Article

Volta Labs: Improving workflows for genetic applications

Copyright

Image courtesy of Volta Labs

Image courtesy of Volta Labs

By Daniel de Wolff

The cost of DNA sequencing has plummeted at a rate faster than Moore’s Law, opening large markets in the sequencing space. Genomics for cancer care alone is predicted to hit $23 billion by 2025, but sample preparation costs for sequencing have stagnated, causing a significant bottleneck in the space.

Conventional sample preparation, converting DNA from a saliva sample, for example, into something that can be fed to a sequencing machine, relies on a liquid-handling robot. It is essentially a mechanical arm equipped with pipette tips that moves liquid samples to plastic plates and other instruments placed on the deck. These systems involve multiple fluidic transfers that lead to poor utilization of reagents and samples, which means less DNA sequenced. Moreover, they are systems of separate data silos that lack integration and rely on expensive consumables.

Unlike traditional liquid-handling automation, the suite of solutions developed by MIT Media Lab spinoff Volta Labs provides end-to-end integration for a wide variety of workflows. It’s a sleek alternative to costly liquid handling machines and manual pipetting. “Our technology is a small-scale, benchtop device that is low-cost and has minimal consumable usage, enabling rapid and flexible composition of new biological workflows,” says Volta Labs co-founder and Head of Engineering Will Langford SM ’14, PhD ’19.

Related Content