• Login
  • Register

Work for a Member organization and need a Member Portal account? Register here with your official email address.

Publication

Simulating Society Requires Simulating Thought

Chance Jiajie Li, Jiayi Wu, Zhenze Mo, Ao Qu, Yuhan Tang, Kaiya Ivy Zhao, Yulu Gan, Jie Fan, Jiangbo Yu, Jinhua Zhao, Paul Liang, Luis Alonso, Kent Larson. (2025). Position: Simulating Society Requires Simulating Thought. In Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Abstract

Simulating society with large language models (LLMs), we argue, requires more than generating plausible behavior; it demands cognitively grounded reasoning that is structured, revisable, and traceable. LLM-based agents are increasingly used to emulate individual and group behavior, primarily through prompting and supervised fine-tuning. Yet current simulations remain grounded in a behaviorist "demographics in, behavior out" paradigm, focusing on surface-level plausibility. As a result, they often lack internal coherence, causal reasoning, and belief traceability, making them unreliable for modeling how people reason, deliberate, and respond to interventions.

To address this, we present a conceptual modeling paradigm, Generative Minds (GenMinds), which draws from cognitive science to support structured belief representations in generative agents. To evaluate such agents, we introduce the RECAP (REconstructing CAusal Paths) framework, a benchmark designed to assess reasoning fidelity via causal traceability, demographic grounding, and intervention consistency. These contributions advance a broader shift: from surface-level mimicry to generative agents that simulate thought, not just language, for social simulations. 

Related Content