People who have difficulty communicating verbally (such as many people with autism) sometimes send nonverbal messages that do not match what is happening inside them. For example, a child might appear calm and receptive to learning�but have a heart rate over 120 bpm and be about to meltdown or shutdown. This mismatch can lead to misunderstandings such as "he became aggressive for no reason." We are creating new technologies to address this fundamental communication problem and enable the first long-term, ultra-dense longitudinal data analysis of emotion-related physiological signals. We hope to equip individuals with personalized tools to understand the influences of their physiological state on their own behavior (e.g., "which state helps me best maintain my attention and focus for learning?"). Data from daily life will also advance basic scientific understanding of the role of autonomic nervous system regulation in autism.