 0 0 N/A 

g = street 17 18 0 0 3 3 59 0 59% 

h = shop 22 11 0 0 23 2 53 5 4% 

 class average: 24.6% 

 overall accuracy: 19.6% 

Table 5-15: Cross-validation location confusion matrix (Bayes classifier) 
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6 Post-classification: Modeling common sense 

 

 

By taking into account the dependencies between the four categories, the overall classifi-

cation accuracy based on 3.5 hours of fully labeled data can be improved from 76% to 

83%. In this chapter several approaches on how to extract and use this mutual informa-

tion are discussed and evaluated. 

 

6.1 Common sense dependencies 
 

Common sense can be used to describe several facts that a computer will a priori never 

know. The simplest example is marginal probabilities: 

 

• ( ) ( )P shaking hands P eating<  

• ( ) ( )P restaurant P office<  

 

We can reason that certain combinations of context are more likely than others. For ex-

ample: 

 

• ( ),  ( ,  ) ( ,  )P shaking hands standing P shaking hands sitting P shaking hands walking> >  

• (  ) (  )P shaking hands, me speaking P shaking hands, no speech>  

 

Some combinations can safely be called impossible: 

 

• ( , ) 0P lying doing the dishes ≈  

• ( , ) 0P biking typing ≈  

 

Then, partial knowledge of a person’s context can be used to infer other context. Quite 

safely we can state the following conditional probabilities: 

  

• ( | ) 1P car driving ≈  

• ( )| 1P sitting typing ≈  

 

The activity typing will usually infer the posture sitting, and a classifier that detects driv-

ing has implicitly also detected car. The reverse though is not true. Being in a car will 

suggest we are sitting, but not necessarily that we are driving. 
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The rules discussed so far did not depend on time. Including the dynamics of life, further 

assumptions can be made. The context at a given time will depend on the context of the 

time before: 

 

• 1 1( | ) ( | )
t t t t

P location street location shop P location street location office− −= = > = =  

 

In that sense, transition probabilities between time steps can be learned, within a cate-

gory and across categories. On a higher level we can go even further and end up with 

complete stories. For instance, going out for dinner will very likely contain the following 

sequence of activities: Walking into a restaurant, sitting down, selecting a menu, order-

ing, eating, standing up and walking out.  

There are also statistics on the average duration of activities. Brushing teeth will typically 

last 2-3 minutes, eating 10 to 20 minutes and being in the office is in the range of sev-

eral hours. Apart from duration, the absolute time also has a strong influence. The static 

probabilities mentioned above can all be made dependant on time of day. 

 

Some of the rules listed above are pretty obvious and well defined by common sense. We 

will never be biking and typing at the same time. Many rules though reflect special be-

havior and are different for each subject. Some people go to work by car, others by bike, 

on foot, or by bus. Some people brush their teeth before breakfast, some after; others 

don’t eat breakfast at all.  

 

The experience sampling method was preferred to recording single activities because it 

yields information about the user’s behavior. Statistics can be won on joint, conditional 

and marginal probabilities as well as duration and absolute timing of activities. Major 

problems, though, are completeness and generalization. A valid representation of behav-

iors requires a lot of data, sampled over several days at all times of the day. A concrete 

problem that could come up is for example the following. If in the past, a user exclusively 

recorded sleeping at home, the system will have learned to use sleeping to infer being at 

home. Should the person suddenly take a nap in the office or outside in a park, then the 

system will probably still detect lying down, but then might use that to infer the location 

home. 

 

Because it takes a lot of training data to extract these rules, it is desirable that the sys-

tem have the possibility to incrementally improve its common sense model by unsuper-

vised learning. Coming back to the example, if the location classification is overruled for 

a long period of time by the common sense system, it seems plausible that the model is 

updated, trusting the location and posture classifiers as they are in this case quite certain 

about their decisions (home and office both are likely to have WiFi). 



  44 

 

We believe that if behaviors are learned and modeled correctly, classification results can 

be expected to improve dramatically. With an increasing amount of labels this approach 

will become even more valuable, but also more difficult. It will be vital that the efforts of 

context recognition be combined with those in common sense modeling. An interesting 

approach on how to model common sense is LifeNet [29], which extracts knowledge from 

huge web-editable database (Open Mind Common Sense, [30]) and represents it as an 

undirected graphical model. The efforts of the Media Lab in common sense can be found 

in [31]. 

 

 

6.2 Initial position of post-classification 
 

The basis for the work in this chapter is all the clips from the 24 hours of data used in the 

previous chapter which have confident labels for all four categories. This boils down to 

631 20-second clips, or 3.5 hours of data. Each clip was classified using the Bayes classi-

fier described in the previous chapter. That step is referred to as pre-classification, and 

the output is a probability vector for each category. The next step, discussed in this 

chapter, is referred to as post-classification. Any post-classification scheme will use the 

probability vectors as input observations and will decide on a final classification for each 

category.  

 

The window sizes and time steps are not equal for all classifiers. Therefore, each clip con-

tains several pre-classifications in each of the categories. All clips were concatenated and 

in order to model real-time behavior, in each pre-classification instance, the most recent 

classifications of the other three categories were repeated to form a 4-tuple.  

 

 

Figure 6-1: Timing for post-classification 

  

In other words, if there were 10 pre-classifications for speech and location and 20 pre-

classifications for posture and activities (this roughly corresponds to the difference in 

Post-classifications: t 

location  

speech 

posture 

activities 

Pre-classifications: 



  45 

window size), then there will be 10+10+20+20=60 post-classifications. The labels for 

post-classification also always correspond to the latest pre-classification label. 

This timing concept makes sure the system always takes into account the latest classifi-

cation results and has the potential to correct classifications in all categories even before 

new observations are available.  

 

The different schemes are compared by post-classification accuracy. For a direct com-

parison to the pre-classifiers, the number of classification errors and accuracy was re-

computed according to the presented timing scheme. The accuracies that are to be im-

proved compute to 

 

location: 62.10% 

speech : 78.20% 

posture: 91.60% 

activities: 72.60% 

Table 6-1: Pre-classification accuracies 

 

6.3 Static approach with joint probabilities 
 

In this approach we use the statistical information from the labeled data to learn joint, 

conditional and marginal probabilities. To facilitate discussion the following annotation 

scheme shall be defined: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

t

t

t

t

P A P location A

P B P speech B

P C P posture C

P D P activities D

≡ =

≡ =

≡ =

≡ =

 

 

Without loss of generalization the computations are only described for post-classification 

of the location category. The other three categories are assumed to follow the same prin-

ciples. The problem we are trying to solve is mathematically the following: 

 

( ) , , ,argmax A B C D

A

A f Obs Obs Obs Obs=� , 

 

where 
N

Obs is the observed probability vector of category N . Instead of using all four 

probability vectors we simplify and use only the whole observation vector of the category 

we are post-classifying; for the others we trust in the hard decision of the pre-classifier:  
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( )ˆˆ ˆargmax  , , ,
A

A f Obs B C D=�  where ˆ argmax( )
N

N Obs≡ . 

 

For the first approach, the post-classification probabilities are re-estimated according to 

the following: 

 

( , , , , ) ( , , , )
( | , , , ) ( | )

( , , , ) ( , , )

A
A A

A

P A B C D Obs P A B C D
P A B C D Obs P A Obs

P B C D Obc P B C D
= ≈  

 

( , , , )P A B C D  was calculated simply by counting all combinations of 4-tuples of the la-

beled data and then normalizing them. To justify this approach in general, the following 

table shows the post-classification results if in each case the labels were used instead of 

the pre-classifier estimates for the three complementary categories ( B , C  and D  in our 

notation convention).  

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   3461 (21%) 2981 340 3121 

speech :   3517 (22%)   2248 (14%) 1596 327 1921 

posture:   1356 (8%)    682 (4%) 786 112 570 

events :   4418 (27%)    655 (4%) 3940 177 478 

total:  15393 (24%)   7046 (11%) 9303 956 6090 

Table 6-2: Post-classification results using joint probabilities P(A,B,C,D) and correct labels 

 

Improved:  The absolute number of classification instances where post-classification 

corrected a pre-classification error 

Worse:  The instances where new errors were introduced by post-classification 

Unimproved:  The cases where pre-classification errors could not be corrected 

 

The improvement from 24% errors to 11% errors is remarkable. However, these num-

bers serve not more than as an upper bound for the static approach. Using the labels as 

the given conditions is cheating, because the three complementary classifiers will of 

course never be faultless. The next table illustrates the realistic approach, where only the 

decisions of the pre-classifiers were used: 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   5612 (35%) 2250 1760 3852 

speech :   3517 (22%)   3257 (20%) 654 394 2863 

posture:   1356 (8%)   1236 (8%) 406 286 950 

activities :   4418 (27%)   2330 (14%) 3360 1272 1058 

total:  15393 (24%)  12435 (19%) 6670 3712 8723 

Table 6-3: Post-classification using joint probabilities P(A,B,C,D) and pre-classification decisions 
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There is still a significant improvement. But only 2/3 of the previously corrected cases 

were improved this time and the number of worse classifications has more than tripled. 

This is due to the noise in the pre-classifier decisions. If the 3-tuples B , C  and D  do 

not correspond to the labels, the conditional probability ( | , , )P A B C D  can be very wrong 

which results in “miss-corrections”. 

 

Another interesting finding is how well the four categories in our dataset could be classi-

fied using exclusively the hard decisions in the complementary categories. In other 

words, can A  be guessed from B , C  and D  only? Formally, 

 

ˆˆ ˆargmax ( | , , )A P A B C D=�  

 

Using again first the correct labels we find the following: 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   5071 (31%) 3891 2860 2211 

speech :   3517 (22%)   3543 (22%) 1713 1739 1804 

posture:   1356 (8%)   2082 (13%) 834 1560 522 

activities :   4418 (27%)   1548 (10%) 3804 934 614 

total:  15393 (24%)  12244 (19%) 10242 7093 5151 

Table 6-4: Post-classification results using P(A|B,C,D) only 

 

The overall accuracies are surprisingly high. How can the performance compare to the 

cases where 
A

Obs  is used? Firstly, it needs to be said that the same experiment using 

the pre-classifier decisions yields an error rate of 41%. Then, the 19% reached here are 

deceiving. The value is dominated by labels like “no speech”, “sitting” or “no event” 

which account for most of the cases. The accuracies for less frequent labels suffer heavily 

under this approach. Brushing teeth for example is entirely classified as doing the dishes, 

because both activities are at home, standing and not speaking, but there were fewer 

samples of brushing teeth. Analog, running was entirely classified as walking.  

 

6.4 Static approach with pairwise joint probabilities 
 

While using the joint probabilities ( , , , )P A B C D  to model the data is very precise, it 

scales badly in the number of categories and labels. For n  categories with m  labels each, 

the space grows to 
n

m . It is worth noting that for the studied data, of the possible 8 x 6 

x 7 x 8 = 2688 combinations only 129 were featured. Because entries greater zero are 

needed for all expected realistic combinations, a lot of diverse training data will be re-

quired. For the same reason this approach is also prone to overfitting. 
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A model that is more tractable and less prone to overfitting is the following, using only 

pairwise conditional probabilities.   

 

( )( | , , , ) ( | ), ( | ), ( | ) ( | )A AP A B C D Obs f P A B P A C P A D P A Obs≈ ⋅  

 

Again, ( | ),  ( | )P A B P A C etc. can be calculated by counting labels, this time as 2-tuples. 

Now only 
2( )n m⋅  values are used. In this case, 

2(8 + 6 + 7 + 8)  = 841 (8 + 6 + 7 + 8)2 = 

841, of which 281 are greater zero. The distributions are visualized in Figure 6-2. A  can 

be read on the abscissa, B  on the ordinate. 

 

 

Figure 6-2: Pairwise conditional probabilities  

 

We can see for example that the activity driving clearly implies the location car. However, 

the probability (  | )P no event car  is actually greater than ( | )P driving car , which is correct 

since the data contained more samples of the subject being a passenger, rather than a 

driver. 

 

Different functions for combining the three conditional probabilities have been tested. The 

first is a convex combination: 
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1 1 1
( | , , , ) ( | ) ( | ) ( | ) ( | )

3 3 3
A AP A B C D Obs P A B P A C P A D P A Obs

 
≈ + + ⋅ 
 

 

 

The classification results are as follows: 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   5391 (33%) 1733 1022 4369 

speech :   3517 (22%)   3901 (24%) 220 604 3297 

posture:   1356 (8%)   1602 (10%) 262 508 1094 

activities :   4418 (27%)   3949 (25%) 2280 1811 2138 

total:  15393 (24%)  14843 (23%) 4495 3945 10898 

Table 6-5: Post-classification results using P(A|B) etc. in a convex combination 

 

The fact that the three conditional probabilities are equally valued and added, prevents 

that one of them can exert much influence. The number of unimproved errors is high. To 

give each of them more power the following approach was tested: 

 

( | , , , ) ( | ) ( | ) ( | ) ( | )
A A

P A B C D Obs P A B P A C P A D P A Obs≈ ⋅ ⋅ ⋅  

 

This time the opposite was observed. Because each pair has a direct influence on the 

outcome, if only one of the three conditions is based on a wrong pre-classification deci-

sion post-classification will fail. The error rate amounted to 25% and more than half the 

class accuracies were below 50%, several at 0%. 

 

The next approach tries to balance to two previous ones. Again the pairwise conditional 

probabilities are multiplied, but each of them is raised to the power of an exponent 

smaller one: 

 

1 1 1

( | , , , ) ( | ) ( | ) ( | ) ( | ) ,      ( 1)k k k
A A

P A B C D Obs P A B P A C P A D P A Obs k≈ ⋅ ⋅ ⋅ >  

 

That way, the damage of a using a faulty pre-classification is lowered. Best performance 

was achieved with 4k = : 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   6162 (38%) 2372 2432 3730 

speech :   3517 (22%)   3315 (21%) 745 543 2772 

posture:   1356 (8%)   1947 (12%) 457 1048 899 

activities :   4418 (27%)   2859 (18%) 3298 1739 1120 

total:  15393 (24%)  14283 (22%) 6872 5762 8521 

Table 6-6: Post-classification results using P(A|B)^(1/k) 
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The number of improvements is high, but also the number of newly introduced errors. 

This gives cause to think about why for instance the posture classification becomes 

worse. A notion of certainty needs to be introduced to prevent the post-classifier from 

worsening labels that are actually very well classified. Normalizing the post-classification 

output probabilities seemed a valid approach. 

 

( | , , , )
( )

( | , , , )

i A
i

i A

i

P A B C D Obs
c A

P A B C D Obs
≡
∑

 

 

( )
i

c A  is a measure of certainty for post-classification results. This could be compared 

against a threshold. Better is a comparison with a measure for the certainty of the pre-

classifiers. A classifier can be trusted when its false positive rate is very low. We thus use 

one minus the false positive rate as the pre-classification certainty measure. The predic-

tion of the post-classifier shall only be used if ( ) 1c A fp> −� . It turned out that for some 

particular cases ( )c A�  was close to one, but post-classification was sill introducing errors. 

This suggested another rule according to which pre-classifications can only be overruled if 

their false positive rate is above a certain threshold. The following statement summarizes 

these thoughts formally: 

 

min       ( ) 1   &  

ˆ        else

A c A fp fp fp
A

A

 > − >
= 


� �
��  

 

The results are significantly better than before, without certainty measures: 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   5495 (34%) 2240 1633 3862 

speech :   3517 (22%)   3037 (19%) 662 182 2855 

posture:   1356 (8%)   1668 (10%) 190 502 1166 

activities :   4418 (27%)   1740 (11%) 3271 593 1147 

total:  15393 (24%)  11940 (19%) 6363 2910 9030 

Table 6-7: Post-classification results using P(A|B)^(1/k) and certainty measures 

 

The number of improvements dropped only a little, while the number of introduced errors 

dropped by half. 

Several different methods on how to further improve the certainty measures were inves-

tigated, some also including 
A

Obs  as it can be reasoned that the probability vector can 

indicate a classifiers certainty for the particular decision. For instance: 
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[ ]( ) ( ) (1 ) (1 )         0..1i Ac A w Obs i w fp w
α β= ⋅ + − ⋅ − ∈  

 

The improvements were only minor and did not really impress, given the simplicity of the 

special case with 0w =  and 1β = . 

 

Classification accuracy has been considerably improved in each category. With these bet-

ter predictions, why not go through the same process again? Indeed, after iterating 

twice, the error rate drops to 17%. We show the results after three iterations, more did 

not yield any further improvement. 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   4662 (29%) 2199 759 3903 

speech :   3517 (22%)   3022 (19%) 639 144 2878 

posture:   1356 (8%)   1431 (9%) 222 297 1134 

activities :   4418 (27%)   1705 (11%) 3302 589 1116 

total:  15393 (24%)  10820 (17%) 6362 1789 9031 

Table 6-8: Post-classification using P(A|B)^(1/k) and certainty measures over three iterations 

 

This is the best result achieved with the static approach.  

 

Since the location classifier still has an error rate of 29%, and we previously argued that 

location recognition can be expected to become very precise using GPS and WiFi, we 

would like to show how the results are expected to improve assuming perfect location 

classification. With the same post-classification scheme as above, including the three it-

erations and certainty measures, by using the location labels instead of the pre-

classification decision we achieve an overall classification error of 14.8% 

 

  pre-classification errors post-classification errors improved worse unimproved 

location:   6102 (38%)   4031 (25%) 2272 201 3830 

speech :   3517 (22%)   2964 (18%) 664 111 2853 

posture:   1356 (8%)   1103 (7%) 297 44 1059 

activities :   4418 (27%)   1455 (9%) 3258 295 1160 

total:  15393 (24%)   9553 (15%) 6491 651 8902 

Table 6-9: Post-classification results using P(A|B)^(1/k) and certainty measures over three itera-

tions, with correct location labels 

 

6.5 Dynamic approach with the influence model 
 

The static approaches discussed are simple, efficient and effective in the sense that they 

do capture a lot of common sense information. Still, it is a goal to capture also temporal 

dependencies within and between the different categories. This section deals with the 
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influence model, a scalable version of coupled HMMs, which is currently studied inten-

sively in our group. 

 

The influence model is a novel approach for studying multi-agent dynamics. The compu-

tational difficulty of studying multi-agent dynamics is the astronomical number of com-

bined states: Suppose we have 100 interacting agents in a system (which is typical of an 

organization), and each agent can take 2 states. It follows that the whole system will 

have 2100 combined states. The influence model copes with the exploding number of 

states by linearly combining the contributions of the interacting agents to each other. 

This model can typically improve the inference precision of individual agents by about 

10% to 20% by combining observations on other agents. 

A detailed description of the model is beyond the scope of this thesis. The mathematical 

background is explained in [32] and a typical application of the model can be found in 

[33]. 

 

For the application in our case as a post-classifier, the agents correspond to the four 

classification categories. The model thus includes four chains with as many latent states 

as labels in each category and uses the pre-classification probability vectors as continu-

ous observations. The model is trained with 100 iterations on the entirety of the data 

using the labels as observed latent states. The influence matrix resulting from the EM-

learning process is visualized in Figure 6-3. 



  53 

 

Figure 6-3: Influence matrix learned by EM-algorithm 

 

 

The matrix must be interpreted as follows: Rows represent the states at time t , columns 

the states at time 1t + . The influence executed by the state 
t

X on state 1t
Y +  is found in 

( ) row X and ( )col Y . We see that the influence matrix resembles the previously dis-

cussed pairwise conditional probabilities. Again, driving clearly implies car, but car im-

plies driving or doing nothing. However, is this what we want? We must expect (and 

want) the influence matrix to differ from the previous model for two reasons. 

Firstly, the influence matrix describes transition probabilities that are related to the dy-

namics of the system. We would thus like to capture some information like “biking is 

likely to transition to standing, and then walking”. Seen as a whole, context changes are 

rare though, because each bigger “chunk of context” contains several windows. This 

“stickiness” of the data results in very high self transition probabilities and reduces the 

influence of actual transitions from one state to another. As a result, the values in the 

influence matrix resemble the static conditional probabilities from above. 

Then secondly, the influence matrix is the result of an EM-learning process. By definition 

it will converge to something that will maximize the overall likelihood. As a result, many 

transitions that are in the data will end up in values barely greater zero. For instance, as 
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the previous model showed nicely, sitting can imply several different locations. In the 

influence matrix sitting mainly implies office (other entries are close to zero), which is the 

most likely. 

 

Let us now see how the influence model performs as a post-classifier. To comply with 

real-time conditions, the classification is based on the last k  cases. For 3k =  we get the 

following results: 

 

  pre-classification errors post-classification errors improved worse 
unim-
proved 

location:   6102 (38%)   4552 (28%) 2438 888 3664 

speech :   3517 (22%)   2986 (19%) 821 290 2696 

posture:   1356 (8%)   1260 (8%) 147 51 1209 

activities :   4418 (27%)   2818 (17%) 2009 409 2409 

total:  15393 (24%)  11616 (18%) 5415 1638 9978 

Table 6-10: Post-classification results using the influence model over the last 3 timesteps 

 

By increasing k  we would expect better results because more temporal information is 

used. However the opposite is the case. The performance decreases slightly until we ob-

tain for 7k ≥  the following: 

 

  pre-classification errors post-classification errors improved worse 
unim-
proved 

location:   6102 (38%)   4878 (30%) 1839 615 4263 

speech :   3517 (22%)   2861 (18%) 927 271 2590 

posture:   1356 (8%)   1289 (8%) 158 91 1198 

activities :   4418 (27%)   2849 (18%) 1693 124 2725 

total:  15393 (24%)  11877 (18%) 4617 1101 10776 

Table 6-11: Post-classification results using the influence model over the last 7 timesteps 

 

There is improvement in all categories and the overall classification accuracy has in-

creased from 24% to 18%. This result does not outperform the static post-classifying 

approaches above, but is very encouraging considering that the model was not fine tuned 

and there are no certainty measures used, which turned out to be valuable in the static 

approaches. 

The way it looks, there is not enough information on meaningful transitions in the train-

ing data. The influence model seems to get most of its gain from modeling conditional 

probabilities. It might well be the case that with more data, the influence model will bet-

ter represent the common sense dependencies we are looking for. One idea is to shorten 

long periods of recurring states for the training process to emphasize transitions. 

 

The influence model has been implemented in real-time and was integrated into the en-

chantment architecture. Details are in Appendix C. 
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6.6 Final comparison 
 

To conclude this chapter we repeat the detailed results for pre- and post-classification. 

The starting positions were the following: 

 

classified as --> a b c d e f g h accuracy 

a = office 2645 1638 0 1110 18 0 12 20 49% 

b = home 210 1210 0 84 12 0 30 4 78% 

c = outdoors 266 38 86 0 16 38 250 0 12% 

d = indoors 942 322 0 2184 34 0 50 0 62% 

e = restaurant 54 52 0 16 1088 0 0 12 89% 

f = car 0 0 0 0 0 1344 22 0 98% 

g = street 260 222 8 6 66 68 1426 6 69% 

h = shop 76 66 0 4 0 0 70 24 10% 

 class average: 58.4% 

 overall accuracy: 62.1% 

Table 6-12: Location confusion matrix after pre-classification 

 

classified as --> a b c d e f accuracy 

a = no speech 6075 20 124 40 22 0 97% 

b = user speaking 94 1176 966 0 108 18 50% 

c = other speaker 290 44 4837 114 241 0 88% 

d = distant voices 752 0 428 46 20 0 4% 

e = loud crowd 144 6 68 12 458 6 66% 

f = laughter 0 0 0 0 0 0 N\A 

 class average: 60.7% 

 overall accuracy: 78.2% 

Table 6-13: Speech confusion matrix after pre-classification 

 

classified as --> a b c d e f g accuracy 

a = unknown 0 0 0 0 0 0 0 N/A 

b = lying 0 192 0 0 0 0 0 100% 

c = sitting 76 18 9706 404 0 0 44 95% 

d = standing 0 0 436 2449 18 0 176 80% 

e = walking 6 0 24 42 558 0 14 87% 

f = running 0 0 0 0 4 92 0 96% 

g = biking 0 0 18 60 16 0 1756 95% 

 class average: 91.9% 

 overall accuracy: 91.6% 

Table 6-14: Posture confusion matrix after pre-classification 

 

classified as --> a b c d e f g h accuracy 

a = no activity 6756 1150 2224 4 0 282 6 10 65% 

b = eating 80 711 300 0 0 42 0 0 63% 

c = typing 18 40 2506 0 0 0 0 0 98% 

d = shaking hands 50 0 0 554 0 0 0 0 92% 

e = clapping hands 0 0 0 0 470 0 0 0 100% 

f = driving 12 0 14 0 0 478 0 0 95% 

g = brushing teeth 26 18 0 0 0 0 118 0 73% 

h = doing dishes 112 0 18 8 0 0 4 98 41% 

 class average: 78.2% 

 overall accuracy: 72.6% 

Table 6-15: Activities confusion matrix after pre-classification 
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The best post-classification was achieved using pairwise conditional probabilities and a 

certainty measure. The confusion matrices show a significant improvement: 

 

classified as --> a b c d e f g h accuracy 

a = office 4019 513 3 785 17 35 71 0 74% 

b = home 216 1262 0 35 4 0 33 0 81% 

c = outdoors 148 139 92 8 18 33 256 0 13% 

d = indoors 1111 248 1 1889 42 0 241 0 53% 

e = restaurant 61 34 1 22 1096 6 2 0 90% 

f = car 122 64 14 0 0 1150 16 0 84% 

g = street 65 26 14 2 27 8 1920 0 93% 

h = shop 85 36 0 16 0 0 84 19 8% 

 class average: 62.1% 

 overall accuracy: 71.1% 

Table 6-16: Location confusion matrix after post-classification 

 

Location classification, which was based on audio only, improved from 62.1% to 71.1% 

overall accuracy. The average per class accuracy improved in five of eight cases. 

 

classified as --> a b c d e f accuracy 

a = no speech 6114 36 115 0 16 0 97% 

b = user speaking 65 1657 540 0 100 0 70% 

c = other speaker 330 44 4898 23 231 0 89% 

d = distant voices 766 0 455 18 7 0 1% 

e = loud crowd 176 6 112 0 400 0 58% 

f = laughter 0 0 0 0 0 0 N\A 

 class average: 63.0% 

 overall accuracy: 81.2% 

Table 6-17: Speech confusion matrix after post-classification 

 

Again, both overall accuracy and average class accuracy is improved for speech classifi-

cation. A much better classification is done of the user speaking. The label distant voices 

still cannot be classified, another hint for missing consistency in applying that label. 

 

classified as --> a b c d e f g accuracy 

a = unknown 0 0 0 0 0 0 0 N/A 

b = lying 0 143 37 12 0 0 0 74% 

c = sitting 0 0 9789 432 0 0 27 96% 

d = standing 0 0 385 2540 7 0 147 82% 

e = walking 0 0 49 134 451 0 10 70% 

f = running 0 0 0 0 4 92 0 96% 

g = biking 0 0 66 105 16 0 1663 90% 

 class average: 84.7% 

 overall accuracy: 91.1% 

Table 6-18: Posture confusion matrix after post-classification 

 

For the category posture, there is no gain in post-classification. The overall accuracy is 

the same, but several classes lost in average accuracy. The reason for this is that mis-
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classifications in the other three categories (it must be recalled that we start from a 62% 

accuracy in location classification) introduced new errors. 

 

classified as --> a b c d e f g h accuracy 

a = no activity 9904 178 346 4 0 0 0 0 95% 

b = eating 461 560 112 0 0 0 0 0 49% 

c = typing 158 22 2384 0 0 0 0 0 93% 

d = shaking hands 50 0 0 554 0 0 0 0 92% 

e = clapping hands 0 0 0 0 470 0 0 0 100% 

f = driving 111 0 0 0 0 393 0 0 78% 

g = brushing teeth 33 11 0 0 0 0 118 0 73% 

h = doing dishes 199 0 7 9 0 0 4 21 9% 

 class average: 73.6% 

 overall accuracy: 89.4% 

Table 6-19: Activities confusion matrix after post-classification 

 

With an increase from 72.6% to 89.4%, the category activities has the largest improve-

ment in overall accuracy. This is mainly due to much higher accuracy for the garbage 

class “no activity”. There are thus much less false positives for all activities. However, 

there are more false negatives. This can be desirable or not, depending on the applica-

tion. 

 

The jump in overall classification accuracy from 74% to 83% supports the approach of 

using common sense models to improve context classification. It can be argued that the 

statistics were extracted from the testing data and that this weakens the demonstrated 

results. We are aware of that fact and plan to do more testing on different data. The use 

of the entire data available was in our case necessary to attain a valid common sense 

model.  
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7 Interest prediction 

 

 

As mentioned in the introduction, a longed for application in wearable computing is an 

automated diary that records and categorizes video and audio clips of a user’s everyday 

life. We believe that context recognition can be used to determine interesting moments in 

a wearer’s life and suggest an application that decides in real-time whether a recording is 

worthwhile storing or not. 

In this chapter a scheme is presented for assessing the level of interest in a given mo-

ment on the basis of the context classification presented in the previous chapters. The 

scheme was implemented and an experiment was conducted that justified this approach. 

 

7.1 What are interesting moments? 
 

Obviously, not all 24 hours of a person’s day are equally interesting. About a third of our 

time we are sleeping, the vast part of daytime is often spent at an office desk and long 

periods of time can be spent driving, sitting in a bus, reading a book or watching TV. 

These activities can of course be interesting and should make part of a diary. However, 

memorable things usually very often happen when these reoccurring patterns are inter-

rupted. 

This said, the task can be broken up into two parts: Firstly, we wish to capture samples 

of a person’s everyday life. Secondly, we would like to document more extensively ex-

traordinary events, like an excursion or a party. This separation is on a very high and 

abstract level. In order to determine an interruption of everyday life we first need a very 

good idea of what a user’s everyday life is like. This requires data over a long period of 

time, which we currently do not have for this work. An example that shows, however, 

that learning everyday lives of people is possible is the work of Nathan Eagle in reality 

mining [34]. 

The notion of interesting moments used here is on a lower level. It is based on several 

simple assumptions:  

 

• There is uninteresting context such as typing, driving, or lying down. 

• There is moderately interesting context such as speech, restaurant or eating. 

• There is explicitly interesting context such as laughter, shaking hands and clap-

ping hands. 

• Long stretches of uninteresting context like a 15 minute bike ride need only be 

captured once, because numerous images will not increase the amount of infor-

mation. 
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• Changes in context indicate possibly interesting interruptions, or new activities. 

 

An algorithm that combines these aspects is described in the next section. 

 

7.2 Interest prediction algorithm 
 

An algorithm was implemented that calculates the current level of interest based on the 

context classification. If that level exceeds a certain “interest threshold”, the system de-

tects a moment of interest. It will capture am image and store it together with the cur-

rent context information. 

The algorithm combines three measures: 

 

1. The accumulated static interest, based on an interest map 

2. Interest bonus for state transitions 

3. Time since the last moment of interest 

 

The static interest is the sum of interest points that correspond to the current classifica-

tion of location, speech, posture and activities. The interest map below shows the map-

ping between labels and interest points. 

 

 Interest 

points 

 Interest 

points 

    

Location  Posture  

office 0 unknown 0 

home 0 lying 0 

outdoors 1 sitting 0 

indoors 1 standing 1 

restaurant 1 walking 1 

car 0 running 3 

street 1 biking 0 

shop 1   

  Activities  

Speech  no activity 0 

no speech 0 eating 2 

user speaking 2 typing 0 

other speaker 2 shaking hands 5 

distant voices 1 clapping hands 5 

loud crowd 2 driving 0 

laughter 5 brushing teeth 0 

  doing the dishes 0 

 Table 7-1: Assignment of interest points 
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By default the interest threshold is set to 5. This means, that as soon as e.g. shaking 

hands is detected, a picture is taken. 

 

Then, to detect context transitions, the classifications over the last one minute are stored 

and a super-state is computed. The super-state for each category corresponds to the 

label which was classified most during that minute. Each time there is a change in super-

state in any context category, a transition bonus of 0.5 points is added.  

 

Finally, in order to make sure pictures are taken every once in a while even when the 

interest level is below its threshold, the time since the last picture is taken into account. 

Every second, 1/120 of a point is added. This is equivalent to one point every 2 minutes 

or 5 points, and thus a picture, every 10 minutes. 

 

Each time a moment of interest  is detected, the two counters for transition bonuses and 

time elapsed since last picture are reset to zero. In addition a hold-off period of 5 sec-

onds will make sure pictures are not taken in masses for instance in the case of several 

seconds of laughter.  

 

The most obvious result of this algorithm is the fact that pictures are taken at a low fre-

quency when the user is not engaged in anything interesting over a long period of time 

and a higher frequency during interesting activities. 

The numeric values were chosen as such, that in a typical recording, the average fre-

quency of images taken is approximately one every 1-2 minutes. This varies, as men-

tioned, from one picture every 10 minutes for a user working on his computer in the of-

fice to several pictures per minute during a discussion in a restaurant over lunch. 

 

7.3 Experiment description 
 

An experiment was conducted to assess the algorithms performance. In one of the ses-

sions previously used in Chapter 5 to cross-validate the classification algorithms, two sets 

of pictures were recorded. Set A contains the “interesting” pictures that were initiated by 

the described algorithm; set B took pictures as usual once every minute. During the 3 

hours, a total of 114 pictures were taken for set A, and 178 pictures were taken for set B. 

To make the two sets comparable, every third picture in set B was dropped. The two sets 

of pictures were printed and displayed at the lab with voting slips that could be placed in 

an urn. The concept of the experiment was briefly explained, and people were asked 

which set they found more interesting and why. The same was done by means of email. 

The complete set of images can be found in Appendix G. 
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7.4 Results 
 

In this experiment the algorithm clearly did a better job in distinguishing interesting mo-

ments. From a total of 28 votes received, 26 were for set A and only 2 for set B. About 

two thirds of the people mentioned the ratio of laptop pictures, about half mentioned the 

surplus of images with people in set A and some found that set B had too many repetitive 

pictures e.g. biking. In the following some of the results are discussed and explained. 

 

There are 15 laptop pictures in set A versus 47 in set B. It should be noted that the ra-

tion of laptop pictures was only 3 to 17 before the lunch but 12 to 30 after lunch, mainly 

because my office mate was in a discussion with a colleague. This case suggests a meas-

ure to determine if the recognized speech actually involves the user.  

The lunch scene was clearly better documented in set A (30 images) than in set B (11 

images). What is particularly nice is that at the end of the lunch I shook hands with three 

people, and in two cases an image was taken (images 43 and 45). This can be guessed 

from image 45, but in image 43 the person was not in the field view anymore, probably 

due to the latency of the classifiers. The audio 5 seconds prior to the picture does reveal 

the person’s name though. 

Image 103 of set B shows a short discussion with my office mate. The same discussion 

was documented with two pictures (99 and 100) in set A. 

Images 109 through 114 in set B document a nap at the lab. In set A this was possible 

with only one image. 

Right after that nap I accidentally got involved in a discussion with people in the lab. 

There was a lot of laughter which resulted in the algorithm taking 9 pictures of that 4 

minute conversation instead of only 3 in set B.  

Interesting is also the number of bike ride pictures: 

 

 Set A Set B 

lunch � supermarket 1 2 

supermarket � home 0 3 to 4 

home � shop 2 2 

shop � lab 2 4 

Table 7-2: Number of biking images  

 

In three of four cases set A needed less or equal pictures to document the ride. However 

in one case the algorithm clearly failed. A picture was taken on the way out of the su-

permarket, thus resetting the transition counters. The four minutes of biking (2 points) 

plus the transitions shop to street & walking to biking (0.5 points each) and the static 

interest of street/outdoors (1 point) were not enough to pass the threshold.  
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It also needs to be said, that 7 pictures in the supermarket were initiated by the misclas-

sification of clapping hands. Such false positives do of course affect the results directly.  

 

Overall, the results are very pleasing and suggest that this approach, simple as it is, can 

increase the “amount of interest” in recorded pictures. Also it can be customized to a 

user’s preferences by assigning different values to interest points and by adjusting the 

interest threshold. Something that remains to be studied is how this approach can scale 

downwards to taking only a handful of pictures per day. Will the most interesting mo-

ments still be captured? For that goal it will be important to incorporate behavioral pat-

terns on a higher level, as discussed above. 
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8 Future work 

 

 

8.1 Classification architecture 
 

The architecture chosen worked out for the most part. We believe the approach using a 

post-classifier to combine the information of specialized pre-classifiers to improve the 

final classification is a good one. There are a few shortcomings though with the pre-

classification schemes used.  

Some of the labels are not really mutually exclusive. This problem is experienced during 

annotation and shows up in the classification results. Posture and activity labels were 

chosen well in this respect. But there are issues in location and speech. What should be 

done if two people are in a noisy restaurant discussing something and laughing? Is that a 

loud crowd, me speaking or laughter? Also, the location labels outdoors and indoors are 

ambiguous. It is almost impossible to distinguish home from indoors using audio. 

An idea would be to split up location into two separate categories, one based on WiFi, the 

other on audio and perhaps later also vision. The WiFi labels would be something like 

office, home, shop, restaurant, unknown network and no network. The second, concur-

rent location category called “scene” would contain the labels indoors, outdoors, street 

and car. By mapping home, office etc. to indoors, there would be less ambiguity for the 

audio based classifier, which would increase its performance. This could be done by con-

necting the two location classifiers, or simpler by the post-classifier. 

To better model speech situations it might be useful to split the labels into binary deci-

sions: speech / non-speech. In case of speech: user speaking / other speaker and laugh-

ter / no laughter. That way, each classifier can be tailored on a simpler task using spe-

cialized features.  

This leads to another problem, the difference in durations of certain classes. Activities like 

eating or doing the dishes have a longer time horizon than shaking hands or clapping 

hands. Yet, they are currently compared by the same classifier using the same window 

size, which is basically dictated by the activity with the shortest duration. Again, a sepa-

ration of the category might be a solution: one category called “lengthy activities” for 

eating, typing, driving, doing the dishes and no event, and binary categories for shaking 

hands, clapping hands and brushing teeth. The final decision could still be viewed as one 

mutually exclusive category: Most of the time the decision for activities is taken from 

“lengthy activities” and in case one of the binary classifiers fires that decision would be 

overruled. This approach will again permit the classifiers to be customized. 
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One thing that has not been tackled at all is the abstraction of higher level activities. Ini-

tially planned labels for the category speech that have been removed are conversation, 

giving a talk and attending a talk. These labels again span a longer time frame and are 

better not classified based on low-level audio features. Rather more, they are defined by 

different patterns of user speaking / other speaker. Similarly, high level activities such as 

attending a concert, having a meeting, commuting to work or shopping are based on pat-

terns and combinations of the underlying classification instances.  

A next generation of algorithms will want to approach these higher levels of context by 

using hierarchical models that build on the current low-level classifications. 

 

8.2 More data more systems 
 

Expanding the system to new labels will require acquisition of additional user data. This 

will become more important for training higher level classifiers. It will also be vital to 

combine data recorded by several users to asses the generalization capability of the clas-

sifiers. For this it will be necessary to replicate the system. This will also open up the 

possibility of distributed experiments with several users interacting. 

 

8.3 Common Sense modeling 
 

With bigger datasets available, common sense modeling can be tested more effectively. 

Post-classification is not yet part of the current implementation. Studying the effect of 

post-classification in real-time should be interesting and might yield further insights. As 

the number of labels increases one must think of self-learning models or at least a proc-

ess for incremental up-dates.  

We see big potential in using the influence model, the manner of application must be fur-

ther studied though.  

 

8.4 New features and additional sensors 
 

Using the current sensing configuration there is still a potential for improvement. Espe-

cially for location, well selected audio features should already make a big difference. Also, 

visual features should be tested. They might help distinguish indoor from outdoor loca-

tions.  

Then the classification of activities could be improved using audio.  

Acceleration features have been tested quite extensively for the current configuration. 

However, if as suggested specialized classifiers for certain activities are built, particular 

features with optimized window sizes will perform better.  
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Might we want to test additional sensors? Obviously more information is a potential but 

means more computation and can be a source of errors. The strength of this platform is 

its simplicity and the sensor placements were chosen so that once the PDA disappears, 

for instance into a belt buckle, the system will actually be wearable by non-cyborgs. It is 

thus not in the spirit of this work to suggest many new sensor placements, like acceler-

ometers on thighs for instance, although that would definitely improve distinguishing sit-

ting from standing.  

What might be interesting though is some more information from the wrist sensor to bet-

ter classify activities. Concretely, a microphone on the wrist would help locating audio 

sources by comparing intensities of wrist and chest audio, which might help attribute 

sounds to a related activity such as clicking of keys to typing. Further sensors that could 

provide valuable information from the wrist would be a strain gauge, GSR and EKG. The 

former could serve as an indication for grabbing objects, the latter two could tell us 

something about a wearer’s physiology – a context dimension not yet studied so far.  

 

One cheap “sensor”, which is kind of obvious but has not yet been included in this work, 

is time. We expect a significant gain in post-classification through time conscious com-

mon sense models. Also, time of day and day of week are central ingredients for model-

ing higher level behaviors. 

 

8.5 Other classifiers 
 

In the range of classifiers there are still a few things to try out. First, all classifiers stud-

ied were trained exclusively on labeled data. The experience sampling annotation method 

does not provide labels that are valid over the entire data set. A lot of unlabeled data 

remains, which can be included for semi-supervised learning.  

As mentioned previously, it is unclear how the selected c4.5 decision tree algorithm per-

forms pruning and to what extent that influences accuracy and overfitting. An analysis of 

the tree structure might yield more insights. Another implementation of c4.5 can be 

found in the WEKA toolbox [35]. 

An additional well-known classification method that has not been used is Support Vector 

Machines (SVMs). There are implementations available in C and in Matlab. 

 

8.6 Annotation tool 
 

A nice enhancement of the offline annotation tool that would be easy to implement is 

“label suggestions”. Classifications that are either done on the wearable in real-time or in 

a preprocessing step offline could be loaded into the SQL database. That could at the 

same time speed up the labeling process and provide practical insights into which situa-
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tions are misclassified. As a byproduct the clips that needed correcting could be tagged 

and used specifically to improve trained models.  

The annotation tool should also be adjusted to provide a distinct presentation of clips that 

were classified as interesting. 
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9 Summary 

 

 

The goal of this thesis was to build a wearable real-time context recognition system. The 

hardware platform presented is based on an off-the-shelf PDA and includes two wireless 

accelerometers. This provides the following sensing layout: ambient audio from the 

chest, acceleration from the hip and the wrist of the dominant hand, WiFi network detec-

tion and images taken from the wearer’s chest. 

 

The categories – location, speech, posture and activities – were chosen to represent 

many diverse aspects of a user’s context, the labels in each category to represent situa-

tions in everyday life. In order to build models that scale out of a laboratory setting, 

naturalistic user data was collected by means of interval-contingent experience sampling. 

During recording sessions no user interaction is required. After recording, pictures that 

have been captured once a minute are presented along with the corresponding audio clip 

and a list of labels for each category. Assigning a confidence level to each category per-

mits reducing the amount of false labels. A total amount of about 35 hours of data was 

collected, of which about 24 hours were suitable for the study. 

 

The classification process is split up into two parts. In a pre-classification step a probabil-

ity vector is computed for each category. In a post-classification step the information 

from all four categories is combined and evaluated by a common sense model to come up 

with a final decision. Posture and activity classification rely on acceleration features, 

speech and location classification on audio features. Pre-classifiers tested were: Naive 

Bayes with single Gaussians as well as Gaussian mixture models, c4.5 decision trees and 

hidden Markov models. The achieved accuracy values range from 91% to 95% for pos-

ture, 68% to 92% for activities, 80% to 81% for speech and 62% to 67% for location 

(without WiFi).  

 

Several approaches for modeling common sense dependencies between categories are 

presented. A promising static approach uses pairwise conditional probabilities and a 

promising dynamic approach is the influence model. The best model led to an increase in 

overall classification accuracy from 76% to 83%. 

 

Finally, the focus was set on a diary application. Most prior work in the field of automated 

diaries has tackled the problem of categorizing and searching user data offline. The novel 

approach presented here uses information on the user’s context to evaluate the current 

situation in real-time. An algorithm is suggested that predicts the current level of interest 
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based on certain statistics of a user state. If a moment of interest is detected, an image 

is taken and audio is recorded. This process was done in a three-hour recording session. 

The images taken by the algorithm were compared against the same number of images 

taken at regular intervals. An overwhelming majority of people voted for the interest pre-

diction algorithm! 
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Appendix A Data Formats 

 

 

A.1 Files generated by SignalRecorder 
 

All SignalRecorder log-files are in ASCII and carry timestamps. The naming convention is  

 
sessionName_hostName_hour_minutes_seconds.signalType 

 

This generated filestem is saved in outputFile.txt and can thus be used in pre-

processing scripts. The general log-file format is 

 
Timestamp1 data data data data … 

Timestamp2 data data data data … 

Timestamp3 data data data data … 

… 

 

 
.audio 

 

The audio signal, which is generated by LinuxAudioSignal, is read using SignalViewer with 

the terse option. The signal is 16bit at 8kHz and typically a 1024 element vector. Exam-

ple: 

 
1124494208.477360 88 40 -17 6 60 35 -43 -24 … 77 

1124494208.732085 139 117 68 75 123 160 92 … 342 

1124494208.733533 -27 9 -12 -46 -21 30 -22 … -121 

… 

 

 
.accel1/2 

 

The two accelerometer signals are generated by MITeSignal. They are also 16 bit integers 

(data type only, 10bit are used), sampling rate is 100Hz by specification, but 90Hz is 

typical. There are two separate signals, again read by SignalViewer in terse format, and 

thus two log-files. Each sample is on a new line with first X, Y and then Z axis: 

 
1124494207.049833 177 287 233 

1124494207.059965 178 288 233 

1124494207.069824 178 290 232 

… 

 

 
.wifi 

 

The WiFi log-file is written by SignalRecorder itself. The format is timestamp, network 

name, MAC address. If no networks are detected, the output is “none”, if the name is 

missing, “<no ssid>” 

 
1124494752.899091 media lab 802.11 00:60:1D:1D:21:7E 

1124494878.446115 <no ssid> 00:20:A6:52:1A:F6 

1124494878.446115 MIT 00:01:F4:7B:01:3B 

1124494878.446115 MIT 00:01:F4:7B:03:6B 

1124495003.027343 none 

1124495128.556541 MIT 00:20:A6:52:3E:C0 

1124495128.556541 SMARTSIGHT 02:49:2D:CA:6D:B4 

… 
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.audioFeat .accelFeat 

 

These are feature log-files, only output when SignalRecorder is running classifiers. They 

are both created by SignalViewer in terse format, reading from signals generated by 

AudioFeatures and AccelFeatures, respectively. 

 

 
.speech.class .speech_c45.class etc. 

 

These are classification files written by GClassifier and C45Classifier, which are both in-

voked by SignalRecorder, again only in classification mode. The files have the usual for-

mat; the data is a probability vector. No labels are written to file, but the classifications 

can be reconstructed by comparing the index of the maximum probability against the 

label names in the GMM model XML-file or the c45 names-file used. 

 

 
.labels 

 

Usually empty. Would contain timestamped labels in case the online labeling screen is 

used. 

 

 
.interest 

 

In classification mode, SignalRecorder will output the moments of interest (MoI), which 

occur when the calculated interest level of the interest prediction algorithm exceeds the 

preset threshold (per default 5). The format is 

 

timestamp superStates(location speech posture event) currentState(l s p e) interestLevel 

 
1073014068.449118 1 0 3 0 0 2 4 0 6.18 

1073014153.650418 5 0 4 0 5 2 4 0 5.71 

1073014287.239184 1 0 3 0 1 4 3 0 5.62 

1073014408.391800 0 2 3 0 5 2 3 0 5.01 

… 

 

 
Config_MITes.txt  

 

This file is written by MITesConfig and contains the calibration values for the accelerome-

ters. One line has the format 

 

meanX meanY meanZ OneG_equivalent_X OneG_equivalent_Y OneG_equivalent_Z 

 

The first line is the hip, the second line the wrist accelerometer. Example: 
 

235.500000 284.500000 228.999939 60.500000 57.500000 60.999939 

295.000000 310.000000 274.500000 60.000000 61.000000 55.500000 

 

This file is used in Matlab (and in real-time by AccelFeature) to scale the values according 

to: 

 

  

raw mean
normed

One g equivalent

X X
X

X

−
=  
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Figure A-1: Example of files generated by SignalRecorder and the annotation tool 

 

A.2 Files related to the offline annotation tool 
 
SQL_input.txt 

 

This file is generated by WavClipExtractor and contains a list of jpg- and wav-files. It 

serves as the input for generating the SQL database table used for annotation. Example: 

 
1073012385.jpg,1073012385.wav 

1073012445.jpg,1073012445.wav 

… 

 

 
labels.txt, legend.txt 

 

Generated when labeling is done. The format for the labels is the following: 

 

Timestamp Labels(l s p e) confidence(l s p e) interesting? music? 

 
1073014185 3 1 4 0 1 1 1 1 0 0 

1073014245 4 6 3 0 1 0 1 1 0 0 

 

So in the first line, all labels were confident, in the second line, the speech label was not. 

It is important to know that the labels written here start at 0. The numbers will corre-

spond to the entries in legend.txt. In Matlab indices must start at 1. So there is an off-

set between the labels in Matlab and in the C-code! This is not very nice and might want 

to be redefined. Perhaps using whole strings instead of numbers would make it more 

flexible and easier to read. 
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comments.txt 

 

The comments entered during annotation end up in this file. 

 
1073014425 Running to catch the bus! 

 

 

A.3 Data representation in Matlab 
 

SignalLoader is the tool to convert the data from the format described above into organ-

ized Matlab structs, we call them clips. The main features of SignalLoader are described 

in Appendix E. A clip is defined as a continuous chunk of data that has the same labels. If 

the annotation was done correctly, the labels should be valid for the entire clip. A clip 

contains: 

 

• Audio data as a vector in the 2-byte format int16 

• The first audio timestamp 

• The last audio timestamp 

• The audio sampling rate computed from the information above 

• Acceleration data in the same form as the .accel files above. However, the num-

bers might or might not have been scaled using the calibration values.  

• If so, the calibration values are added to the clip 

• The (smallest) number of acceleration samples 

• The filestem string that specifies where the clip came from 

 

 
                     label: [7.0192e+003 1 1 2 2 1 1 1 1 0 0] 

                audioStart: 7.0193e+003 

                 audioStop: 7.0390e+003 

                     audio: [159744x1 int16] 

                 audioRate: 8.0471e+003 

                      acc1: [1739x4 double] 

                      acc2: [1749x4 double] 

             numAccSamples: 1739 

                   dataset: 'E:\...\mall1_z6000_12_34_07' 

                   normMat: [2x6 double] 

             audioFeatures: [] 

     audioFeaturesLocation: [4x11 double] 

       audioFeaturesSpeech: [4x11 double] 

        accFeaturesPosture: [8x13 double] 

          accFeaturesEvent: [8x13 double] 

    classificationLocation: [4x11 double] 

      classificationSpeech: [4x9 double] 

     classificationPosture: [8x10 double] 

       classificationEvent: [8x11 double] 

 

If feature calculation or classification is done, several fields may be added to the clip. 

Features follow again the format timestamp data data etc. Classifications have the follow-

ing format, where p is a probability vector: 

 
timestamp1 p1 p2 ... pn decision label 

timestamp2 p1 p2 ... pn decision label 

… 
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Appendix B Matlab code 
 

 

The Matlab code developed is supplied on the CD and is available for download on the 

MIT Media Lab’s wearables page: http://www.media.mit.edu/wearables/code.html 

 

B.1 Main scripts 
 

CreateTrainingAndTestingClips.m 

 

Script that loads several data-sets. The data loaded is the base for pre-classification 

evaluation.  

 

trainAll_testAll.m 

 

This script trains and tests all four categories using a Bayes classifier with single Gaus-

sian PDFs. At the end, a test-set for which all categories were “confidently” labeled is 

pre-classified. It serves as the basis for post-classification analysis. 

 

trainAll_testAll_withGMMs.m 

 

Trains and tests all four categories using a Bayes classifier with single Gaussian as well as 

a mixture of Gaussian PDFs. 

 

trainAll_testAll_withLDAandGMMs.m 

 

The same as above, except that the features are transformed using Linear Discriminant 

Analysis.  

 

verifyFeaturesAndClassifications.m 

 

Script that will load all files generated in a SignalRecorder session and verify the features 

and classifications computed in real-time against the Matlab computations. 

 

testWithValidationClips.m 

 

This script loads several cross-validation datasets and classifies them using a previously 

trained Bayes classifier. 

 

PreClassify.m 

 

Applies previously learned Bayes classifiers to previously loaded clips. 

 

PostClassificationEvaluation.m 

 

In this script several post-classification approaches are evaluated, including the ones dis-

cussed in Chapter 6. 

 

PostClassify.m 

 

Contains the best post-classification scheme.  
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trainHMMs.m 

 

Script that trains HMMs for the category activities.  

 

B.2 Functions 
 

AccelFeature.m 

 

Computes acceleration features.  

 

AccFeatures.m 

 

An earlier version of AccelFeature, which returns the features without timestamps. 

 

classifyBNET.m 

 

Old Gaussian Classifier, see GClassifier. 

 

computeFeatures.m 

 

Only used for trying out. 

 

computeLDA.m 

 

Computes the linear discriminant analysis of features and plots the reduced 3D or 2D 

feature space.  

 

Evaluate.m 

 

Computes accuracy and confusion matrix from a decision / label vector pair. 

 

EvaluateAllClassifications.m 

 

A wrapper for EvaluateClassifications. 

 

EvaluateClassifications.m 

 

Computes accuracies, confusion matrix and plots of classified clips. 

 

EvaluatePostClassifications.m 

 

Computes accuracies of post-classified clips and compares with pre-classification results. 

See PostClassifier.m for usage. 

 

export_C45.m 

 

Creates the files needed (.names .data .test) for the c4.5 program, which only runs in C. 

 

findLabels.m 

 

Clip management tool. It shows how many instances and seconds of each label is among 

a set of clips. It also returns the clip indices for a selected label. 

 

GClassifier.m 
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Naive Bayes classifier with single Gaussian PDF or Gaussian mixture models. Takes fea-

tures and a bnet and returns a timestamped probability vector. 

 

myPlot.m 

 

Helper function to create nice plots. 

 

playClip.m 

 

If the clip contains audio, the sound is played using waveplay. 

 

plotClips.m 

 

Clip visualization tool. Plots signals, labels and clip origin. 

 

plotInfluences.m 

 

Plots a nicely labeled image of an influence matrix or a conditional probability matrix 

 

SignalLoader.m 

 

Tool to import data and created labeled clips. There are many options on how this should 

be done. They are explained in the function header. 

 

trainBNET.m 

 

Takes feature vectors and labels to train Bayes classifiers. Single Gaussian observations 

as well as mixtures of Gaussians are supported using the BNT Toolbox. A faster manual 

implementation also offers single Gaussian modeling without the toolbox. 

 

XML_export_GMM.m 

 

Exports a Gaussian bnet to a file in XML format that plugs directly into GClassifier C-code. 

 

XML_export_IM.m 

 

Exports an influence model bnet to a file in XML format that plugs directly into IClassifier 

C-code. 
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Appendix C C-Code 
 

 

The C-code is structured in four modules (four directories on the supplied CD). A descrip-

tion of each module follows, and at the end of the chapter a short tutorial will demon-

strate how to compile everything and correctly copy files onto the Zaurus. 

The sources can be downloaded from http://www.media.mit.edu/wearables/code.html 

 

C.1 enchant-base 
 

The module enchant-base contains the Enchantment library. It was initially developed by 

the MIT Wearables Group and is now maintained by a company called AWare Technolo-

gies. The library sources are packed in a zip-file, the current version is 0.9.2. The module 

also includes some other tools, still maintained by the group. 

 

C.2 enchant-dev 
 

The module enchant-dev contains a variety of tools designed for the Zaurus. The ones 

used are listed here: 

 

AudioFeatures.cpp 

 

This code computes the five voice features: energy, spectral entropy, formant frequency, 

maximal and number of autocorrelation peaks. From those features several statistics are 

calculated (not verified) as well as voiced/non-voiced and speaking/non-speaking states. 

In addition the means and variances of these features are computed over 

BIG_WINDOWSIZE samples. These are the features used for Speech and Location Classi-

fication. 

 

linux_audio.c 

 

Provides drivers for audio recording and playing. 

 

LinuxAudioSignal.c 

 

Generates 16 bit integer audio signals of specified rate using the Linux audio device and 

the Enchantment signal system. 

 

MITeSignal.cpp 

 

This is the serial driver for MITes (MIT environmental sensors), accelerometers developed 

by the Media Lab group house_n. The MITe-Receiver, which is connected to the serial 

port, is configured to listen on the channels requested. Acceleration values are posted as 

Enchantment Signals 

 

MITeCalibrate.cpp 

 

This Program is used to calibrate accelerometers. Input are one or two (hardcoded) ac-

celeration signals, output is a text-file containing calibration values. 

 

C.3 inference 
 

The module inference contains programs and classes for context recognition. 
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AccelFeature.c 

 

Program that computes features from acceleration signals. Supported feature types are 

mean, variance, 64-Window FFT. 

 

C45Classifier.c 

 

This is the Enchantment interface to the external c4.5 code. It takes care of reading fea-

ture signals, consulting the c4.5 functions, and posting the results as signals or nodes on 

the whiteboard. File I/O is also supported for offline use. 

 

Chain.cpp 

 

Class that models a chain of the influence model. Includes XML parsing. 

 

Classification.cpp 

 

The Classification class is used by GClassifier. It contains functionality to manage labeled 

probability vectors. 

 

Gaussian.cpp 

 

The Gaussian class is used by MixtureModel. It models a Gaussian probability density 

function. Includes XML parsing. 

 

GClassifier.cpp 

 

This program implements a Bayes classifier with single Gaussian PDF. It provides the 

Enchantment interface to the Gaussian classes, takes care of reading feature signals, 

calling classification functions, and posting the results as signals or nodes on the white-

board. File I/O is also supported for offline use. 

 

hd_influence.c 

 

This is the implementation of the influence model, based on the Gnu Scientific Library 

(GSL). It serves as a library to IClassifier. 

 

InfluenceModel.cpp 

 

The class models the influence model, used by IClassifier. It includes XML parsing. 

 

MixtureModel.cpp 

 

The MixtureModel class is used by GClassifier. It contains several Gaussians. Includes 

XML parsing. 

 

psc.c 

 

This is an example on how to use the influence model with continuous observations. In-

cludes reference code for Matlab 

 

psd.c 
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This is an example on how to use the influence model with discrete observations. In-

cludes reference code for Matlab 

 

XMLObject.cpp 

 

Implementation of an XML parser, based on the 'expat' library. 

 

C.4 SignalRecorder 
 

The module qtopia/SignalRecorder contains the GUI application, drivers for the camera 

and some programs/scripts for processing the log-files before annotation.  

 

CameraIO.cpp, CameraIO.h 

 

Driver for the CF-card camera. 

 

Capture.cpp, Capture.h 

 

Program that offers a command line interface to the CF-card camera. 

 

linux_audio.c, linux_audio.h 

 

The same as in the module inference. Used with SignalRecorder to play sound upon re-

quest. 

 

make_all.sh  

Makefile.Capture, Capture.pro 

Makefile.SignalRecorder, SignalRecorder.pro 

Makefile.WavClipExtractor 

 

There are three make files in this module. The SignalRecorder Makefile is quite complex 

and needs the .pro file. It needs to link several Qtopia libraries. Capture is less complex, 

but also depends on some Qtopia libraries, thus the same type of Makefile. WavClipEx-

tractor only needs basic gcc. Make_all.sh takes care of compiling all at once. 

 

sharp_char.h 

 

Includes certain definitions for Zaurus drivers. 

 

SignalRecorder.cpp, SignalRecorder.h 

 

These are the main files of SignalRecorder. The main features are: 

• Connections to the GUI 

• Starting and stopping recording as well as starting and stopping classifiers: Upon 

request it will launch required processes with system calls and will kill them on 

termination. 

• Sensor file size, battery and CPU logging 

• Managing sensor calibration using MITeCalibrate 

• Manages picture taking 

• Polls the shutter button if requested 

• Runs the WiFi sniffing procedure 

• Manages online labeling 

• Computes the interest prediction algorithm and logs moments of interest 
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SignalRecorder.desktop, SignalRecorder.png 

 

Files needed for the application icon in Qtopia. 

 

main.cpp 

 

Runs the actual SignalRecorder application. Do not touch. 

 

SignalRecorder_base.ui 

 

This file contains the graphics. It could be edited by hand, but better using QtDesigner. 

SignalRecorder_base.ui.z5500 is for the Zaurus 5500, previously used. 

 

sigrec_stop.sh 

 

Script that kills all processes SignalRecorder started (in case it should fail to do so itself). 

 

WavClipExtractor.c 

 

Program that extracts 20-second wav-clips from a SignalRecorder audio log-file at times 

corresponding to the timestamps of jpg-images in the current directory. 

 

preProcessing 

 

This directory contains script for pre-processing the SignalRecorder log-files before load-

ing them in the offline annotation tool or in Matlab. 
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Appendix D Offline Annotation Tool 
 

This section features a technical description of the offline annotation tool. It is imple-

mented in PHP/HTML and connects to a MySQL server. The Software package used is 

XAMPP for Windows Version 1.4.13 (http://www.apachefriends.org/en/xampp.html). 

Currently, this environment is set up on moria.media.mit.edu in 

C:\apachefriends\xampp. The directory htdocs builds the root of the server.  

 

After extracting audio clips with WavClipExtractor, a file called SQL_input.txt should 

have been created. It contains a list of the form 

 
1124385421.jpg,1124385421.wav 

1124385479.jpg,1124385479.wav 

… 

 

The file insert.php takes SQL_input.txt, a local path and a session name e.g. mySes-

sion to create an annotation session. The SQL database used is called annotate. 

Open_db.php establishes the connection. In the table called sessions a new entry is made 

with session name and local path. Then, a new table is created, which is named after the 

session name, here mySession. insert.php uses a text-file import function to load each 

row of SQL_input.txt as a row in the new table. The session has been created. 

 

The file annotate.php takes care of the labeling. If no session name is passed as an ar-

gument, the user is asked to specify one. Then, the first clip is presented. The jpg and 

the wav-filenames are loaded from mySession and are appended to the local path, which 

is loaded from the sessions table. The user can start labeling by selecting the radio but-

tons and checkboxes. On Insert Label, annotate.php will write the values of the radio 

buttons and checkboxes as integers into the table mySession, as well as the comment 

line. The next clip is loaded and, if it was not yet labeled, the previous selections are re-

peated, assuming that very likely the next clip can be labeled the same. However, if the 

clip already contains a label, the values are read from mySession and displayed on the 

web-page and the caption of insert label changes to overwrite label. The navigation but-

tons on the left do not write anything into the table, but will make annotate.php show 

the corresponding clip with the stored label if applicable.  

 

Once all clips are labeled, or if generate output is clicked, three text-files will be gener-

ated, saved on the server in the directory output/mySession and presented for download. 

Labels.txt contains a timestamp and the labels as integers (see Appendix A for the 

format), comments.txt contains a timestamp and the comment line and mySes-

sion_Legend.txt is a copy of currentLegend.txt, which contains a mapping of the in-

teger values to the label strings and is located on the server. This file should be updated 

in case any label names are changed in annotate.php or else there will be confusion in a 

later stage. 

Using integers as labels is easier from a programming perspective because they can be 

stored as matrices, are easily imported to Matlab and there is no ambiguity due to capital 

letters or white-spaces. But the need for consulting a legend and always thinking in off-

sets is quite a burden for the user. This decision might want to be thought over. 

 

The file replace.php can be used to replace the label entries of a particular session with 

new ones located in a text-file with the correct format. This procedure can be useful if 

some labels change their names or if new categories are created. Labels.txt can then 

be edited in Excel for example. 

 

XAMPP offers many nice tools for server and database management. They are accessed 

from the server root, with user name borglab (password protected). The user name for 

phpMyAdmin is root.  
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Appendix E  

Data collection and annotation tutorial 
 

E.1 SignalRecorder 
 

This is a Qtopia application that offers a GUI to manage the data acquisition. It is typi-

cally located on the Zaurus in /mnt/card/borglab/SignalRecorder and can be started from 

command line or from the desktop icon. On the first tab, a name can be entered which 

will be pre-pended to all output files. With checkboxes the sensors are selected. The 

Numbers next to the MITe checkboxes are their channel IDs, needed for the lower level 

protocol. If the WiFi box is checked, the network sniffing process will be included. If the 

camera box is checked, pictures are taken every minute automatically. 

 

SignalRecorder takes care of starting all sub-processes needed for reading the sensors 

(e.g. LinuxAudioSignal and MITeSignal). The signals created by the latter are logged us-

ing SignalViewer in terse mode. Each signal is logged in a separate file, which is of the 

format 

Timestamp data1 data2 data3 …  e.g. 1075321569.123456 246 654 847.  

The files are “rectangular” and can thus be imported as a matrix into Matlab directly us-

ing the load() command. 

 

After pressing start, a prompt will pop up and ask for the MITes to be calibrated. After 

clicking ‘ok’ a calibration process is launched, which will run for 30 seconds and then pre-

sent the results. During these 30 seconds the user must gently rotate all MITes in all di-

rections. Each of the six perpendicular orientations (two extreme positions for all three 

axes) must be maintained for at least 3 seconds! 

 

Then, the application switches to the Annotation tab. Here you can click the radio-buttons 

to set labels online. The result is a timestamp and a label number each time a new button 

is selected. With the “take foto” button you can capture an image, which will be saved in 

the format ‘timestamp.jpg’. This button works regardless whether the camera checkbox 

on the previous screen was checked. The third tab monitors the sensors. It does that by 

periodically logging the size of all output files. If in two consecutive readings the file size 

has not increased, the corresponding sensor will turn from green to red until the file size 

increases again. Also a status LED (the second from the right) indicates SignalRecorder is 

running and the sensors are fine. 

 

Then there is the pre-classification tab. Start and stop buttons take care of launching and 

killing feature generation and classification processes. If classifiers are running, SignalRe-

corder will display their outputs once per second. If the WiFi box was checked, this tab 

will also show the wireless networks detected. If an entry is found in the look-up table, 

the corresponding location is displayed. The classification processes use the signals cre-

ated by the sensor reading processes, but they don’t interfere with data recording. 

 

When exiting or stopping the recording, SignalRecorder will kill all processes previously 

started. This usually works fine. But it can for unknown reasons happen, that some proc-

esses don’t terminate. It is then possible that such processes fill up the SD-card, which 

will cause the Zaurus to slow down and possibly crash. So one should make sure there 

are no unwanted processes running before starting a serious data acquisition session. 

 

E.2 Copying the data to disk 
 

All output data is saved in /mnt/card/borglab/SignalRecorder/data. Downloading data of 

only a few minutes can be done using the Zaurus’ WiFi-connection. For large files using 

an SD-card reader or an ethernet-connection with a Zaurus CF-card is more appropriate.  
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The data directory currently used is on the workstation esgaroth: /localdata/mark/Name. 

After downloading, the data should be removed from the SD-card to make space for the 

next user. This list contains an example of the files that should be downloaded: 

 

• Name_z6000_08_32_57.audio 

• Name_z6000_08_32_57.accel1 

• Name_z6000_08_32_57.accel2 

• Name_z6000_08_32_57.labels 

• 10730154119.jpg 

• 10730154179.jpg 

• 10730154239.jpg 

• etc. 

 

E.3 Creating the Wave Clips 
 

The annotation software will play a 20 second audio clip to each recorded image. These 

clips need to be created using WavClipExtractor on a Linux station. Copy WavClipExtrac-

tor, your audio file and all images into a directory. Run ./WavClipExtractor –a 

Name_12_32_45.audio –t 20 to create 20 second audio clips for all .jpg-files in the di-

rectory. If only a specific number of clips shall be extracted use the option -i imageL-

ist.txt.  

A comma-separated output file SQL_input.txt is generated containing a simple list of all 

images and wav-files. 

 

E.4 Offline Annotation Software 
 

The offline post-annotation is done using a web-interface with PHP and MySQL. It is lo-

cated in moria.media.mit.edu/borglab (IP: 18.85.18.52). After creating a session the 

annotation tool will, clip by clip, load the image, play the audio-clip and present several 

sets of radio-buttons and a comment line, which are used to label the clip. 

For privacy reasons, the images and audio-clips remain on the users local workstation at 

all times.  

On the first page, insert.php will use SQL_input.txt, a specified path for the directory 

on your local machine and a session name to create an entry in the MySQL table ‘ses-

sions’ and to create a new table in which each row represents a clip. 

This means that the annotation process keeps state. All labels are stored in the session’s 

table and a user may resume a terminated session.  

Once all clips are labelled the text-files labels.txt, comments.txt and Name_Legend.txt 

are created and presented to download. 

 

On esgaroth:/localdata/mark/ there is a script “preProcessData.sh” that will do all neces-

sary pre-processing: 

 
echo "preProcessData: extracting file name from outputfile.txt:" 

export fileName=`cat outputfile.txt` 

echo $fileName 

if [ "$fileName" == "" ]; then 

echo "preProcessData: Error, could not find outputfile.txt" 

exit -1 

fi 

 

cp /localdata/mark/audio2wave.pl . 

cp /localdata/mark/ascii2bin . 

 

echo "preProcessData: Cropping files (wait 1 min)..." 

/localdata/mark/Cropfile $fileName.accel1 

/localdata/mark/Cropfile $fileName.accel2 

/localdata/mark/Cropfile $fileName.audio 
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/localdata/mark/Cropfile $fileName.accelfeat 

/localdata/mark/Cropfile $fileName.audiofeat 

/localdata/mark/Cropfile $fileName.event.class 

/localdata/mark/Cropfile $fileName.posture.class 

/localdata/mark/Cropfile $fileName.location.class 

/localdata/mark/Cropfile $fileName.speech.class 

/localdata/mark/Cropfile $fileName.posture_c45.class 

/localdata/mark/Cropfile $fileName.event_c45.class 

/localdata/mark/Cropfile $fileName.speech_c45.class 

 

echo "preProcessData: Calling WavClipExtractor (wait 2 min)..." 

/localdata/mark/WavClipExtractor -a $fileName.audio 

 

rm -f audio2wave.pl 

rm -f ascii2bin 

 

echo "preProcessData: finished!"  
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Appendix F  

Detailed comparison of four microphones 
 

In a test recording a text was read out loud and four different microphones were used.  

 

1. the built-in microphone of the Zaurus SL6000L 

2. a dynamic hands-free cell phone microphone 

3. RadioShack 33-3013 omnidirectional electret condenser microphone with LR44 

1.5V alkaline button cell battery 

4. Sony ECM-T115 omnidirectional electret condenser microphone with CR2022 3V 

lithium cell battery 

 

The spectrograms and FFTs show differences in quality. In contrast to the condenser mi-

crophones, the built-in and the dynamic microphone show disturbing frequencies below 

100Hz. This is likely to interfere with certain audio feature computations e.g. formant 

frequency. The cell-phone microphone shows a very large disturbance at 60Hz. This is 

probably due to the frequency of the AC power supply that was plugged in during the 

recordings. 

 

All recordings show a disturbance at 1952Hz, which must be attributed to the AD con-

verter of the Zaurus.  

 

An important characteristic lies in the higher frequencies when it comes to detecting the 

number of autocorrelation peaks, which is one of the used audio features. Because those 

peaks were best visual in the fourth recording, the Sony condenser microphone was se-

lected. 
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Figure F-2: Comparison of spectrograms using four different microphones 

 



  88 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Zaurus SL6000L built-in mic

frequency [Hz]

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
dynamic hands-free cell phone mic

frequency [Hz]

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RadioShack 33-3013 omnidirectional electret condenser mic

frequency [Hz]

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sony ECM-T115 omnidirectional electret condenser mic

frequency [Hz]

 
Figure F-3: Comparison of FFTs using four different microphones 
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Appendix G Interest prediction experiment 

 

These are the pictures recorded in the 3-hour interest prediction experiment described in 

Chapter 7. The images of set A were taken by the interest prediction algorithm. In set B, pic-

tures were taken at regular intervals. 

G.1 Picture set A 
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G.2 Picture set B 
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