Benchmarking Privacy in Machine Learning Prediction

We tackle the question of how to benchmark reconstruction of inputs from deep neural networks representations. This inverse problem is of great importance in the privacy community where obfuscation of features has been proposed as a technique for privacy-preserving machine learning inference. In this benchmark, we characterize different obfuscation techniques and design different attack models. We propose multiple reconstruction techniques based upon distinct background knowledge of the adversary. We develop a modular platform that integrates different obfuscation techniques, reconstruction algorithms, and evaluation metrics under a common framework. Using our platform, we benchmark various obfuscation and reconstruction techniques for evaluating their privacy-utility trade-off. Finally, we release a dataset of obfuscated representations to foster research in this area.