Project

FABRICOLOGY: Variable-property 3D printing as a case for sustainable fabrication

Groups

Rapid prototyping technologies speed product design by facilitating visualization and testing of prototypes. However, such machines are limited to using one material at a time; even high-end 3D printers, which accommodate the deposition of multiple materials, must do so discretely and not in mixtures. This project aims to build a proof-of-concept of a 3D printer able to dynamically mix and vary the ratios of different materials in order to produce a continuous gradient of material properties with real-time correspondence to structural and environmental constraints.

Rapid prototyping technologies speed product design by facilitating visualization and testing of prototypes. However, such machines are limited to using one material at a time; even high-end 3D printers, which accommodate the deposition of multiple materials, must do so discretely and not in mixtures. This project aims to build a proof-of-concept of a 3D printer able to dynamically mix and vary the ratios of different materials in order to produce a continuous gradient of material properties with real-time correspondence to structural and environmental constraints.

All Mediated Matter images are subject to copyright. Please contact the group for more information or about reuse: mm-images@media.mit.edu