Project

ScreenSpire

Screen interactions have been shown to contribute to increases in stress, anxiety, and deficiencies in breathing patterns. Since better respiration patterns can have a positive impact on wellbeing, ScreenSpire improves respiration patterns during information work using subliminal biofeedback. By using subtle graphical variations that are tuned to attempt to influence the user subconsciously, user distraction and cognitive load are minimized. To enable a truly seamless interaction, we have adapted an RF-based sensor (ResMed S+ sleep sensor) to serve as a screen-mounted contact-free and respiration sensor. Traditionally, respiration sensing is achieved with either invasive or on-skin sensors (such as a chest belt); having a contact-free sensor contributes to increased ease, comfort, and user compliance, since no special actions are required from the user.

Screen interactions have been shown to contribute to increases in stress, anxiety, and deficiencies in breathing patterns. Since better respiration patterns can have a positive impact on wellbeing, ScreenSpire improves respiration patterns during information work using subliminal biofeedback. By using subtle graphical variations that are tuned to attempt to influence the user subconsciously, user distraction and cognitive load are minimized. To enable a truly seamless interaction, we have adapted an RF-based sensor (ResMed S+ sleep sensor) to serve as a screen-mounted contact-free and respiration sensor. Traditionally, respiration sensing is achieved with either invasive or on-skin sensors (such as a chest belt); having a contact-free sensor contributes to increased ease, comfort, and user compliance, since no special actions are required from the user.