Publication

Localizing a Sensor Network via Collaborative Processing of Global Stimuli

Michael Broxton, Joshua Lifton, Joseph A. Paradiso

Abstract

In order for nodes in a sensor network to meaningfully correlate their sensor readings, they must first determine their position in a globally shared coordinate system. Though there are many approaches which are suitable for achieving localization in the general case, sensor nodes are uniquely suited to use their sensing capabilities to aid them in this task. Global events which are detected in the environment surrounding the sensor network can serve as points of correspondence which, through collaborative processing on the network, provide nodes with sufficient information to compute their position. We have implemented an algorithm based on this approach in the Pushpin Computing sensor network: a dense, 55 node network which is spread over an area of 0.5 square meters. By queuing off of the minimum number of ultrasound pulses and light flashes needed to determine 2D coordinates using a simple lateration approach, we show that nodes in the Pushpin network can compute their position with an average error of 5-cm and a error standard deviation of 3-cm. In this paper we present this localization system and characterize its accuracy in our hardware testbed.

Related Content